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 INTERNATIONAL ECONOMIC REVIEW
 Vol. 36, No. 1, February 1995

 NASH-IMPLEMENTATION OF THE LINDAHL CORRESPONDENCE

 WITH DECREASING RETURNS TO SCALE TECHNOLOGIES*

 BY Qi Li, SHINSUKE NAKAMURA, AND GUOQIANG TIANI

 This paper considers the problem of designing "well-behaved" mechanisms
 whose Nash allocations coincide with Lindahl allocations in the presence of

 decreasing returns to scale (DRS) technologies. The mechanism presented

 here is individually feasible, balanced, continuous, and differentiable around
 Nash equilibria. Further, the mechanism has a message space of minimal
 dimension. Moreover we show that, in contrast to mechanisms dealing with

 constant returns to scale, an important characteristic of mechanisms imple-
 menting the Lindahl correspondence with DRS technologies is that at least one
 individual's personalized prices depend on his own messages, provided the

 mechanisms are balanced and smooth.

 1. INTRODUCTION

 Since Groves and Ledyard (1977) first proposed a mechanism to solve the "free

 rider" problem for public goods economies, there have been many mechanisms

 which implement the (constrained) Lindahl or Walrasian correspondence such as

 those in Hurwicz (1979a), Schmeidler (1980), Walker (1981), Hurwicz, Maskin, and

 Postlewaite (1984), Hurwicz (1986a), Groves and Ledyard (1987), Nakamura
 (1989), Tian (1989, 1990, 1991, 1992, 1993), and Tian and Li (1991) among others.

 However most mechanisms for public goods economies assume that the technology

 for producing public goods displays constant returns to scale (CRS). Although it is
 natural for economists to design "well-behaved" mechanisms for the simple case of

 CRS first, the "well-behaved" mechanisms for the more general case of decreasing

 returns to scale (DRS) are also quite desirable.

 This paper gives a "well-behaved" mechanism whose Nash allocations coincide

 with Lindahl allocations for public goods economies with DRS technologies. The

 mechanism presented is completely feasible (individually feasible and balanced ),2

 continuous, differentiable around Nash equilibria, and almost everywhere differ-
 entiable. This allows the differential approach to be used in finding Nash equilib-
 rium points. Moreover, the mechanism uses a message space of minimal dimen-
 sion. The results are shown to be true for any economy with at least three agents
 whose preferences satisfy the usual regularity assumptions (strict monotonicity,

 convexity, and differentiability) and in addition satisfies the condition that any

 * Manuscript received February 1993; final revision received March 1994.

 1 We wish to thank Professor L. Hurwicz for stimulating our interest in this subject and for his very
 useful comments and suggestions. We also wish to thank an anonymous referee for very valuable

 constructive suggestions that have significantly improved the presentation of the paper. The first and third

 authors acknowledge financial support from the SSHRC of Canada and Texas A&M University's

 Interdisciplinary Research Initiatives Enhancement Program Grant, respectively.

 2 That is, the resulting allocations are in the consumption space and are balanced for all messages.
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 interior allocation is strictly preferred to a boundary allocation.3 Briefly, the

 mechanism proceeds as follows: The reported messages are used to determine the

 personal price paid by each consumer of a public good, and these prices are

 summed to determine the amount received by the producer for each unit of that

 public good supplied. Next, find the profit maximizing level of output for the public

 goods subject to global material constraint. Although the profit maximizing vector
 may not be consistent with individual budget balance, an adjustment is then made

 so that the individual budget constraint is satisfied for every consumer, even out of

 equilibrium; by selecting the public goods vector that is closest to the profit

 maximizing one. We will have profit maximization at equilibrium.4 The outcome for

 the private good is then determined such that the budget constraint of each agent

 holds with equality. This mechanism has all the desirable properties mentioned

 above. Further, under conditions imposed in the paper, we show that the set of

 Nash allocations coincides with the set of Lindahl allocations.

 It is important to have a mechanism which implements the Lindahl correspon-

 dence for the following reasons. First, Lindahl allocations result in Pareto efficient

 allocations. Much of the literature on the design and evaluation of allocation

 mechanisms has adopted the Pareto-efficiency correspondence as an ideal for

 performance comparisons. Economists desire Pareto efficiency as a basic social

 goal partly because of the known and satisfactory efficiency properties of compet-

 itive markets and partly because of the acceptability of the concept of Pareto-

 efficiency as a minimal welfare criteria. Second, it results in individually rational
 allocations in the usual sense that they are not worse than the initial endowment.

 Third, the concept of Lindahl equilibrium is very similar to the conventional

 concept of Walrasian equilibrium with attention to the well-known duality which
 reverses the role of prices and quantities between private and public goods, and

 between Walrasian and Lindahl allocations. In the Walrasian case, prices must be
 equalized while quantities are individualized; in the Lindahl case the quantities of

 the public good must be the same for everyone, while prices charged for the public

 good are individualized. In addition, the concepts of Walrasian and Lindahl

 equilibria are both relevant to private-ownership economies.

