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Econometrica, Vol. 64, No.4 (July, 1996), 865-890

CONSISTENT MODEL SPECIFICATION TESTS: OMITTED
VARIABLES AND SEMIPARAMETRIC FUNCTIONAL FORMS

By YaNQIN Fan anp Qi1 Li!

In this paper, we develop several consistent tests in the context of a nonparametric
regression model. These include tests for the significance of a subset of regressors and
tests for the specification of the semiparametric functional form of the regression
function, where the latter covers tests for a partially linear and a single index specification
against a general nonparametric alternative. One common feature to the construction of
all these tests is the use of the Central Limit Theorem for degenerate U-statistics of order
higher than two. As a result, they share the same advantages over most of the correspond-
ing existing tests in the literature: (a) They do not depend on any ad hoc modifications
such as sample splitting, random weighting, etc. (b) Under the alternative hypotheses, the
test statistics in this paper diverge to positive infinity at a faster rate than those based on
ad hoc modifications.

Keyworps: Consistent tests, degenerate U-statistics, kernel estimation, omitted
variables, partially linear model, single index model.

1. INTRODUCTION

RECENTLY, NONPARAMETRIC FUNCTIONAL ESTIMATION TECHNIQUES such as kernel
and series methods have been used to construct consistent model specification
tests.” These include tests for a parametric model versus a nonparametric
model, tests for the significance of a subset of regressors in a nonparametric
regression model, and tests for a semiparametric (partially linear or single index)
model against a nonparametric alternative. For example, Fan and Li (1992a),
Hirdle and Mammen (1993), Hidalgo (1992), and Lee (1994) have developed
consistent tests for a parametric specification by using the kernel regression
estimation technique; Eubank and Spiegelman (1990), Hong and White (1995),
and Wooldridge (1992) have applied the method of series estimation to consist-
ent testing for a parametric regression model; consistent tests for omitted
variables were considered by Hidalgo (1992) and Gozalo (1993), among others;
Lavergne and Vuong (1996) proposed a method to select between two sets of
regressors using kernel estimators; Whang and Andrews (1993) and Yatchew
(1992) have developed consistent tests for a partially linear model versus a

! The first author would like to thank the Natural Sciences and Engineering Research Council
and the Social Sciences and Humanities Research Council of Canada for their support and the
second author would like to acknowledge the Social Sciences and Humanities Research Council of
Canada for its support.

2 Bierens (1982) was the first to give a consistent conditional moment model specification test; see
also Bierens (1990), Bierens and Plobefger (1994), and references therein. Using nonparametric
estimation technique to construct consistent model specification tests was first suggested by Ullah
(1985). Robinson (1989) was the first to propose some nonparametric tests for time-series models.
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866 YANQIN FAN AND QI LI

nonparametric alternative; consistent tests for a single index specification have
been presented in Chen (1992) and Rodriguez and Stoker (1992).

The first group of papers that make use of nonparametric estimation tech-
niques in developing consistent tests for a parametric functional form such as
Hidalgo (1992), Lee (1994), and Wooldridge (1992) among others have employed
ad hoc modifications such as sample splitting or a form of weighting. Recently a
number of authors have successfully used the Central Limit Theorems (CLTs)
for second order degenerate U-statistics in Hall (1984) and De Jong (1987) to
develop some consistent nonparametric tests for a parametric density function
or a parametric regression function; see, e.g., Eubank and Hart (1992), Fan
(1994), Fan and Li (1992a, b), Hirdle and Mammon (1993), Hong and White
(1995), Horowitz and Hirdle (1994), and Li (1994), to mention only a few.
However to the best of our knowledge, the existing consistent tests for a
semiparametric functional form such as a partially linear model or a single index
model and tests for omitted variables in a nonparametric model still employ ad
hoc modifications. For example, for testing a partially linear model versus a
nonparametric regression model, Whang and Andrews (1993) and Yatchew
(1992) used sample splitting; for testing a single index model, Chen (1992) used
sample splitting, and Rodriguez and Stoker (1992) introduced a test statistic that
has a degenerate limiting distribution under the null hypothesis; for testing
omitted variables, Robinson (1991) discussed the application of a form of
nonstochastic weighting which is equivalent to a form of sample splitting,
Hidalgo (1992) introduced random weighting, and Gozalo (1993) used a random
search procedure.? These ad hoc modifications are introduced in the aforemen-
tioned studies in order to overcome the so called “degeneracy problem”: an
appropriate estimator of some measure of the distance between the models to
be tested under the null hypothesis approaches zero at a rate faster than n~1/2,
where n is the sample size. As a consequence, when normalized by n'/2, the
estimator of the chosen measure does not have a well-defined limiting distribu-
tion under the null hypothesis. This degeneracy problem is caused by the fact
that the estimator of the chosen measure contains in its expression some
degenerate U-statistic which vanishes at a rate faster than n~!/2, Without
modifying this estimator, its asymptotic distribution under the null hypothesis
would be determined by the degenerate U-statistic. In the papers we just cited,
ad hoc modifications are employed such that the asymptotic distribution of the
estimator of the chosen measure in each of these papers is determined by a
random term that is of a larger order than the corresponding U-statistic.
However, rather than introducing ad hoc methods to avoid the degeneracy
problem, it seems natural, as in recent papers on consistent tests for a paramet-
ric functional form mentioned earlier, to exploit this special property by invok-
ing the CLTs for degenerate U-statistics (of order possibly higher than two) to

3 Recently Lavergne and Vuong (1996) constructed a nonparametric test for selecting regressors.
They require that the competing sets of regressors be non-nested. Hence their test is different from
the usual omitted variables test.
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CONSISTENT MODEL SPECIFICATION TESTS 867

develop consistent tests for omitted variables and for semiparametric functional
forms. This forms the core of the present paper. Tests that exploit this special
property may also be more powerful than those based on ad hoc modifications,*
because under the alternative hypothesis the corresponding test statistics di-
verge to + at a rate faster than n'/2,

The remainder of this paper is organized as follows. We introduce the
nonparametric regression model and the hypotheses to be tested in Section 2.
Section 3 constructs a consistent test for omitted variables in the context of the
nonparametric regression model introduced in Section 2. Section 4 presents
respectively a consistent test for a partially linear specification and a consistent
test for a single index specification of the regression function. The last section
concludes and offers some suggestions for further research. Appendix A con-
tains proofs of the main results in Sections 3 and 4. Appendix B contains some
technical lemmas that are used in the proofs of Appendix A. In particular, it
contains an extension of the CLT in Hall (1984) for degenerate U-statistics of
second order to degenerate U-statistics of any finite order. This is useful
because the test statistics to be constructed in this paper involve degenerate
U-statistics of order higher than two.

Throughout the rest of this paper, all the limits are taken as n — o.
Y=Yl X i=Xjs -1 €tc.

2. THE MODEL AND THE HYPOTHESES

Consider the nonparametric regression model:

where {Y,, X/}/., is a set of n independent and identically distributed (i.i.d.)
observations on {Y, X'}’ with Y the scalar dependent variable and X the d x 1
regressors, g(): RY — R is the true, but unknown regression function, and ¢; is
the error satisfying Ele; | X;]=0.

Two classes of hypotheses that are often tested concerning the regression
model (1) are the functional form of g(-) and the significance of a subset of
regressors X. With respect to the functional form of g, the null hypothesis
specifies either a parametric regression model or a semiparametric regression
model for g(-). As motivated in Section 1, we will focus on the null hypothesis of
a semiparametric regression model in this paper.

