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Econometrica, Vol. 64, No.4 (July, 1996), 865-890 

CONSISTENT MODEL SPECIFICATION TESTS: OMITTED 
VARIABLES AND SEMIPARAMETRIC FUNCTIONAL FORMS 

BY YANQIN FAN AND Qi LI1 

In this paper, we develop several consistent tests in the context of a nonparametric 
regression model. These include tests for the significance of a subset of regressors and 
tests for the specification of the semiparametric functional form of the regression 
function, where the latter covers tests for a partially linear and a single index specification 
against a general nonparametric alternative. One common feature to the construction of 
all these tests is the use of the Central Limit Theorem for degenerate U-statistics of order 
higher than two. As a result, they share the same advantages over most of the correspond- 
ing existing tests in the literature: (a) They do not depend on any ad hoc modifications 
such as sample splitting, random weighting, etc. (b) Under the alternative hypotheses, the 
test statistics in this paper diverge to positive infinity at a faster rate than those based on 
ad hoc modifications. 

KEYWORDS: Consistent tests, degenerate U-statistics, kernel estimation, omitted 
variables, partially linear model, single index model. 

1. INTRODUCTION 

RECENTLY, NONPARAMETRIC FUNCTIONAL ESTIMATION TECHNIQUES such as kernel 
and series methods have been used to construct consistent model specification 
tests.2 These include tests for a parametric model versus a nonparametric 
model, tests for the significance of a subset of regressors in a nonparametric 
regression model, and tests for a semiparametric (partially linear or single index) 
model against a nonparametric altemative. For example, Fan and Li (1992a), 
Hardle and Mammen (1993), Hidalgo (1992), and Lee (1994) have developed 
consistent tests for a parametric specification by using the kernel regression 
estimation technique; Eubank and Spiegelman (1990), Hong and White (1995), 
and Wooldridge (1992) have applied the method of series estimation to consist- 
ent testing for a parametric regression model; consistent tests for omitted 
variables were considered by Hidalgo (1992) and Gozalo (1993), among others; 
Lavergne and Vuong (1996) proposed a method to select between two sets of 
regressors using kernel estimators; Whang and Andrews (1993) and Yatchew 
(1992) have developed consistent tests for a partially linear model versus a 

1 The first author would like to thank the Natural Sciences and Engineering Research Council 
and the Social Sciences and Humanities Research Council of Canada for their support and the 
second author would like to acknowledge the Social Sciences and Humanities Research Council of 
Canada for its support. 

2 Bierens (1982) was the first to give a consistent conditional moment model specification test; see 
also Bierens (1990), Bierens and Ploberger (1994), and references therein. Using nonparametric 
estimation technique to construct consistent model specification tests was first suggested by Ullah 
(1985). Robinson (1989) was the first to propose some nonparametric tests for time-series models. 
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866 YANQIN FAN AND QI LI 

nonparametric alternative; consistent tests for a single index specification have 
been presented in Chen (1992) and Rodriguez and Stoker (1992). 

The first group of papers that make use of nonparametric estimation tech- 
niques in developing consistent tests for a parametric functional form such as 
Hidalgo (1992), Lee (1994), and Wooldridge (1992) among others have employed 
ad hoc modifications such as sample splitting or a form of weighting. Recently a 
number of authors have successfully used the Central Limit Theorems (CLTs) 
for second order degenerate U-statistics in Hall (1984) and De Jong (1987) to 
develop some consistent nonparametric tests for a parametric density function 
or a parametric regression function; see, e.g., Eubank and Hart (1992), Fan 
(1994), Fan and Li (1992a, b), Hardle and Mammon (1993), Hong and White 
(1995), Horowitz and Hardle (1994), and Li (1994), to mention only a few. 
However to the best of our knowledge, the existing consistent tests for a 
semiparametric functional form such as a partially linear model or a single index 
model and tests for omitted variables in a nonparametric model still employ ad 
hoc modifications. For example, for testing a partially linear model versus a 
nonparametric regression model, Whang and Andrews (1993) and Yatchew 
(1992) used sample splitting; for testing a single index model, Chen (1992) used 
sample splitting, and Rodriguez and Stoker (1992) introduced a test statistic that 
has a degenerate limiting distribution under the null hypothesis; for testing 
omitted variables, Robinson (1991) discussed the application of a form of 
nonstochastic weighting which is equivalent to a form of sample splitting, 
Hidalgo (1992) introduced random weighting, and Gozalo (1993) used a random 
search procedure.3 These ad hoc modifications are introduced in the aforemen- 
tioned studies in order to overcome the so called "degeneracy problem": an 
appropriate estimator of some measure of the distance between the models to 
be tested under the null hypothesis approaches zero at a rate faster than n -1/2, 