 Including DRS technology in a Lindahl correspondence is interesting for two
 reasons. First, DRS technology is more common than CRS for producing a public

 good. The causes of DRS in the production of public goods are largely the same as
 for private goods. For example, consider the production of uranium for nuclear
 weapons that are used for national defense, it may be difficult or impossible to

 double all inputs, in that increasing the scale of operation would necessarily force

 the miners to operate on less rich veins of rock. DRS could also arise if some inputs

 3This assumption cannot be dropped for implementation of the Lindahl correspondence by a
 completely feasible mechanism, otherwise the Lindahl correspondence violates Maskin's (1977) mono-

 tonicity condition which is a necessary condition for Nash implementation. For details, see Tian (1988).

 4 We may not have profit maximization out of equilibrium. This may be a serious defect of the

 mechanism. However, it is true that we do not have profit maximization out of equilibrium in a real market

 economy, either. Many things occur to frustrate the aspirations of producers. But our mechanism, like a

 firm in a real market economy, does select a production plan that is closest to the profit maximizing one

 at every point along the path to equilibrium.
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 IMPLEMENTATION OF LINDAHL ALLOCATIONS 39

 were inadvertently omitted in estimating a production function. Decreasing returns

 to scale are also likely to be the case when the scale of operation is very large.

 Upward sloping average and marginal cost curves may be present at high output

 levels because coordination and control become increasingly difficult. Information

 may be lost or distorted as it is transmitted from workers to lower-level manage-

 ment and then to top level management, and the reverse may be equally likely.

 Channels of communication become more complex and more difficult to monitor,

 additional monitoring services cannot generally be obtained as readily as can

 additional inputs. Decisions require more time to make and implement.

 Second, our mechanism for DRS technologies is drastically different from

 mechanisms for CRS technologies. In the CRS case, the personalized prices of all

 agents in the existing mechanisms are independent of their own messages. In our

 mechanism however, the personalized prices of agents with nonzero profit shares

 depend on their own messages while only the personalized prices of agents without

 profit shares are independent of their own messages. We prove in Theorems 3 and

 4 that this is a generic property for any balanced and smooth mechanism which

 implements the Lindahl correspondence. It seems to us that this is an important

 distinction between CRS and DRS technologies when designing a balanced

 mechanism which implements the Lindahl correspondence. As an application of

 Theorems 3 and 4, one can conclude that the mechanisms proposed by Walker

 (1981) and Tian (1990, 1991) which implement the Lindahl correspondence for CRS

 technologies cannot be modified easily to implement the Lindahl correspondence

 for public goods economies with DRS technologies, because in those mechanisms

 the personalized prices of all agents are independent of their own messages.

 Our mechanism also improves the results of Walker (1981) and Nakamura (1989)
 in several aspects. Walker (1981) considered a general production technology, but

 his mechanism has several undesirable properties for economies with more than

 one private good.5 Specifically, his mechanism is a combination of a game form and

 the market mechanism, so it is not really a "pure"game form but a quasi-game form

 in the sense that it requires that producers are nonplayer participants6; it is not

 individually feasible, balanced, or single valued. Nakamura (1989) constructed two

 "pure" mechanisms which implement the Lindahl correspondence. However, one

 of them is neither (weakly) balanced nor individually feasible. The other is balanced
 but still not individually feasible and uses the strong assumption that all agents

 share the profits. For the importance of designing individually feasible, balanced,
 single-valued, and continuous mechanisms, see Groves and Ledyard (1987, pp.

 72-75) and Tian (1989, 1991).

 The plan of this paper is as follows. Section 2 sets forth a public goods economy

 model and presents a "pure" mechanism which has the desirable properties

 mentioned above. Section 3 shows that this mechanism fully implements the

 5 For one private good and one public good economies, Walker (1981) considered only the case of
 constant returns to scale and thus his mechanism has only one undesirable property, namely, individual

 infeasibility.

 6 This is because producers obey certain behavior rules but do not have preferences, and hence are not

 players in games ("soulless" production managers). Hurwicz (1979b) called this kind of game structure

 a quasi-game.
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 Lindahl correspondence. Section 4 proves that, for any balanced and smooth

 "pure" mechanism implementing the Lindahl correspondence, the personalized

 prices of consumers with nonzero profit shares must depend on their own messages

 and the personalized prices of those consumers without profit shares must be

 independent of their own messages. Finally, in Section 5, we give some concluding

 remarks.

 2. PUBLIC GOODS MODEL AND MECHANISM

 2.1. Economic Environments. We consider public goods economies with n
 agents who consume one private good x (the numeraire) and K public goods y.