We first present the problem of testing for the significance of a subset of
regressors. Let X; = (W/, Z])', where W, is of dimension g, X1 andZ; is of
dimension g, X 1, g, + g, =d. Then, a subset of regressors, Z; (say), is insignifi-
cant to the explanation of Y; given W, if E[Y;|X,]= E[Y;| W,]. Insignificant
regressors should be omitted from the regression model. Thus, a test of

4 See the last section for more discussion on this issue.
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868 YANQIN FAN AND QI LI

significance is also called an omitted variables test. Let r(w)=E[Y;|W,=w].
Then an omitted variables test is that of

H§: g(x) =r(w) a.e. against the general alternative

Hi: g(x) #r(w),

where x =(w’, z')" is partitioned according to that of X;.

Since Robinson (1988) and Powell, Stock, and Stoker (1989), partially linear
and single index models have attracted much attention among econometricians,’
because on one hand, these models are not as restrictive as parametric regres-
sion models and on the other hand, they alleviate the problem of the “curse of
dimensionality” associated with nonparametric models. However, they are still
not free from misspecification errors. Thus, it is important to test the validity of
such semiparametric models against the general nonparametric alternative. The
first attempt toward developing consistent tests of these semiparametric models
has been made by Whang and Andrews (1993) and Yatchew (1992) for partially
linear regression models, and by Chen (1992) and Rodriguez and Stoker (1992)
for single index models. As mentioned in Section 1, these tests used some kind
of ad hoc modifications (such as sample splitting) to avoid direct treatment of
degenerate U-statistics. Sample splitting results in inefficient estimators. It may
also cause the tests to lose power both directly and indirectly. The indirect effect
of sample splitting on these tests is to slow down the divergence rate of the test
statistics to +o. This motivates us to develop consistent tests for a partially
linear model and for a single index model that make use of the special feature
of degenerate U-statistics.

For a partially linear model, the null hypothesis is

H:g(x)=z'vy+0(w) a.e.
for some y € R and some 6(-): R" > R,

and the alternative is
HY: g(x)#z'y+ 6(w) forall yeR?% and all 6(-): R >R,

where as before, x =(w’,z')".
Finally for a single index model, the null hypothesis is

H§: g(x)=¢(a’'x) ae. forsome a€R?andsome ¢(-): R >R,
and the alternative is

Hf: g(x) + ¢(a’'x) forall a€R?andall ¢(-): R—>R.

* See Engle, et al. (1986), Hardle and Stoker (1989), Stock (1989), and Stoker (1992) for empirical
applications of partially linear and index models.
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3. A CONSISTENT TEST FOR OMITTED VARIABLES

Recall from Section 2 that under the null hypothesis H{: g(X;) =r(W), a.e.,
where X;=(W/,Z). Let u;=Y; —r(W,). Then under the null hypothesis, the
regression model becomes

2 Y, =r(W) +u,,

where E(u;|X;) =g(X,) —r(W,) =0 under H¢ and E(u;|X,) # 0 under H?.

Observing that E[u;E(u; | X))l = E{{E(u; 1 X))’} = 0 and the equality
holds if and only if H¢ is true, we can construct a consistent test® based on
Elu,E(u;|X)]. If u; and E(u;|X;) were available, then we could estimate
Elu;E(u;|1X)] by its sample analogue: n~! ¥, u; E(u;| X,). To get a feasible test
statistic, we need to estimate u; by the corresponding residual from (2) and
E(u;|X;) by an appropriate kernel estimator. To overcome the random denomi-
nator problem in the kernel estimation, we choose to estimate a density
weighted version of n™' T, u,E(u; | X,) given by n~' L [u; f, 1Elu;f, | X,1f(X)),
where f,, =f, (W), f,(-) is the probability density function (p.d.f) of W, and f(-)
is the p.d.f. of X,. .

Specifically, we estimate u; by 4; = (Y, — Y)): the nonparametric residual from
(2), where Y, is a kernel estimator of r(W,) defined as

-1 w
[(n=Da®] "L, YK}
fu,

3) Y, =

b

and f:v.- is the corresponding kernel estimator of f,, given by

a 1
) fo,= 7 —Dan Y K,

Jj#i

where K}/ =K"((W,—W,)/a) with K*(-) being a product kernel formed from
the univariate kernel k*(:) and a =a, a smoothing parameter. We estimate
Eld;f,, | X,1f(X)) by [(n — DA?]™! L. l#;f, 1K,;, where

K, -k(F5) (B A4
v ho) o h o)

K is a product kernel with univariate kernel function k(-), and h=h, is a
smoothing parameter.

® This test can be regarded as a generalized conditional moment test of omitted variables, where
the weight function is a nonparametric function given by E(u;|X;=x). See Newey (1985) and
Tauchen (1985) for the conditional moment tests of functional forms based on a finite number of
parametric weight functions.
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Our test statistic will be based on

e 1
(5) df E[ tfw] 1)hd E[uf ]KU
st & Elak Ik )5,
where
(6) 4;=Y,—Y,=(r,— ) +u,—0,

r;=r(W), f; and 4; are defined in the same way as Y; in (3) with Y; replaced by
r(W)) and u; respectlvely

To derive the asymptotic distribution of I? under H§, we will use the
following definitions (see Robinson (1988)) and assumptions.

DEFINITION 1: %}, | > 1, is the class of even functions k: R — R satisfying
fu"k(u)du=aio (i=0,1,...,1-1),
R

k(u) = O((l + |u|’+1+€)_1), some €> 0,
where §;; is the Kronecker’s delta.

DEFINITION 2: &7, a>0, u> 0, is the class of functions g: RY>R satisfy-
ing: g is (m — 1)-times partially differentiable, for m — 1 < u <m; for some
p>0,sup, 18(y) — g(2) — Q,(y, DI/ly — z|* < h(2) for all z, where ¢,, =
{y: ly—zl<p} Q,=0 when m=1; Q, is a (m — D)th degree homogeneous
polynomial in y —z with coefficients the partial derivatives of g at z of orders 1
through m — 1 when m > 1; and g(z2), its partial derivatives of order m — 1 and
less, and £,(z), have finite a'th moments.

Assumption A

(AD (a) f,, €& for some A>0 andr € Z} for some p>0; (b) k¥ €%, ,,_,
for integers l and m such that ] — 1 <A <landm — 1< pu<m;(c) fEZT, k €Xy;
(d) The error e=Y — g(X) satisfies E |€*| < . The conditional variance function

def
ox) = El€*| X =x] and m(x) wf Ele*| X =x] are continuous. In addition,
f(x)a*(x) and f(x)m,(x) are bounded on R°.

(A2) As n—>», a—>0, h—>0, na? - o, nh® >, na®>"h?’? -0, and
h¢/a*% — 0, where 7 = min(A + 1, w).

This content downloaded from 128.194.113.59 on Tue, 30 Apr 2013 14:21:17 PM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

CONSISTENT MODEL SPECIFICATION TESTS 871

A few remarks on Assumption A are in order. Assumption (A1) (a), (c), (d) are
some smoothness and moment conditions. They are quite standard and not
restrictive. (A1) (b) requires that k be of the order of (I + m — 1) which may be a
second order kernel (/ + m = 3) or a higher order kernel (I + m > 3). The first
four conditions in Assumption (A2) ensure that the kernel estimators involved
are consistent. The last two conditions are introduced here to ensure that the
limiting distribution of nh“/?I? under H{ is centered correctly at zero. Heuristi-
cally, it ensures that the asymptotic mean square error of the kernel estimator:
i;f, in (6) is of smaller order than (nh?/?)"1, ie., [a®"+ (na®)~']=
o((nh?/%)~1). With respect to the kernel estimator Y, of the regression function
r(W)) to be tested under H{, (A2) does not impose any restrictions on the
smoothing parameter a. Specifically, the data can be over-smoothed, optimally-
smoothed, or under-smoothed in estimating r(W,). However, given a, the
smoothing parameter & must be chosen such that the last two conditions in (A2)
hold. Consider for example the case where g, <gq,. In this case, the last
condition in (A2) implies that 4 /a — 0. Hence, we must smooth the alternative
regression model less than the model under the null hypothesis.