where n is the sample size. As a consequence, when normalized by n /2, the 
estimator of the chosen measure does not have a well-defined limiting distribu- 
tion under the null hypothesis. This degeneracy problem is caused by the fact 
that the estimator of the chosen measure contains in its expression some 
degenerate U-statistic which vanishes at a rate faster than n 1/2. Without 
modifying this estimator, its asymptotic distribution under the null hypothesis 
would be determined by the degenerate U-statistic. In the papers we just cited, 
ad hoc modifications are employed such that the asymptotic distribution of the 
estimator of the chosen measure in each of these papers is determined by a 
random term that is of a larger order than the corresponding U-statistic. 
However, rather than introducing ad hoc methods to avoid the degeneracy 
problem, it seems natural, as in recent papers on consistent tests for a paramet- 
ric functional form mentioned earlier, to exploit this special property by invok- 
ing the CLTs for degenerate U-statistics (of order possibly higher than two) to 

3Recently Lavergne and Vuong (1996) constructed a nonparametric test for selecting regressors. 
They require that the competing sets of regressors be non-nested. Hence their test is different from 
the usual omitted variables test. 
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CONSISTENT MODEL SPECIFICATION TESTS 867 

develop consistent tests for omitted variables and for semiparametric functional 
forms. This forms the core of the present paper. Tests that exploit this special 
property may also be more powerful than those based on ad hoc modifications,4 
because under the alternative hypothesis the corresponding test statistics di- 
verge to + oo at a rate faster than nl/2. 

The remainder of this paper is organized as follows. We introduce the 
nonparametric regression model and the hypotheses to be tested in Section 2. 
Section 3 constructs a consistent test for omitted variables in the context of the 
nonparametric regression model introduced in Section 2. Section 4 presents 
respectively a consistent test for a partially linear specification and a consistent 
test for a single index specification of the regression function. The last section 
concludes and offers some suggestions for further research. Appendix A con- 
tains proofs of the main results in Sections 3 and 4. Appendix B contains some 
technical lemmas that are used in the proofs of Appendix A. In particular, it 
contains an extension of the CLT in Hall (1984) for degenerate U-statistics of 
second order to degenerate U-statistics of any finite order. This is useful 
because the test statistics to be constructed in this paper involve degenerate 
U-statistics of order higher than two. 

Throughout the rest of this paper, all the limits are taken as n -* oo. 
Ej i= EJ% 1,Ej * i = E% i,j= 1, etc. 

2. THE MODEL AND THE HYPOTHESES 

Consider the nonparametric regression model: 

(1) Yi =g(Xd + Ei, 

where {Yi, X}in1 is a set of n independent and identically distributed (i.i.d.) 
observations on {Y, X'}' with Y the scalar dependent variable and X the d x 1 
regressors, g(.): Rd-* R is the true, but unknown regression function, and e1 is 
the error satisfying E[ ei I Xi ] = O. 

Two classes of hypotheses that are often tested concerning the regression 
model (1) are the functional form of g( ) and the significance of a subset of 
regressors X. With respect to the functional form of g, the null hypothesis 
specifies either a parametric regression model or a semiparametric regression 
model for g( ). As motivated in Section 1, we will focus on the null hypothesis of 
a semiparametric regression model in this paper. 