 Throughout this paper subscripts are used to index agents and superscripts are used

 to index goods unless otherwise stated. Denote by N = {1, 2, ... , n} the set of

 agents. Each agent's characteristic is denoted by ei = (wi, Ri), where wi is the
 initial endowment of the private good and Ri the preference ordering (Pi denotes
 the asymmetric part of the preference R ) defined on R +I+K. We assume that there
 are no initial endowments of public goods, but that public goods can be produced
 from the private good. We further assume that there is only one producer7 whose

 production technology is given by a cost function C: RK -> R+, and each
 consumer i has a nonnegative profit share Oi with LEN Oi = 1. An economy is the
 full vector e = (e 1, ... , e n, C) and the set of all such economies is denoted by E.
 The following additional assumptions are made on E.

 ASSUMPTION 1. n - 3. 8

 ASSUMPTION 2. wi > 0 for all i E N.

 ASSUMPTION 3. Each consumer's preference Ri can be represented by a twice
 continuously differentiable and strictly quasi-concave utility function ui which
 satisfies strictly differentiable monotonicity (i.e., auilaxi > 0 and auilay > 0) on
 1+K

 ASSUMPTION 4. For all i E N, ui(x , y) > ui(xt, y') for all (xi, y) E R 8+K
 and (x' y') E a R+K where 8dl ++K is the boundary of R4+K

 ASSUMPTION 5. The cost function C: R K -> + is twice continuously differen-
 tiable, strictly increasing, strictly convex in y, and C(O) = 0.9 Thus, DC - 0 for
 all y _ 0 and D2C is positive definite. Here DC and D2C represent the first and
 second derivatives, respectively.

 7Extension to the presence of any number of producers is straightforward.

 8 As usual, vector inequalities are defined as follows: Let a, b E Rm. Then a _ b means as _ bs for
 alls= 1, ..., m; a 2 b means a _ b but a $ b; a > b means as > bs foralls = 1, ..., m.

 9 This is actually an input requirement function. In this model, there is only one private good which
 is a numeraire, so that we can interpret C(y) as a cost function.
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 IMPLEMENTATION OF LINDAHL ALLOCATIONS 41

 REMARK 1. The familiar Cobb-Douglas utility function satisfies Assumptions 3

 and 4.

 2.2. Lindahl Allocations. An allocation (x, y) = (x1, ... , xn, y) is feasible
 for an economy e if (x, y) E Rn++K and >ij xi + C(y) c E in I wi. An allocation
 (x, y) is Pareto efficient for an economy e if it is feasible and there does not exist

 another feasible allocation (x', y') such that ui(xt, y') ' ui(xi, y) for all i E N
 and uj(x), y') > uj(xj, y) for somej E N.10 An allocation (x, y) is individually
 rational for an economy e if ui(xi, y) ' ui(wi, 0) for all i E N.

 An allocation (x*, y*) is a Lindahl allocation for an economy e if it is feasible

 and there are personalized price vectors q* E R K , one for each i, such that

 1) xs + q -y* Y*' wi + Oi(q* * y* - C(y*)) for all i E N;
 2) ui(xi, y) > uj(x*, y*) implies xi + q* * y > wi + Oi(q*. y* - C(y*))

 for all i E N;

 3) q* . y* - C(y*) = maxyR+K(q* * y - C(y)),

 where Xi7 l1 q* - q*. Denote by L(e) the set of all such allocations.

 REMARK 2. Condition (3) is the profit maximization condition. Note that the

 maximum profit is greater than zero when the maximizing level of output y * is

 semi-positive (i.e., y* ? 0). Also, under Assumptions 2 to 4, the Lindahl allocation
 exists (compare Milleron 1972, p. 443).

 REMARK 3. Every Lindahl allocation is clearly Pareto efficient and individually

 rational. However, even though a Lindahl allocation is individually rational, it may

 not be autarkically individually rational.11

 2.3. Mechanism. Let F be a social choice rule, i.e., a correspondence from E

 to the set Z of resource allocations. In the rest of this paper, we will use the Lindahl
 correspondence as the social choice rule.

 Let Ml denote the ith message (strategy) domain. Its elements are written as mi
 and called messages. Let M = rl,n I Mi denote the message (strategy) space. Let
 h: M Z denote the outcome function, or more explicitly, hi(m) = (Xi(m),
 Y(m)), where Xi(m) is the ith agent's outcome function for the private good, and
 Y(m) the outcome function for public goods. A mechanism consists of (M, h)
 which is defined on E.

 A message m* = (m*j, ..., m*) E M is a Nash equilibrium (NE) of the

 mechanism (M, h) for an economy e if for any i E N and for all mi E Mi,

 1) u i (X Vm *) __m :k i (Xi __ :k*\.{ _: /m i_ 0, Ym __: /m i_ M,

 1? Note that, in contrast to the efficiency for private goods, for public goods economies, a weak Pareto
 efficient allocation may not be Pareto efficient even if preferences satisfy strict monotonicity and

 continuity (compare Tian 1988).