THEOREM 3.1: Suppose Assumptions (A1) and (A2) are satisfied. Then under
H§, we have nh®/*I* — N(0,20,%) in distribution, where

0} =E[fW,Z)a*(W,,Z)f}] [sz(u) du].

2

In addition, the variance o,’ can be consistently estimated by &,2, where

= o T S lad Faf ] 5[ [ e a].
L oj#i

2

The estimator &,° is obtained by noting that

02 = E[(u f, Y {fW,, Z)E[uif2 1, 2,]}] [ K>(w) du,

where the unconditional expectation is replaced with the sample average,
u; f,, in the sample average by i@; fw , and the term inside the braces by
(7 = DAL, f,f, PK;.

Define
nhé/?1°
7 T® = =
™ V2 6,

Then Theorem 3.1 implies that 7% — N(0,1) in distribution under H¢. This
forms the basis for the following one-sided asymptotic test for Hg: reject H? at
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significance level a, if T°>Z, , where Z, is the upper a,-percentile of the
standard normal distribution.
The consistency of this test is the last result of this section.

THEOREM 3.2: Assume (A1) and (A2) hold. Then the above test is consistent. In
addition P(T* > M, |H{) — 1, where M,, is any positive, nonstochastic sequence
with M,, = o((nh?/?)).

Theorem 3.2 follows from the facts that under H{, I? — E{f(X)[g(X)—
rW)PfXW)(> 0) in probability and &, =0,(1). The proofs of these are
straightforward and are thus omitted.

4. CONSISTENT TESTS FOR SEMIPARAMETRIC MODELS
4.1. A Consistent Test For A Partially Linear Model

Let v;=Y,—Zjy— 6(W,). Then E(v;|X,)=g(X,)—[Zy+ 6(W,)] which
equals zero a.. if and only if the null hypothesis H? is true. Hence,
E[v;E(v;1 X)) = E{{E(v;1 X;)"} = 0 and the equality holds if and only if H{
holds. Thus, as in Section 3, we will base our test for Hé’ on an estimator of
n~'Llv,f, 1Elv,f, 1 X;1f(X)) to overcome the random denominator problem in
kernel estimation.

The estimator of v, f, that we adopt is obtained by a two-step procedure as in
Robinson (1988) and Fan, Li, and Stengos (1995). In the first step, we estimate y
by ¥ defined as (see Fan, Li, and Stengos (1995) for more details)

A —1 A R " A
® ¥=S8z-585z- 21, x- N,

where as in Robinson (1988), S,/ g/ =n"'%; 4, fw,B’fw and S,z —SAf 4f,
for scalar or column vectors A fw, and B, fw, In addltlon Z,» =
[(n — 1a?]™? Z]*,ZKW/fw estimates E[Z,| W], fw and Y, are defined in

(3) and 4) respectlvely Let 7,=(Y,—Y))—(Z,—Z,))'y. Then, the density-
weighted error v, f,, is estlmated by

) =¥ ?,); (z-Z)vf, - (2-Z) G- vf,,
[ ) +v— v]fw (z.- Z)(y y)fw
. _(Zi_ZAi)'(i’_Y)f:v,.,

where 6, = 6(W)), 6 dafnd 0; are deﬁned as in (3) with Y; replaced by 6(W)) and v;
respectively, and 7; = (6,— 6) +v,—
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Hence our test statistic will be based on

def

1 4 1 A
(10) Ir = o ;[Uifw,]{m jg[vjfwj]Kij}

1 A A
= _n(n “DHe ; ]E"i[ﬁifwn][ﬁffwj]Kij

1 . 2
= __n(n — l)hd ;Z ]gi [Uifw,Ujwa]Kij - n(n — l)hd
L OMDY [6if:v,(Zj _ZAj)'f:vj(i’— ‘Y)] K;;
i i
1 Av A A
ECEnR (z-2)1.2-2)

xf, (=1 G-k,

def
=J,-2J],+J,,,

where the third equality is obtained by using (9).

It is important to note that J, is the same as I? given in (5) except that 7, in
J, replaces &; in I;. Thus, Theorem 3.1 can be used to obtain the asymptotic
distribution of J,. We will show in Appendix A that both J,, and J,, are of the
order 0,((nh?/?)~"). Define

nh?/?1®
o
where & is the same as 6,> defined in Theorem 3.1 with i, replaced by 7.

By the results of Theorem 3.1 and 3.2, we immediately get the main result of
this subsection.

(11) T

THEOREM 4.1: Let assumptions (B1) and (B1) be the same as (A1) and (A2)
except that r(-) in (A1) is replaced with 6(-) in (B1). Define ¢(w) =E(Z;| W,=w).
Then under (BY), (B2), and the assumption that ¢ € ?lf , the following results hold:

(@) Under H., T® - N(0,1) in distribution.

(b) Under H!, P(T® > M,) - 1, where M,, is any positive, nonstochastic se-
quence with M,, = o((nh®/?)).

The proof of Theorem 4.1 (a) is given in Appendix A. The proof of Theorem
4.1 (b) follows from the facts that under H?, I® - E{f(X)g(X)—(Z'y+
OWNPf (W)} (>0) and 6, =0,(1) in probability. The proofs of these are
straightforward and are thus omitted.
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4.2. A Consistent Test For A Single Index Model

The test for H§ versus Hf is constructed in a similar way to that
for H¢ versus HP. Specifically, define »,=Y,— ¢(a’'X,). Then a consistent
test for H; versus H{ can be based on an appropriate estimator of
Elv,f,(a'X)E{v,f,(a’X)|X}f(X,)], where f,(-) is the density function of
a'X,.

Let & be the density-weighted average derivative estimator proposed by
Powell, Stock, and Stoker (1989).” We assume that the conditions in Powell,
Stock, and Stoker (1989) hold under H. Hence, & — a = O,(n~'/?). Under Hg,
the index function ¢(a’X,) can be consistently estimated by

[(n—Dh 1L, YKE
fa(&,Xi)

where K} =k*((&'X,— &'X,)/h,) with k(-) a univariate kernel function, 4,
is a smoothing parameter, and

[CESN —l)h L K.

a j#i

(12)  Ela'X,)=

b

13 fla'x) =

Let 7, =Y, — E(Y,| &'X,). Then our test will be based on
def 1

14) 1= Z[vf(&'X)] 1)h“ Z[Vf(a’x)]x,,

1 A
= = 2|7 ,f<a’x)][ vf.(&'X)]K,,.

i j#i
It follows from (12) and (13) that
a5 wf(a'Xx)=[Y-Ex;laX)]f(aX)
- Y ¥-Y)K
(n - 1)ha J#i !

=[Y,-Ele'X)] fi(a'X)

+(T:—1)_ha ]E(X—Y})[Ki‘}—Ki‘}]
N 1 R
=7f.(a'X) + i =Dh, jEi(Yi -Y)[K§-Kg],

where E(Y;| «'X,) and f,(a'X,) are defined respectively in (12) and (13) with &
replaced by a, ¥; is the residual from kernel estimation of Y, = ¢(a'X)) + v;,

" For the asymptotic theory for average derivatives in time series context, see Robinson (1989).
Robinson (1989) and Stoker (1989) are the first papers using average derivatives in hypothesis
testing.
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where « is treated as known, ie., 7, =Y, —E(Y;|a'X) = (g, — &)+ v,— b,
with ¢, = p(a'X;) and §; and ?; defined in the same way as E(Y;| a’X;) except
that Y; is replaced by ¢; and v; respectively.