We first present the problem of testing for the significance of a subset of 
regressors. Let Xi = (Wi', Z)', where Wi is of dimension q1 x 1 andZi is of 
dimension q2 x 1, q1 + q2 = d. Then, a subset of regressors, Zi (say), is insignifi- 
cant to the explanation of Yi given Wi if E[Yi Xi] = E[Yi Wi]. Insignificant 
regressors should be omitted from the regression model. Thus, a test of 

4 See the last section for more discussion on this issue. 
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868 YANQIN FAN AND QI LI 

significance is also called an omitted variables test. Let r(w) = E[Yi I i = w]. 
Then an omitted variables test is that of 

Ho: g(x) = r(w) a.e. against the general alternative 

Ha: g(x) r(w), 

where x = (w', z')' is partitioned according to that of Xi. 
Since Robinson (1988) and Powell, Stock, and Stoker (1989), partially linear 

and single index models have attracted much attention among econometricians,5 
because on one hand, these models are not as restrictive as parametric regres- 
sion models and on the other hand, they alleviate the problem of the "curse of 
dimensionality" associated with nonparametric models. However, they are still 
not free from misspecification errors. Thus, it is important to test the validity of 
such semiparametric models against the general nonparametric alternative. The 
first attempt toward developing consistent tests of these semiparametric models 
has been made by Whang and Andrews (1993) and Yatchew (1992) for partially 
linear regression models, and by Chen (1992) and Rodriguez and Stoker (1992) 
for single index models. As mentioned in Section 1, these tests used some kind 
of ad hoc modifications (such as sample splitting) to avoid direct treatment of 
degenerate U-statistics. Sample splitting results in inefficient estimators. It may 
also cause the tests to lose power both directly and indirectly. The indirect effect 
of sample splitting on these tests is to slow down the divergence rate of the test 
statistics to + oo. This motivates us to develop consistent tests for a partially 
linear model and for a single index model that make use of the special feature 
of degenerate U-statistics. 

For a partially linear model, the null hypothesis is 

Hb: g(x) =z'y+ 0(w) a.e. 

for some y ERq2 and some 0( ): Rql -R, 

and the alternative is 

Hb: g(x) Z'y+ ' 0(w) for all y E Rq2 and all 0( ): Rql -*R, 

where as before, x = (w', z')'. 
Finally for a single index model, the null hypothesis is 

Ho: g(x) = (a ( 'x) a.e. for some a E Rd and some p( ): R -R , 

and the alternative is 

Hc: g(x) p (a ( 'x) for all a E Rd and all (p(.): R -R. 

SSee Engle, et al. (1986), Hardle and Stoker (1989), Stock (1989), and Stoker (1992) for empirical 
applications of partially linear and index models. 
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CONSISTENT MODEL SPECIFICATION TESTS 869 

3. A CONSISTENT TEST FOR OMITTED VARLIBLES 

Recall from Section 2 that under the null hypothesis Ho: g(Xi) = r(W), a.e., 
where Xi = (W1', Z')'. Let ui = Yi - r(W). Then under the null hypothesis, the 
regression model becomes 

(2) Yi = r(W) + ui, 

where E(ui I Xi) = g(Xi) - r(W) = 0 under Ho and E(ui I Xi) # 0 under H'. 
Observing that E[uiE(ui I Xi)] = E{[E(ui I Xi)]2} > 0 and the equality 

holds if and only if Ho is true, we can construct a consistent test6 based on 
E[ uiE(ui I Xi)]. If ui and E(ui I Xi) were available, then we could estimate 
E[tuiE(ui I Xi)] by its sample analogue: n-1 Ei uiE(ui IXi). To get a feasible test 
statistic, we need to estimate ui by the corresponding residual from (2) and 
E(ui I Xi) by an appropriate kernel estimator. To overcome the random denomi- 
nator problem in the kernel estimation, we choose to estimate a density 
weighted version of n-1 Ej uiE(u1 IXj) given by n-1 Ej[ujfw.]E[ujfw, IXj]f(Xj), 
where fw, =fw(Wi), fw() is the probability density function (p.d.f.) of Wi, and f(-) 
is the p.d.f. of Xi. 