 11 An allocation (x*, y*) is autarkically (free access) individually rational if for each agent i, ui(x*,
 y*) ' ui(xi, yi). Here (x-i, Y-i) is a utility maximizer subject to xi + C(y) _ w_. This concept is due to
 Gevers (1986), Moulin (1989), and Saijo (1991).
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 42 QI LI, SHINSUKE NAKAMURA, AND GUOQIANG TIAN

 where (m*lmi, i) = (m*, ..., mt 1, mi, I*, ..., m*). The h(m*) is then called a Nash (equilibrium) allocation. Denote by VM,h(e) the set of all such Nash

 equilibria and by NM,h(e) the set of all such Nash (equilibrium) allocations. A

 mechanism (M, h) fully Nash-implements the Lindahl correspondence L on E, if,

 for all e E E, NM,h(e) # 0 and NM,h(e) = L(e). A mechanism (M, h) is
 individually feasible if (X(m), Y(m)) E R++K for all m E M. A mechanism (M,
 h) is balanced if for all m E M

 N n

 (2) >1 Xj(m) + C(y(m)) = > Wj.
 j=1 j=1

 A mechanism (M, h) is completely feasible if it is individually feasible and

 balanced.

 Now we construct a completely feasible and continuous mechanism with a

 message space of minimal dimension which fully Nash-implements the Lindahl

 correspondence under the assumptions that the cost function and endowments are

 known to the designer.

 For each i E N, the agent's message domain is of the form

 (3) Mi = R

 To define the personalized prices, we need to distinguish two cases: (i) Oi E [0,
 1) for all i E N and (ii) there is one consumer (say, consumer 1) who owns all the

 profit shares (i.e., 01 = 1, Oi = 0 for i = 2, ..., n).

 Case (i).

 (4) qi(m) = Oimi + (1 -Oi+)mi+,

 where n + 1 is to be read as 1.

 Case (ii).

 (5) ql(m) = ml;

 (6) qi(m) = mi+l for i= 2, ..., n-1;

 (7) qn (m) = M2 .

 REMARK 4. Observe that, by construction, consumers with zero profit shares

 cannot change their personalized prices by changing their own messages, although
 the personalized prices of consumers with nonzero profit shares depend on their

 own messages.

 Define the producer's price vector q(m) by summing all the consumers'

 personalized prices. Then for both cases we have

 n n

 (8) q(m) = E qi(m) = 2 mi i m.
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 Let A = {y E R +K: 0 < C( y) - w} be the feasible production set under given

 resources w = i- in I wi . Then A is nonempty, compact, and convex (by noting that
 C(y) is convex).

 The profit maximizing level of output for public goods is given by

 (9) Y(m) = arg min {I|q(m) - DC(y)II: y E Al,

 choosing y(m) such that its marginal cost vector is the closest to the producer's
 price vector. Note that y(m) is single valued, continuous,12 and by construction,

 (10) y(m) = (DC) -'(q(m))

 if q(m) E DC[A].

 Define the feasible correspondence B: M R +K by

 (1 1) B(m) = {y E R : Wi + Oi[q(m) * Y-C(y)]-qi(m) * y _ O V i E N}

 which is clearly nonempty, compact, convex, and continuous on M.

 Define the outcome function for public goods Y: M > B by

 (12) Y(m) = arg min {IIY - y(m)I|: y E B(m)},

 choosing Y(m) closest to the profit maximizing level of output y(m). Then Y(m) is

 single valued and continuous on M. Note that Y(m) also satisfies the global material

 balance condition because B(m) C A for all m E M.

 Define the taxing outcome function Ti(m): M -> DR by

 (13) Ti (m) = qi (m) * Y(m).

 Then

 n

 (14) > Ti(m).= q(m) * Y(m)
 i=l

 Define the ith agent's outcome function for private good Xi: M -> R + by

 (15) Xi(m) = wi + Oi[q(m). Y(m) - C(Y(m))] - qi(m) Y(m),

 which corresponds to the budget constraint. Because >iEN Oi = 1 and liEN qi(m)
 = q(m), we have

 n n

 (16) , Xi(m) + C(Y(m)) = wi,

 which means that the balanced condition holds for all m E M.

 12 This is because y(m) is an upper semicontinuous correspondence by Berge's Maximum Theorem
 (see Berge 1963, p. 116) and single valued (see Mas-Colell 1985, p. 28). It might be remarked that the

 convexity of the cost function is playing a big role in the paper. For example, in the single valuedness of

 y(Q) and Y(Q) defined in (12).
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 44 QI LI, SHINSUKE NAKAMURA, AND GUOQIANG TIAN

 Thus the mechanism specified above is individually feasible, balanced, continu-

 ous, and almost everywhere differentiable on M.

 3. EQUIVALENCE OF NASH AND LINDAHL ALLOCATIONS

 This section is devoted to the proof of equivalence between Nash allocations and

 Lindahl allocations, as stated in Theorem 1 and Theorem 2 below. Lemma 1 and

 Lemma 2 are preliminary results used to prove Theorem 1 and Theorem 2.