From (14) and (15), we get '

(16)  Ic= T ¥ [5hilaX)] 54" X)] K,

" on(n=Dht G j#i
YT T [6fex)]
n(n—1)"hh, 7 jzi i1+
x(Y; - Y)[Kji - K] K,
1
— = L L L LE-Y)F -1
n(n — 1)3hdh§ | i k#i 17 N
X[ i?c _Kit;c][Kj? - Kj7]Kii'

As for I, the asymptotic distribution of the first term on the right-hand side
of (16) can be derived by using Theorem 3.1 under Assumptions (C1) and (C2),
where (C1) and (C2) are the same as (A1) and (A2) except that ¢(-) in (C1)
replaces r(-) in (A1), and in (C2), ¢, = 1 and a = h,. We shall show in Appendix

A that the last two terms on the right-hand side of (16) are o,((nh?/?)~") under
H§ and the additional Assumption (C3) given below:

(c3) d—a=0,(n" 1/2) k< is M-order differentiable, and

nM-DpAM+Dp=d _, o

Define
nh?/2¢
an TC= \/—2—5; )
where 4, is the same as §,” defined in Theorem 3.1 with wa replaced by
Vifa(a' X)),

By the results of Theorems 3.1 and 3.2, we immediately get the main result of
this subsection.

THEOREM 4.2: Under the assumptions (C1), (C2), and (C3), the following results
hold:

(a) Under H§, T - N(0,1) in distribution.

(b) Suppose & — a* =o0,(1) for some a* under H{. Then P(T > M, | Hf) — 1,
where M,, is any positive, nonstochastic sequence with M, = o((nh/?)).

The assumption (C3) is introduced to ensure that the last two terms on the
right-hand side of (16) are of smaller order than (nh9/?)~!. The condition
nM-DpAM+Dp~d _; o along with the differentiability of the kernel function up
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to order M may be relaxed by using uniform convergence results for U-processes.
However, the proof would become much more involved. Since the kernel
function is chosen by the researcher, one can always choose a kernel function
that has as many derivatives as possible so that the condition:

nM-DpEM+Dp=d _, o

is satisfied for a wide range of values of %, and h.

5. CONCLUSIONS

We have proposed consistent tests for a partially linear regression model and
an index model. In addition, we have developed a consistent test for omitted
variables in a nonparametric regression model without specifying its functional
form. These tests are constructed by invoking the CLT for degenerate U-
statistics of order higher than two. As a result, they do not rely on any arbitrary
modifications, and under the alternative hypotheses the test statistics diverge to
+ at a faster rate than n'/2.

Similar to the power analysis of consistent tests for a parametric functional
form provided in Fan and Li (1992a), Héardle and Mammen (1993), one could
also investigate the local power properties of the tests developed in this paper.
Under some additional conditions, one can show that the tests proposed in this
paper can detect sequences of local alternatives that differ from the respective
null hypotheses by O((rnh9/?)~1/2), Hence, they are more powerful than those
based on arbitrary modifications, because the latter can only detect local
alternatives distant apart from the respective null by O(n~!/4). To the best of
our knowledge, the tests proposed in this paper are the first consistent tests for a
partially linear model, a single index model, and omitted variables that possess
this desirable property.

Another issue that deserves some discussion is the support of X. In this
paper, we have assumed that the support of X is the whole Euclidean space R“.
One could easily show that the tests in this paper are still valid if the support of
X is a finite convex subset of R? and the density function of X vanishes on the
boundary of its support. However, if the support of X is a compact subset of R
and the density function of X is bounded away from zero on its support, then
the tests presented in this paper need to be modified. In this case, some
trimming method must be introduced to overcome the boundary effect. The
simplest way of doing this is to introduce a fixed weight function such that the
support of the weight is a proper subset of the support of X as in Fan and Li
(1992b). However, the resulting tests will be consistent only against the alterna-
tives that differ from the null on the support of the weight function. In order for
the tests to be consistent against all the alternatives, the weight function must
change with respect to the sample size in such a way that its support approaches
the support of X as the sample size n goes to + .
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APPENDIX A: PROOFs OF THE THEOREMS

This appendix collects proofs of the main results stated in Sections 3 and 4. Throughout, the
symbol C denotes a generic constant. When we evaluate the order of some terms, if there is no
confusion, we will use n, (n —1), and (n —2) interchangeably. In addition, when an expression
contains more than one summation, by slight abuse of notation, we will sometimes use the same
symbol to denote this expression and different terms in the expression obtained from restricting the
summation indices to different cases. For example, if we define L4 = T; E A;; s then we will also use
LA to denote ¥; ¥, . ; 4;; and ¥; A;; corresponding to i #j and i =j respectlvely

PROOF OF THEOREM 3.1: The following expression for I? is immediate from (5) and (6):

(A.1) I: = —(——*ﬁF E Z {(r 7 )fw (r —F )fw + u,-ujf;if";j +‘2iﬁ/iﬁjﬁvj

i j#i
v2uf, (= #)f,, ~20,f, (= #)f,, - 2u,.f;ia,f,,j}1<
ef
4L+ 1+ 20,4+ 20— 21,

We shall complete the proof of Theorem 3.1 by examining I,,. .., I; respectively in Propositions
A.1to A6, and by showing that 6,2 = 0,7 + 0,(1) in Proposition A.7. Since the proof is similar to that
of Theorem 1 of Fan and Li (1992c), we will only provide some important steps here. Throughout
this appendix, .2; = (;, X;)’' and E,() = E(-| X;).

PROPOSITION A.1: I = 0,((nh?/%)71).

ProoF: From (A.1), we get

1
(A2) L=——3 ¥ ¥ (=), (= f, Ky
( l)h i j#i
_—— ( )K( KK,
n(n—1) hd 2q; IE ng E kzﬂ r—n - jk

We will complete the proof by showing that E[(1;)*]=o0(n"2h~¢). However a direct evaluation
of E[(I})*] would be very tedious since it contains eight summations. Below we will first show
that E(I)) = o((nh?/?)~!). Then we will use this result and a symmetry argument to show that
El(I)*]=0(n"2h9).
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To show that E(I,) =o0((nh?/?)~1), we first consider the case where i,j,/,k in (A.2) are all
different from each other and denote the resulting expression as I;;. Given the assumption that
na®"h?/? - 0, we get

E(;) =h~%a2NE[(r, —r) K} (rs —r ) K5 K 5]
=h~4a 2 NE{[E\(r; — r,) )KL Es(ry — 1) K5 1K 5}
< Ch~4a®E[D,(W,) D,(W,;)K ;]
= 0(a?) = o((nh?/2) ")

by Lemma B.1 and Lemmas 2 and 3 in Robinson (1988).

Let I, denote the case where i, j,/,k take no more than three different values. It is straightfor-
ward to show that E(I},) = O(n~'a~%) = o((nh?/?)~1). Hence E(I;) = o((nh?/?)71).

Now we show that E[(I;)?]=0(n"2h~%). From (A.2), it follows that

1
( 1) th 4qq

xL L X XX Y X X E0-rKi(-r)KiK,]

ioj#i I+ k#j i jEiT U'#i k'#]

(A3) E[(IDY =

X[(ry =) K (ryp =1 DK K01}

def

We first consider the case where the summation indices i, j,/, k are all different from i',j',!’,k'. In
this case, the two parts in two different square brackets are independent of each other. Hence by the
same proof as that of E(;) = o((nh%/%)~!) given earlier, we know that L43 =o(n"2h~%).

Next we consider the case where exactly one index from i, j,/, k equals exactly one of the indices
i',j',l',k’ (so there are altogether seven different summation indices). By symmetry, we only need
to consider the case (i) i =i’, (i) i =1, and (iii) / =1".

Case (i) i =i’: We have

1

L e B T F T {60 Ky

2 6,2d 4
n (n_l)h a*h J#Eil#i k#j

JiELU#FD kT #]

Y T T GimrdKir - rd KKy ]}

=WE{('1 r)K(r, = r) K3 Kip[(ry — re) Kis(rs —r) K35 K51}

= m E{[El(rl - r3)K1“’3][E2(r2 - Q)K;;]

XKpp[Ey(ry —re) K6l Es(rs —r;) K3 1K 5}
4n

hzd

|A

—7 E{D, (W) D,(W,)K,, D,(W,) D,(W;)K 5}

=0(a*"n"V) =0(n"2n"?%).
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For case (ii) i =1’, we have

1
LAy = — e L L ZE{[(r K —r)KLK;)]

2 67,2d 4
n*(n—1)"h*%a*n 7 20 5

>y ¥ (r,n—ri)K,??}(rj,—rk,)Kj‘?'k,Ki,j,]}

P#DjrEl kT

E{(ry = r)K{5(r, = r ) K3, K[ (rs — r) K2 (rs — 1)K K51}

= nh2da4q|
= W E{[El(rl - 'r3)K{‘f;][E2(r2 - m)Kﬁ]
XKip(rs = r)K3[ E¢(rs — 1) K3 1K 56}
37

hid —=a EUD, (W) D,(W,)(rs — 1) )K31 K, D,(We) K 561}

=0@a*n"Y) =o(n"2n"9).
Similarly one can easily show that for case (iii), L43 = 0(a*'n~1) = o(n~21~9).

Finally it is easy to see that when the eight summation indices i, j, 1, k, i, j’,1’, k' take no more
than six different values, L43 = O(n~?a~29) = o(n=2h~4). Hence E[(I,)*]=o(n"2h"9).

PROPOSITION A.2: nh?/2I, - N(0,20,2) in distribution, where
a2 =E[f(Xl)a“(X])f:l][sz(u) du] .

PrOOF: It follows from (A.1) that

(A4) 12= ( l)hd Z Zufw jfwJ Z Z Z E u'uJKllKle‘

d 2
ij#i n(n l)h L J#EE I+ k#j

XYY Y wuKNKLK;+LR=LU+LR,

( 1) hd 24 i#j#l+k

where I,U denotes the case where all four subscripts i, j,, k are different and I, R denotes the sum
of the remaining terms.
Rewriting I,U in terms of a U-statistic, we get

(5) [
(A5) 12U=——4—[(”) Y P(2,Z,2,20))|

n(n —1)°hg?a |\ 4 1<i<j<l<k<n
where P(Z, 2, 2, 2;) = Ly uuK) K with ©,, extending over 4! =24 different permuta-
tions of i, j, 1, k.
Define P,(Z;, 2)) = EIP(2;, 2}, 21, ) | »Z;]. We get
P2, 2) = 2uu K ELKK} | 2;, 2] + uu K EIK G K 12, 21)
=4u;u;K; E[KWKW I.."Z',,.?’]
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Hence,

E[PX(2,,2,)] = 16E(utud K5 (EIK K5 120, 2, D7)

2
= 16E{02(X1)0'2(X2)K122[ffw(w3)fw(w4)K1W3K§, dw, dW4] }
= 16E{02(X1)02(X2)K122

X

[ £, (W, +au) f, (W, + av) K* (w) K" (0)a2® dudur}
= 16a*n [ f(x))f(x;)02(x) 02 (x)KEy
X [[fw(w, +aw)f, (w, +av)KW(u)KW(v)dudv]2 dx, dx,
= 16a4‘“h"{ff(x1)f(x1 +hs)a 2 (x) a2 (x; + hs)K*(s)
X [ ] £, (wy +audf,(w, +hs, + av) K* (WK” (v) dudur dx, ds}
= l6a4‘“h"{ JEENVEATAEN SO

X

2
ff,f(wl)K”(u)KW(u)dudv] dx, ds + 0(1)}

= 16a“‘“h"{E[f(X1)a4(X1)f,ﬁl][[Kz(s) ds] +0(1)}

=16a*1"h% 0.2 + 0o(1)}.

Similar to Fan and Li (1992c), one can easily verify the conditions of Lemma B.4. Hence from
(A.5) and Lemma B.4, it follows that

(3)

-1
PLYZ) N S S S— n(n) P(Z,%,2,2)
2 n(n —1’h4/%a*% 4 i5i<j§<ksn mre T
(4)
4
N[0, ————L——27142(4 - 1)’[164*T1h% 2]

" n2(n - 1)°hdatn
- N(0,20,2) in distribution.
It is easy to see that
-1
E[(I,R)*] = (n*(n — 1)°h%4a*01)  O(n*h24a29).
Hence
-1 _ _
LR=(n(n— 1’ha1)" 0,(n*h%a®) = 0,((na®) ") =0,((nh?/?)™").
Thus from (A.4) we get
nh?/2I, = nh?/*L,U + 0,(1) > N(0,20,%)

in distribution.
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PROPOSITION A.3: I =0,(nh®/?)™").

ProoF: From (A.1), we get

1 A A
I = premyyri DM a;4;f, fv Kij

ioj#i

1

=—————Y ¥ ¥ ¥ wuKiKiK,.

3pd,2
n(n—17h%*M 7 515 ks

We consider two cases: (i) / = k and (ii) / # k separately. We use I;F and ;S to denote these two
cases.
Case (i): I =k. In this case, it is easy to see that

1
E(I F)=— E[MZKWKWK~]
3 n(n_l)ghdaqu E Z i;elZ;e[ [t T Rl [t ]
=n"1h"% MME[cX(X,)K}3 K5 K, ]
=0(n"la ") =0o(n"'h=%/%2) and
) 1
E[(I,F)]=

n*(n — 1)5h24%0

XZ E Z E E Z E{[“IZK:“Y j7K.,][u12' ivI'an'/I’K:’j’]}'

i#j#l iEjEL

By using similar arguments as in the proof of E[(1,)?]=o0(n~2h~%) (see the proof of Proposition
A.1), one can easily show that E[(/;F)*] = O(n~2a™2%) =o(n~2h~“). Hence IF =0,(nh®/*)71).
Case (ii): [ # k. Note that

1

LS=————— 3} 3 ¥ ¥ wuKiK}K,;

3pd 2
n(n —1"h%*" 7 55 15 kg0
def 1

= Z Z Z Z wu KKK, + I,SS

n(n —1)’h%an i#jrlEk
def
= I,SF +1,8S, where

(A6) E[(I,SF)!

1
= W; Z E Z Z Z Z E[ulzulch:;' j};'cKlei‘yIKjka:’j’]

i+j#l#k i'#1,k j#i'lk

1
=WZ_E Y Y ElludKiKBLK KKK

i#j=3 i'#j'=3

def
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The leading term of LA6 corresponds to the case where i,j,i’,j’ are all different from each
other. In this case,

1
LA6 = perera Eluful K3 K} K3 K3 K Kl

1 2
= i E{a2(X1)cr2(X2)[ff(x3)f(x4)K1‘3K2W4K34 dx, dx4] }

2d

h
mE{02()(1).:2()(2)[[,f(w1 +hu, z; + hs)

hu hv
Xf(w, + hv, z, +ht)K“’(—a—)KW(7)

Wy =W, z,—2, 2
XK( n + (u—v), 5 +s—t)dudsdvdt

h2d
= i O(h?) =0(n~2h3a~*1) =o(n~2hn"9).
n

When some of the i,j,i’,j’ take the same value, LA6 will have at most an order of
(1/n%h2%*9)0(n*h%%a39) = O(n3a=9) = o(n~2h~%). Thus we have shown that I;SF =
0,((nh4/2)71),

Finally it is easy to see that

E|LSS|= 0(n*h%a®) = O(n~'a~) = o((nh?/) ™).

n*hda?a
Hence I3S = 0,((nh?/?)7").

PROPOSITION A.4: I, =0,((nh?/?)™1).

Proor: From (A.1), it follows that
1 N a
Ij=——7 Z Z uifwi(rj_rj)fijij

n(n—1)h4 T e

1 def 1
Z Z Z Z “i(’j_"k)Ki7 % Kij - ﬁ Z“isr
13

3pd,2
n(n = 1% 7 5 15 ke

Note that E(J,) =0 and

1
(A7) El(1)]= - Y E(u?S?) = Elo%(x,)S?]