 LEMMA 1. If(X(m*), Y(m*)) E NM,h(e), then (X(m*), Y(m*)) E ++

 PROOF. We argue by contradiction. Suppose (X(m*), Y(m*)) e Rdn+K. Then

 Y(m*) EaK or Xi(m*) = 0 for some i E N.
 Let t E R +K be a vector with ones. Let

 2(t DC(t) + 2m,*)'

 where v = miniEN lwl andm* M >k=l >i Im*kI. Letb = min{1, 8} andy =
 (1l1K)(b, ..., b)' .

 Now suppose that consumer i chooses his/her message mi = DC(yV) - IL n m*j.
 Then q(m*lmi, i) = mi + I[, m*j = DC(y) and

 Wj + 0j[q(m*1mj, i) y- C(y)] - qj(m*Imi, i) * y

 wj W- qj (m*lmj, i) * y

 K KK
 w - > [Im;j + m-*]b (by noting It * qj(m)I I _ l |m;I)

 ' Wj - [I DC(y) + 2m'*]b (by noting mi =DC(y) - n mM*)

 'wj - [t DC(t) + 2m*]8 (by noting b 1 and b 8)

 w w

 =wi - 2 '- 2 > ?

 for allj E N. Therefore y E B(m*Imi, i) and thus

 Y(m*Imi, i) = y > 0,

 Xj(m*lmi, i) = wj + 6j[q(m*Imj, i) * y-C(y)]-qj(m*Imi, i) *5y > O.

 Hence, by Assumption 4, we have

 Ui (Xi(m*)mi, i, Y(m*/mi, i)) > uN(X((m*), Y(m*)),

 which contradicts (X(m*), Y(m*)) E Nm,h (e) * Q.E.D.
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 LEMMA 2. If (X(m*), Y(m*)) E NM,h(e), then Y(m*) E int B(m*) and
 q(m*) E DC[A]. Therefore Y(m*) = y(m*) = (DC)-1(q(m*)).

 PROOF. Suppose, by way of contradiction, that Y(m*) E aB(m*).13 Then either
 yk(m*) = 0 for some k or 0 = wi + Oi[q Y(m*) - C(Y(m*))] - qi(m*). Y(m*)
 = Xi(m*) for some i E N. But both cases are impossible by Lemma 1. So Y(m*)
 E int B(m*) and thus Y(m*) = yr(m*). Similarly, we must have q(m*) E DC[A]

 for otherwise, y(m*) = 0 or DC( y(m*)) = in 1=I wi and thus Xi(m*) = 0 for all
 i E N. Hence Y(m*) = yV(m*) = (DC)- 1(q(m*)). Q.E.D.

 REMARK 5. From Lemma 2 and the twice differentiability of the cost function,

 we know that the outcome functions are differentiable on some neighborhood of

 m* C VM,h(e) and thus we can use the differential approach to find Nash

 equilibrium points. (For the examples of using the differential approach to locating

 Nash equilibria, see Chapter 16 of Varian 1992). Lemma 2 also shows that the
 outcome for public goods is equal to the profit maximizing level of output at Nash

 equilibrium.

 We now prove the main results of this paper in the following theorems.

 THEOREM 1. Under Assumptions 1 to 5, if the mechanism defined above has a

 Nash equilibrium m*, then (X(m*), Y(m*)) is a Lindahl allocation with the

 Lindahl price system (ql(m*), ..., qn(m*)), i.e., NM,h(e) C L(e).

 PROOF. Let m* be a Nash equilibrium. We prove that (X(m*), Y(m*)) is a

 Lindahl allocation with the price vector (ql(m*), qn(m*)) E 04K. By the
 construction of the mechanism and Lemma 2, we know that (X(m*), Y(m*)) is

 feasible, Y(m*) is the profit maximizing level of output, and (Xi(m*), Y(m*))
 satisfies the budget constraint of agent i. So we need only show that each individual

 is maximizing his/her preferences.

 By Lemma 1, we know that (Xi(m*), Y(m*)) E R ++K . By Lemma 2, Y(m*) E
 int B(m *) and Y(m*) = (DC) (q(m *)). Therefore there exists a neighborhood

 0(m*) of m* such that Y(m) E int B(m*) for all m E 0(m*). Hence all outcome

 functions qi(m), q(m), Xi(m), and Y(m) are differentiable on 0(m*). Thus, by
 using the first order condition, we have

 (17) Dmiui(Xi(m*), Y(m*)) =0.

 Therefore,

 (18) (Dxui)[Oi(Y Dmq + q*DmiY Y-DC(Y * Dmi Y-qi * Dmi Y-Y Dmiqi]

 + Dyui(Dmi 1) = .

 By the constructions of q(m) and qi(m) and Lemma 2, we know that for all m E
 0(m*), q(m) = DC(Y(m)), Dm.q = IK, Dm.qj = OiI'K,4 and thus OiY(m) Dm q

 13 MB(m) denotes the boundary of B(m).
 14 This is true for both cases by the definition of qi(m) and by noting that Oi can be zero for some

 i E N.
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 46 QI LI, SHINSUKE NAKAMURA, AND GUOQIANG TIAN

 - Y(m) * Dmqiq(m) = Oi Y(m) - Oi Y(m) = 0. Here IK is a K x K identity matrix.
 Hence (18) becomes

 (19) [(Dxuj)(-qj(m*)) + (Dyui)]Dmi Y= 0.

 Because Dm Y = (D 2 C) -I is a nonsingular matrix,

 (20) D ui (-qi(m*)) + Dyui = 0

 and thus

 (21) D D ui = qi(m*),
 Dx I

 which is the first order necessary and sufficient condition for utility maximization

 since ui is strictly quasi-concave. Q.E.D.

 THEOREM 2. Under Assumptions 1 to 5, if (x*, y*) is a Lindahl allocation with
 the Lindahl price system (q*j, , q*), then there is a Nash equilibrium m* of the

 mechanism such that Y(m*) - y*, Xi(m*) x 4, qi(m*) = q ,for all i E N, i.e.,
 L (e) C_ NM, h(e).

 PROOF. We want to find a message m* such that (x*, y*) is a Nash allocation.
 We first assume that at least two agents have nonzero profit shares (i.e., Oi E [0,
 1) for all i E N, which belongs to Case (i)). Consider the following linear equations
 system:

 (22) em =q*,

 where

 01IK (- 02IK 0 0 0
 0 02IK (1 03)IK 0 0

 (23) E) ... ... ... ...

 0 0 0 on-IIK (1 On)IK
 (1 O)IK 0 0 0 OnIK

 and q* = (q*, , q*)'. Expanding the determinant 101 by the first K columns, we
 have 101= fl/1 of + (=1)n+1 fi 1(1- =A)K #0 because Oi E [0, 1) for all
 i E N. 15 Hence the linear equations system (22) has a unique solution m*. Now if
 only one agent receives all the profit, the linear equations system is specified by (5)
 to (7) and thus clearly has a unique solution. Then, for both cases, we can find a

 unique m* such that qi(m*) = q*, q(m*) = 2i qi(m*) = 1= qi, q(m*) =
 DC(Y(m*)), Xi(m*) = x4, Y(m*) = y*

 From (18) and (21), we know that the first order condition for Lindahl allocations
 is the same as the first order condition for Nash allocations. So we need only show

 15 This is true by the following reasoning. If Oi = 0 for some i E N, then IEI = (- 1) n+ [1ri l (1 -
 0i)K # 0. If Oi # 0 for all i E N, then Oi < 1 - Oj+j since n ' 3 and 1 li = 1. Thus rlg!1l O1K <
 [lU ,(1 - *)K So OJE - [l) l + (-1)'+lI'- (1 - 06)K # 0.
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 that the first order necessary condition for Nash equilibrium is actually sufficient for

 Nash equilibrium by showing that the following function (which gives consumer i's

 budget constraint)

 (24) Xi(m*lmi, i) = wi + Oi[q(m*lmi, i) Y(m*Imi, i) - C(Y(m*Imi, i))]

 - qi(m*lmi, i) * Y(m*Imi, i)

 is concave in Y(m*Imi, i) for all mi E M,.16
 We first consider those mi such that (Xi(m*Imi, i), Y(m*Imi, i)) E R++K

 Then Y(m*Imi, i) E int B(m*Imi, i) and thus all the outcome functions are
 differentiable with respect to mi on some neighborhood of mi. Differentiating (24)
 with respect to mi, we have

 (25) DyXi DmiY= Oi[q*DmiY+ YDmq-DC(Y)*Dm.Y]

 -qi*DmiY- Y Dtn,qi.

 By repeating the arguments that lead to equation (20), we get

 (26) DyXi = -qi(m).

 The second order derivative matrix is

 (27) D2yXiDmi Y=-Dm.qij(m) =-JKX

 Then

 (28) D2 Xi Oi(Dm. Y)1 =Y - OiD2C,

 which is negative semi-definite. Thus Xi(m*Im1, i) is concave in Y(m*Im , i) when
 (Xi(m*Imi, i), Y(m*Imi, i)) E I4 +K . Now consider those mi such that outcomes
 (Xi(m*Imi, i), Y(m*Imi, i)) are boundary points of R4+K. Since these outcomes
 are also boundary points of the curve specified by (24) which are continuous in mi,
 and concave in Y in R ++K, Xi(m*lmi, i) is concave in Y(m*Imi, i) for all mi E
 Mi. Thus consumer i maximizes a strictly quasi-concave utility function subject to
 a convex constraint when others' messages are given. Hence the first order

 condition is sufficient (compare Arrow and Enthoren 1961). Q.E.D.