1
=i & L L L L L EleM X)) —rdKEKIK,,
JELI#L k#j j'#1 V%1 k' %)’
X(rj, —rk,)Kj‘Yk,Kl”;,KU,]
def

If 1,j,1,k,j',l', k' are all different, by using Lemma B.1 and Lemmas 2 and 3 in Robinson (1988),
it is easy to see that LA7 is of the order O(n~'a?") = o(n=2h~9).

Next we consider the case where two of the subscript indices I, k, j,!’,k’,j’,1 are the same. By
symmetry, we only need to consider three cases: (i) / equals one of the other indices, (ii) £ equals
one of the other indices, and (iii) j equals one of the other indices. It is straightforward to show that
for case (i), LA7 =n~20(a"a~ 1) = o(n~2h~%); for case (ii), LA7=n"20(a"9") = o(n"2h~%); and
for case (iii), LA7=n"20(a"9) =o(n"2h"9).
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Finally, when more than two indices take the same value, LA7 will have at most an order of
O(n=3a=21) =0(n"2h~%). Hence E[(I,)*]=o0(n"2h"9).

PROPOSITION A.5: I5 =0,((nh?/?)71),

PROOF: Note that

IS ( l)hd Z Eufw (r r)fw ij

i j#i
=0 u (r -r )K
o DL E Lo

The rest of the proof is very similar to that of Proposition A.4 and thus is omitted.
PROPOSITION A.6: Is =0,((nh?/?)71),

PROOF:

Is= l)h,, L L wfitfiK;

ij#i

s L L Y X wiKIKK,.

d,2
( 1) ha*h i j#i l#i k#j

We consider two cases: (i) i =k and (ii) i # k. We use I,F and IS to denote these two cases.
Case (i): i = k.

E(F) = ————— Y ¥ ¥ Elu}K}K}K ;]

n(n—1) hd 20 i+ I+

ElcX(X)KLKNLK,,] + E[o?(X)(K})Ky,]

= nhia?a 2 higtn

=0(n~'a=1) + O(n~2a"20) = o((nh4/?)™").
1

n*(n — D*h24g4n

XY XYY Y Y Y E(ulKiKEKNu2K2 K2 K1)

Pojri b @ i I#Q

E[(I F)*] =

If all the summation indices i, j,/,i’,j’,]' are different from each other, by the same proof as
E(I4F) = o((nh?/?)~1), we know that E[(I;F)*]=o0(n"2h~¢). If the six summation indices take at
most five different values, then it is straightforward to see that

1
21 5p2d,291) — -3,-2q1) — -2 -d
E[(I,F)°] —nz(n—l)ﬁh“a“‘“ 0(n’h?*% %) =0(n">a )=o0(n"%h"7%).
Case (ii): i # k. Note that

16s=—— YY Y Y wuwKikik;

2
n(n 1) R T i isi ke j kei

YY Y Y wuKiKLK;+1SS

def
- d 2
n(n — 1)’ h%an ijrlek

f
= [ SF+1,SS, where
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1
(A8 E[(I6SF)2]=WZ Z Z Z E[ulzu%Kl”; };KUKY;'K,%KU']
n"h™a j#l=3  j#l'=3
def

The leading term of LA8 is obtained when j,/,j’,1' are all different. In this case, we have

1
LAB = — e Eluh3 KT K3 Kis Ko K33 Kis]

1
= iy o (XD (X E(K K Ky 1 X;, X))

1 2
= WE{UZ(XI)UZ(XZ)[ff(xS)fw(w4)Kl‘2K3‘I"2K13 dx3 dW4] }

1 2 2
= mE g (xl)a' (XZ)

w, —w, +hu 2
X [ff(wl + hu, z; + hs)f,, (w, +av)K”’(u)K”(—-—-a———)K(u,s) dudsdv]

= (n2a21) ' 0(a") = O(n~2a") = o(n~ 2k~ %).
Similarly one can show that when j,/, j’,!’ take no more than three different values,
LA8 = (nSh24g%01) ' O(n*h?a?9) = o(n~ 2k~ 7).
Finally it is easy to see that
I;SS =

W Op(n3hda‘“) =ap((nhd/2)_1).
Hence IS = 0,(nh?/?)™1), Q.E.D.

PROPOSITION A.7: 6,2 = 0.2 +0,(1).

PRrOOF: Since the detailed proof is similar to that of Proposition A.2, we will only sketch it here.
By using (6) and (4), one can show that

! A 212
o L ZlEal[A ] K,

i j#i

1 A A 12
PR IPY utuf [ o] Koy 0pD

i j#i

! Y ¥ walf, f, PKi+o0,Q)
i wilw; i
n(n —1Dh? Py J i Jop
2¢ 32 2£2
= E[ 0 f, O, Z)ELad £ 1 W, Z, 1] + 0,0,
which implies that 6,2 = ,> + 0,(1). Q.E.D.
PrOOF OF THEOREM 4.1: By the result of Theorem 3.1, we only need to prove that both J;, and
J,,, defined in (10) are of order 0,((nh?/2)~!). Note that we do not require that % — y=0,(n~'/2).
Hence the conditions in Robinson (1988) or in Fan, Li, and Stengos (1995) are not required here.
Under the conditions given above, we have ¥ — y=0,(n~!/? + (na®)~! +a?"); see Fan, Li, and
Stengos (1995) for a proof of this result. Then from (10), it follows that
G-y A def |
] Y Y (Z=Z)fypifu, = G= V)i

i j#i
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Define ¢ =E(Z;| W) and n; = Z; — £, We have

Jlln ( l)hd Z E[(gj §)fw +n;fw ﬂ,fw [(r r)fw +ufw ufw]Kz]'
i j#i

Comparing the terms in Jy;, and the terms in I? given in (A.1), it is obvious that J,;, has at
most an order of O,((nh?/?)~"). Hence J,, has the order of O,(n~'/2 + (na®)™! + a’M0,(J},,) =
0,((nh4/2)71),

Similarly, define Jy,, from J,, = (¥ — y)J,, (% — v). It is easy to see that E |J,,,| = O(1). Hence
Jyn has the order of (9 — y)' (= ) = O,(n™! + (na?) % +a*") = 0,((nh?/)™"). Q.E.D.

PROOF OF THEOREM 4.2: Let II and III denote the second and the third terms on the right-hand
side of (16) respectively, i.e.,

2

A9) I=———="- B.fy 'X)OIY, - VK5 —K31K,;,
( n(n -1’4, ;EEI.["““ IY; - V1K - K 1K

(A10) M= ————— (Y, - YUY, - YDIKE - KS KE —K31K ;.
n(n 1)hdh2,2,§,,§,,§, ‘ B s

Since 7;f,(a'X;)=I(n— Dh, 11 T, , (¥, - Y,)K&, we get from (A.9):

(A11) 11=——— Y Y Y Y -YO, - YDKEIKE -KSIK,;.

( 1) hdhz i j#i k#i 1#j

By Taylor expansion, it follows that

M1 "(X;— X a—a)(X,-X)]°
(A.12) A-Ki=2 —Ka»m("‘( i 1))[(“ @)'(X, 1)]
s St « h,
(&—a)(X _Xl) M+1)
— peMtl(y | — T 7T T
fore ("'f’)[ he ] ’

where k®()() is the sth derivative of k() and 4 is between [a'(X,-X)lh;! and
[&'(X - X)L
Substltutmg (A 12) into (A.11), we get

M 1

n=13% Y Y Y Y-, -YKGKF®

Lo { n(n—=0’hi2 T 15T iw

(a-a)(X;-x)1
o

1
+ Y, - YO(Y, - YK KM+ D(y,
(M + Dln(n— 1)h"h§2,",§', E,@,‘ D 1K i)

[(&_a)’(‘xj"_xl):l(M+l)
x| ————LL|

hq
def M1
= Z s_ (M+1)' —————1Il 341y, Where
Ka ,(8) = k% () C!’(X}—XI) .
ha
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We shall complete the proof for II =0,((nh?/*)~") by showing that (nh?/?)II,=o0,(1) for
=1,...,M,(M + 1). The proofs for s = 1,..., M are similar. Hence, we will only provide the proofs
fors—l and s=M+ 1. Fors=1, wehave

(A13) 111=%ZZ Y Y=Y - Y,)[( - )]K,‘,"K“(”K

n(n—1) hdhz i j#i k*i l#j

def
< (4—a)'BB.