 REMARK 6. From Theorem 2.4 of Reichelstein and Reiter (1988) we know that

 Nash implementation is always at least as costly, in message space size, as

 (decentralized) realization. Because the minimal dimension required for decentral-

 ized realization of the Lindahl correspondence under prescribed behavior is nK

 (compare Sato 1981 or Hurwicz 1986b), the mechanism presented in this paper has
 a message space of minimal dimension and thus is informationally efficient. Also,

 because every Lindahl allocation is Pareto efficient and individually rational, the

 mechanism yields Pareto efficient and individually rational allocations.

 16 Note that choosing mi is equivalent to choosing Y(m*1m1, i) for consumer i when others' messages
 are given.
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 Summarizing the above discussions, we conclude that for public goods econo-

 mies E satisfying Assumptions 1 to 5, there exists a completely feasible, continu-

 ous, and almost everywhere differentiable mechanism with a message space of

 minimal dimension which fully Nash-implements the Lindahl correspondence.

 4. CHARACTERISTICS OF MECHANISMS FOR DRS

 Notice that the above mechanism is drastically different from the usual CRS

 mechanisms. Groves and Ledyard (1987, p. 77) argued that, for a given mechanism
 in public goods economies with CRS, if the joint message m * is a Nash equilibrium

 that yields a Lindahl allocation, the personalized prices qi(m*) may depend on the
 messages of other agents, but not on the agent's own message. In our mechanism

 dealing with DRS, the personalized prices of consumers with nonzero profit shares
 depend on their own messages while only the personalized prices of consumers

 with zero profit shares are independent of their own messages. One may wonder if

 this distinction is valid for any balanced and smooth mechanism which fully

 implements the Lindahl correspondence. The following results answer this ques-

 tion.

 THEOREM 3. Let (M, h) be a mechanism which fully Nash-implements the

 Lindahl correspondence on the set of sufficiently large economic environments with
 DRS technologies. Suppose that the outcome function h is differentiable on some

 neighborhood of every Nash equilibrium and satisfies the budget constraints with

 equality. Then, if all consumers' profit share are nonzero, at least one consumer's

 personalized prices depend on his own messages.

 PROOF. Consider the following class of public goods economies: one private

 and one public good, decreasing returns in producing y from x by the cost function

 C( y) = y2, endowments wi > 0, and preferences Ri which are represented by the
 differentiable utility functions ui of the form

 u1(xi, y) = xiaiyl-ai fV ai E (0, 1)

 for all i E N. Denote by EC the set of all such economies. Then one can show that
 (x*, y*) E L(e) for e E EC if and only if

 (29) x - wi + Oi[q*2/4 - q*(q*12)], V i E N

 (30) y* = q*12,

 where

 2(1 - al)
 (31) qi*= * [wi + Oi(q*2/4)], ViEEN

 q

 and
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 (1 - i

 (32) q* = 2 __

 \[2- En_ (1 - ai)0]

 From (29) to (32), we know that for all Lindahl allocations for the economies EC,
 xi E (O, wi) and y* E (0, \/w) since q* E (0, (wi + Oiw)I/ w) and q* E (0, 2/w-w).

 Now for any mechanism (M, h), Xi(m), by assumption, is defined by

 (33) Xj(m) = wi + Oi[q(m) * Y(m) - C(Y(m))] - qi(m) * Y(m)

 and thus the mechanism is balanced. Because the mechanism, by assumption, is

 differentiable on some neighborhood of every Nash equilibrium m E VM,h (Ec) and
 fully implements the Lindahl correspondence on Ec, we have the first order
 condition for Nash equilibrium

 (34) (Dxui)[Oi(Y Dm.q+q*DmiY-DC(Y)*DmiY)

 -qi Dmi Y- Y Dm qi] + Dyui(Dm Y) 0.

 Because (X(m), Y(m)) is also a Lindahl allocation by assumption, from the first

 order condition for Lindahl allocations, we have

 (35) [(Dxuj)(-qj(m)) + (D ui)]Dm Y= 0.

 Combining (34) and (35), we obtain

 (36) (DXui)[Oi(Y Dm, q + q * Dm. Y -DC(Y) Dm. r Y YDm, qi] = 0.

 Because (Dxui) > 0, q(m) - DC(Y(m)) = 0 by the profit maximization condition,
 and Y(m) E (0, \-/), we must have

 (37) ojaq(m)Iamj = aqj(m)Iamj

 or

 (38) oiaDC(Y(m))Iamj = aqj(m)Iam,mj

 for all m E VM,h(Ec).

 Now suppose by way of contradiction, that for all i E N, aqj(m)Iamj = 0 for
 all m E VM,h(Ec). Because Oi > 0 for all i E N, then aDC(Y(m))Iamj = 0 for
 all m E VM,h(Ec) and all i E N. Hence, by Sard's theorem, DC(Y(VYM,h(EC))) =
 DC(y*(Ec)) is of measure zero, where y*(e) is the Lindahl allocation for the pubic
 goods at e E EC. But by Nash implementation, DC(Y(/M,h(Ec))) = DC(y*(Ec))
 has a positive measure, which is a contradiction. Q.E.D.