By comparing II, and I, we can see immediately that apart from (& — a)’, the terms in /I, are very
similar to those in I;. Thus, we will only consider the leading term in II; which is obtained from the
case where i #j # k # I. In this case, if the null hypothesis holds, then

1 (X2 _X4) 1
(A14)  E[BB]= i E [o(X ) — o(Xs)ll@(Xya) — <p(X4a)]h—K1"‘3K§‘4’( Ky,

1
= WE{EI[(¢(X10) - o(X;a))K]

X, - X,)
XEZ[(‘P(Xza) - ¢(X4a))52h——K“ (l)]Klz}

=i ORI HO(R2)O(hY)

=0(h7*h).

Similarly, one can show that varlh;"*"BB]=0(1). Thus, BB =0,(h7*') which implies that
(nh?/))I1; = 0, ((nh?*/*)n 127+ 1) = O, (nh*h2"* 21/2) = 0 (1).
Now, for s = (M+ 1), we get

—(M+1)/2
E[nh?/ Iy, 1)1 = 0( W—)o(h“)hgw*”owa)
a
1
=0 M D72 M+ 1)

=o((nh?/%)™")

under the assumption that n™ = Dp2M*2p =4 — oo, Similarly, one can show that III = 0,((nh?/?)™?).

APPENDIX B: TECHNICAL LEMMAS

Lemmas B.1 and B.2 given below are slight modifications of some of the lemmas in Robinson
(1988). Lemma B.3 is from the well-known H-decomposition due to Hoeffding (1961) and is used to
prove Lemma B.4. Lemma B.4 generalizes the Central Limit Theorem for second order degenerate
U-statistics of Hall (1984) to degenerate U-statistics of any finite order, which is used in deriving the
asymptotic distributions of the test statistics proposed in this paper.

LEMMA B.1: For A, u satisfyingl —1 <A <l,m—1<pu<m, wherel > 1, m > 1 are integers, and
for8>1,letfeg”, g€l k€Xy 1. Then

|E[{g(X;) — g(X)}Ky; 1 X1l < D (X)(A4+ M),

where D,(-) has finite 8th moment and n = min(A + 1, w).
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ProOF: See the proof of Lemma 5 in Robinson (1988). Q.E.D.

LEMMA B.2: For u satisfying m — 1 < y < m, where m > 1 is an integer, and for 6 > 1, let g € £2°
and ¢ = min(p,1). Suppose sup, [|ul®***K3(u)] < «. Then

|ET{g(X;) — g (XY K2 1X, 1| < My (X, )R+ D),
where M,(-) has finite second moment.
ProoF: Since X; and X, are independent, we have
El{g(X,) —g(X))’ K} 1 X)]

- [1600 g1 RS2 s s

<Csf [8(x) —g(X)) = Qpx, X))] Kﬁ( )f(x)dx

X1p

+ csf Q(x, XI)K‘S( )f(x)dx

X1p

"‘Csf g‘s(x)K‘S( )f(x)dx+C8f g%(x, )K'S( )f(x)dx
F3

X1p X1p

x—X,
sChg‘S(Xl)flx—Xll's“K‘s(—};——l—) dx

+CG5(X1)/( 2 lx— XII‘)K‘s( )f(x)dx

i=1
+ Csup{llul 4/ K ) P+ E(g?(X)} +g5(X))]

where E[|G(X,)**] < . Thus, the result holds by Lemma 1 in Robinson (1988) and the Lebesgue
dominated convergence. Q.E.D.

The next lemma is from the well-known H-decomposition due to Hoeffding (1961). We need to
introduce some notations and definitions. Let U, be a U-statistic of order k given by

Un=(2) E d’" i )

(n,k)

where ¢, is a symmetric function that depends on », Xi,...,X, are independent and
identically distributed random variables (or vectors), and the sum Y, ,, is taken over all
subsets 1 <i; < -+ <i, <n of {1,2,...,n}. We assume without loss of generality that U, has been
centered, so that E[y,(X,,..., X, )] =0 for each n. In this case, U, is said to be degenerate if
Ely,(X,,..., X)) X;]1=0, almost surely.

Define, for ¢ = 1,..., k, the conditional expectations

Une(Xyree s 2) = ELg (X, oo XD 1 (X, X)) = (g 2],
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and their variances ¢,2 = var;,(X,..., X,)]. Obviously, 0,5 =0 for a degenerate U-statistic.
Further, let A(x,) = ¢,,(x;) and

c-1
ROy x) = Ype(xgye x) = Y Zhﬁ,f)(x,.l,...,xii), for c=2,...,k.
=1 (c,))

LEMMA B3: Forj=1,...,k, let H) be the U-statistic based on the kernel h')). Then

k
ue g (B

j=1

-1
where H) = (;’ ) n y B0 x;) satisfies the following properties:

(a) The U-statistics H, ..., H®) are uncorrelated.
. n E .
(b) var[H,(,’)]=(j) var[h(X,,..., X)] for j=1,... k.
. J : i
© var[hP(X,, ..., X)) = 2(—1)1'C(£)ajc for j=1,...,k.
c=1

ProOF: See Lee (1990, Section 1.6).

LEMMA B.4: Assume , is symmetric, E[y,(X;,..., X)) | X;1=0 almost surely, and
ElgX(X,,..., X))l < for each n. If a.2/0,5 =0(n"?) forc=3,...,k and
E[G,%(Xsz)] +n_1E[l/’,,42(X1,X2)] 0
>

®B.1) ;
(EL5(X,, XN

as n— o, then nU, is asymptotically normally distributed with zero mean and variance given by
271k2(k — 1)%0,3, where G,(x,y) = E[$,,(X1, x),,( X1, y)).

PROOF: Since U, is degenerate, A{V(X;) = 0 almost surely. Lemma B.3 implies

k(k—1)
= —_— Q) x. . (2)
(B.2) U, Yo Y Y KX, X)+R?,

1<i<j<n

where

- (K
R® = Z (j)H,f”

j=3

is the remainder term and AP(X,, X;) = y;,,(X;, X;). Noting that E[AP(X), X,)|X,]=
E[y,(X;,..., X)) 1X,]1=0, it follows that apart from a constant factor, the first term on the
right-hand side of (B.2) is a degenerate U-statistic of second order. Thus, by Theorem 1 of Hall
(1984), we know that Lemma B.4 is true if we can show that the remainder term R in (B.2) is of a
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smaller order than the first term. The fact that R is of a smaller order than the first term on the
right-hand side of (B.2) follows by noting that

2
var[na,,' RP] = ( f ) var[ H{1(n%,,?)

£

K\ (n)™
( ) (n) varl (X, X)W (nPa?)

EAVIAY
k k 2 -1 Jj ) A

=n? ) ( ) (n) Y (—1)”‘(’)(0;,260;,‘22 =0(1),
j=s \JJ c=2 ¢

where the first equality is obtained by Lemma B.3 (a), the second by Lemma B.3 (b), the third by
Lemma B.3 (c) and the degeneracy of U,, and the last by the assumption that o;2/a,3 = o(n(c~2)

for ¢ =3,...,k. Hence, no,,'RY = 0,(1).
Note that if k =2, Lemma B.4 reduces to Theorem 1 in Hall (1984).