 From the proof of the above theorem, we have the following result:

 THEOREM 4. Let (M, h) be a mechanism which fully Nash-implements the
 Lindahl correspondence on the set of sufficiently large economic environments with
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 DRS technologies. Suppose that the outcome function h is differentiable on some
 neighborhood of every Nash equilibrium and satisfies the budget constraints with

 equality. Then, at least on VM,h(E), the personalized prices of consumers without
 profit shares must be almost everywhere independent of their own messages, and

 the personalized prices of consumers with nonzero profit shares must depend on

 their own messages if their outcome functions (Xi(m), Y(m)) are not almost
 everywhere independent of their own messages.

 PROOF. Under EC specified in the proof of Theorem 3, we know that

 (39) 0jaq(m)Iamj = aqi(m)lami

 for all m E VM,h(EC). Thus, if the profit share of agent i is zero (i.e., Oi = 0), then
 aqi(m)lami = 0 for all m E VM,h(EC). By Sard's theorem, qi(m) is of measure
 zero for all Nash equilibrium strategies of consumer i. Thus qi is almost every-
 where independent of the agent's own messages on VM,h (Ec) which proves the first
 part of the theorem.

 Now we prove the second part of the theorem. Suppose by way of contradiction,

 that for some i with Oi > 0, aqi(m)lami = 0 for all m E VM,h(EC). We then have
 aq(m)lami = 0 and aDC(Y(m))Iamj = 0 for all m E VM,h(EC). Consequently,
 aXj(m)Iamj = 0 and a Y(m)Iami = 0 for all m E VM,h(EC), which means (Xi(m),
 Y(m)) is almost everywhere independent of the agent's own messages on

 VM,h(Ec), a contradiction. Q.E.D.

 REMARK 7. Since in the case of CRS, every agent's profit share can be

 considered as zero, the above theorem actually supports the arguments for the CRS
 technology made by Groves and Ledyard (1987).

 REMARK 8. As an application of Theorems 3 and 4, consider the mechanisms

 proposed by Walker (1981) and Tian (1990) for one private and one public good

 economies. These mechanisms are differentiable around Nash equilibria, satisfy the

 budget constraints with equality, and yield personalized prices of agents indepen-

 dent of their own messages. Although they implement the Lindahl correspondence

 for CRS technologies, we know by Theorems 3 and 4, that simple modifications of
 these mechanisms cannot implement the Lindahl correspondence under DRS.

 5. CONCLUDING REMARKS

 In the above sections we have given a simple mechanism which is well-behaved

 in the sense that the mechanism is individually feasible, balanced, continuous, and
 has a message space of minimal dimension. Moreover, the mechanism is almost

 everywhere differentiable on the message space and differentiable on some neigh-
 borhood of every Nash equilibrium so that we can use the differential approach. We
 have also shown that mechanisms for DRS are drastically different from the

 mechanisms for CRS in a way that some agents' personalized prices must depend

 on their own messages if the mechanisms are balanced and smooth. In this section,
 we would like to mention some possible extensions.

 First, the mechanism presented here deals only with public goods economies
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 with one private good. However, by using techniques similar to those given in Tian

 and Li (1991), the mechanism presented above can be generalized to include

 economies with an arbitrary number of private goods and a DRS technology by

 combining the above mechanism and a mechanism given in Tian (1992). The

 resulting mechanism would be completely feasible, continuous, and implement the

 Lindahl correspondence.

 Second, the mechanism obtained in this paper works only for public goods

 economies that have strictly decreasing returns to scale. However, this restriction

 can be relaxed easily to include economies with general convex production

 possibility sets (including CRS and DRS technologies) by combining the above
 mechanism and the mechanism given in Tian (1991). Such techniques have been

 used in Tian and Li (1995). The resulting mechanism will have all the desirable

 properties of the above mechanism.

 Third, similar to those mechanisms proposed by Hurwicz, Maskin, and Postle-

 waite (1984), and Tian (1993), the mechanism presented above can be .extended to

 allow for endowments unknown to the designer. This case of course certainly

 increases the size of the message space but reduces the information requirements

 on the designer.

 Finally, like many mechanisms in the literature (such as those in Hurwicz 1979,

 Walker 1981, Tian 1990), we have assumed that the technology is known to the

 designer in the above mechanism. This is clearly not a satisfactory assumption.

 This assumption however, can also be relaxed if we do not insist on the requirement

 of the minimal sized message space by using techniques similar to those in

 Hurwicz, Maskin, and Postlewaite (1984), Nakamura (1989), Tian (1989).

 University of Guelph, Canada
 Keio University, Japan

 Texas A&M University, U.S.A.
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