REFERENCES

BIERENS, H. J. (1982): “Consistent Model Specification Tests,” Journal of Econometrics, 20, 105-134.
(1990): “A Consistent Conditional Moment Test of Functional Form,” Econometrica, 58,
1443-1458.

BIERENS, H. J., AND W. PLOBERGER (1994): “Asymptotic Theory of Integrated Conditional Moment
Tests,” Working Paper, Department of Economics, Southern Methodist University.

CHEN, S. (1992): “A Simple Test for Single Index Model,” Manuscript, Princeton University.

DE Jong, P. (1987): “A Central Limit Theorem for Generalized Quadratic Forms,” Probability
Theory and Related Fields, 75, 261-277.

ENGLE, R. F., C. W. J. GRANGER, J. RICE, AND A. WEIss (1986): “Semiparametric Estimation of the
Relation Between Weather and Electricity Sales,” Journal of the American Statistical Association,
81, 310-320.

EuBank, R., AND J. HART (1992): “Testing Goodness-of-fit in Regression via Order Selection
Criteria,” The Annals of Statistics, 20, 1412-1425.

EuBANK, R., AND S. SPIEGELMAN (1990): “Testing the Goodness of Fit of a Linear Model via
Nonparametric Regression Techniques,” Journal of the American Statistical Association, 85,
387-392.

=+ FaN, Y. (1994): “Testing the Goodness-of-Fit of a Parametric Density Function by Kernel Method,”
Econometric Theory, 10, 316-356.

FaN, Y., AND Q. L1 (1992a): “A General Nonparametric Model Specification Test,” Manuscript,
University of Windsor.

(1992b): “The Asymptotic Expansion for the Kernel Sum of Squared Residuals and Its

Applications in Hypotheses Testing,” Manuscript, University of Windsor.

(1992c): “Consistent Model Specification Tests: Omitted Variables, Parametric and Semi-
parametric Functional Forms,” Manuscript, University of Windsor.

FaN, Y, Q. L1, aND T. STENGOs (1995): “Root-N-Consistent Semiparametric Regression with
Conditional Heteroscedastic Disturbances,” Journal of Quantitative Economics, 11, 229-240.

=+ GozaLo, P. L. (1993): “A Consistent Model Specification Test for Nonparametric Estimation of
Regression Function Models,” Econometric Theory, 9, 451-477.

HaLL, P. (1984): “Central Limit Theorem for Integrated Square Error of Multivariate Nonparamet-
ric Density Estimators,” Journal of Multivariate Analysis, 14, 1-16.

HARDLE, W., AND E. MAMMEN (1993): “Comparing Nonparametric versus Parametric Regression
Fits,” The Annals of Statistics, 21, 1926—1947.

This content downloaded from 128.194.113.59 on Tue, 30 Apr 2013 14:21:17 PM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

890 YANQIN FAN AND QI LI

HARDLE, W., AND T. M. STOKER (1989): “Investigating Smooth Multiple Regression by the Method
of Average Derivatives,” Journal of the American Statistical Association, 84, 986-995.
HIDALGO, J. (1992): “A General Nonparametric Misspecification Test,” Manuscript, London School
of Economics.
HOEFFDING, W. (1961): “The Strong Law of Large Numbers for U-statistics,” Institute of Statistical
Mimeo Series, 302, University of North Carolina.
Hong, Y., AND H. WHITE (1995): “Consistent Specification Testing via Nonparametric Series
Regression,” Econometrica, 63, 1133—-1159.
=+ HOROWITZ, J. L., AND W. HARDLE (1994): “Testing a Parametric Model Against a Semiparametric
Alternative,” Econometric Theory, 10, 821-848.
LAVERGNE, P., AND Q. VUONG (1996): “Nonparametric Selection of Regressors: The Nonnested
Case,” Econometrica, 64, 207-219.
LEE, A. J. (1990): U-statistics: Theory and Practice. New York and Basel: Marcel Dekker, Inc.
LEg, B. J. (1994): “Asymptotic Distribution of the Ullah-type Specification Test Against the
Nonparametric Alternative,” Journal of Quantitative Economics, 10, 73-92.
Li, Q. (1994): “Some Simple Consistent Tests for a Parametric Regression Functional Form versus
Nonparametric or Semiparametric Alternatives,” Manuscript, University of Guelph.
NEWEY, W. K. (1985): “Maximum Likelihood Specification Testing and Conditional Moment Tests,”
Econometrica, 53, 1047-1070.
PoweLL, J. L., J. H. Stock, AND T. M. STOKER (1989): “Semiparametric Estimation of Index
Coefficients,” Econometrica, 57, 1403—1430.
RoBINSON, P. M. (1988): “Root-N-Consistent Semiparametric Regression,” Econometrica, 56,
931-954.
(1989): “Hypothesis Testing in Semiparametric and Nonparametric Models for Econometric
Time Series,” Review of Economic Studies, 56, 511-534.
(1991): “Consistent Nonparametric Entropy-Based Testing,” Review of Economic Studies, 58,
437-453.
RODRIGUEZ, D., AND T. M. STOKER (1992): “Regression Test of Semiparametric Index Model
Specification,” Manuscript, M.L.T.
Stock, J. H. (1989): “Nonparametric Policy Analysis,” Journal of the American Statistical Association,
84, 567-575.
STOKER, T. M. (1989): “Tests of Additive Derivative Constraints,” Review of Economic Studies, 56,
535-552.
(1992): Lectures on Semiparametric Econometrics. Louvain-la-Neuve: CORE Foundation.
TAUCHEN, G. (1985): “Diagnostic Testing and Evaluation of Maximum Likelihood Models,” Journal
of Econometrics, 30, 415-443.
ULLAH, A. (1985): “Specification Analysis of Econometric Models,” Journal of Quantitative
Economics, 2, 187-209.
WHANG, YOON-JAE, AND DONALD W. K. ANDREWS (1993): “Tests of Specification for Parametric and
Semiparametric Models,” Journal of Econometrics, 57, 277-318.
=+ WOOLDRIDGE, J. (1992): “A Test for Functional Form Against Nonparametric Alternatives,” Econo-
metric Theory, 8, 452—-475.
=+ YATCHEW, A. J. (1992): “Nonparametric Regression Tests Based on Least Squares,” Econometric
Theory, 8, 435-451.

This content downloaded from 128.194.113.59 on Tue, 30 Apr 2013 14:21:17 PM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 865
	p. 866
	p. 867
	p. 868
	p. 869
	p. 870
	p. 871
	p. 872
	p. 873
	p. 874
	p. 875
	p. 876
	p. 877
	p. 878
	p. 879
	p. 880
	p. 881
	p. 882
	p. 883
	p. 884
	p. 885
	p. 886
	p. 887
	p. 888
	p. 889
	p. 890

	Issue Table of Contents
	Econometrica, Vol. 64, No. 4 (Jul., 1996), pp. 763-1000
	Front Matter
	Econometric Model Determination [pp.  763 - 812]
	Efficient Tests for an Autoregressive Unit Root [pp.  813 - 836]
	Consistent Testing for Serial Correlation of Unknown Form [pp.  837 - 864]
	Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms [pp.  865 - 890]
	Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators [pp.  891 - 916]
	Cheap Talk and Sequential Equilibria in Signaling Games [pp.  917 - 942]
	Evolution with State-Dependent Mutations [pp.  943 - 956]
	The Effect of Unions on the Structure of Wages: A Longitudinal Analysis [pp.  957 - 979]
	Notes and Comments
	On the Concavity of the Consumption Function [pp.  981 - 992]

	Announcements [pp.  993 - 996]
	News Notes [p.  997]
	Program of the 1996 European Winter Meeting of the Econometric Society [pp.  999 - 1000]
	Back Matter