Specifically, we estimate u1 by i = (Y1- i): the nonparametric residual from 
(2), where Yi is a kernel estimator of r(W) defined as 

A3 R [n - 1)aq, ] -1 Ej ,i YjKiw: 

fw 

and fw. is the corresponding kernel estimator of fw, given by 

(4) tw )qE K.wj,, 
J*i 

where K!W = KW((Wi - Wj)/a) with Kw0) being a product-kernel formed from 
the univariate kernel kw(-) and a an a smoothing parameter. We estimate 

E[ifw, I Xi ]f(Xi) by [(n - )hd ijfwj where 

K1 =K(ih i)=K( h ihj, 

K is a product kernel with univariate kernel function k(-), and h hn is a 
smoothing parameter. 

6 This test can be regarded as a generalized conditional moment test of omitted variables, where 
the weight function is a nonparametric function given by E(ui IXi =x). See Newey (1985) and 
Tauchen (1985) for the conditional moment tests of functional forms based on a finite number of 
parametric weight functions. 
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870 YANQIN FAN AND QI LI 

Our test statistic will be based on 

def 1 1 AJ~1 

(6) a = ii = (- Ki- 

r1 = r(W), rI and u2 are defined in the same way as Y in (3) with Y replaced by 
r(W;) and Uj respectively. 

To derive the asymptotic distribution of I,a under Ho, we will use the 
following definitions (see Robinson (1988)) and assumptions. 

DEFINITION 1: X, I 2 1, is the class of even functions k: R -*R satisfying 

R 

k(u) = O((i + IuIl+1+e)')j some e>0, 

where b is the Kronecker's delta. 

DEFINITION 2: ,], aE> 0, ,U >O0, is the class of functions g: Rd -*R satisfy- 
ing: g is (m - 1)-times partially differentiable, for m - 1 ? ,u ? m; for some 
Pw> 0, for all z, where 
{y: Iy - zI < p}; Qg = 0 when m = 1; Qg is a (m - 1)th degree homogeneous 
polynomial in y - z with coefficients the partial derivatives of g at z of orders 1 
through m - 1 when m > 1; and g(z), its partial derivatives of order m - 1 and 
less, and h g(z), have finite atth moments. 

Assumption A 

(A1) (a) 
fe= 

for some A>0 andr e for some ,u >0; (b) kW 
E++m1 

for integers land msuch thatl- 1 < A?<land m -1 < ,u<m; (c) f e , keZ; 
(d) The error E = Y - g(X) satisfies E 1 e4 1 < . The conditional variance function 

r =2(x) =W EaXn=dx] and m4(x) iE[e4IX=x] are continuous. In addition, 
f(x)a2(x) and f(x)m4(x) are bounded on Rd. 

(A2) As n -oo, a-*0, a the c, of evoo nhdction, na2khd/2* > O and 
hd/a2q1 0, where q1 = min(A + 1,K ,). 
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CONSISTENT MODEL SPECIFICATION TESTS 871 

A few remarks on Assumption A are in order. Assumption (Al) (a), (c), (d) are 
some smoothness and moment conditions. They are quite standard and not 
restrictive. (Al) (b) requires that k be of the order of (1 + m - 1) which may be a 
second order kernel (1 + m = 3) or a higher order kernel (1 + m > 3). The first 
four conditions in Assumption (A2) ensure that the kernel estimators involved 
are consistent. The last two conditions are introduced here to ensure that the 
limiting distribution of nhd/2IJ, under H' is centered correctly at zero. Heuristi- 
cally, it ensures that the asymptotic mean square error of the kernel estimator: 
uifw in (6) is of smaller order than (nhd/2)-l, i.e., [a2 + (naqi)-'] - 

o((nhd/2)-1). With respect to the kernel estimator Yi of the regression function 
r(W) to be tested under Hoa, (A2) does not impose any restrictions on the 
smoothing parameter a. Specifically, the data can be over-smoothed, optimally- 
smoothed, or under-smoothed in estimating r(W). However, given a, the 
smoothing parameter h must be chosen such that the last two conditions in (A2) 
hold. Consider for example the case where q2 ?q1. In this case, the last 
condition in (A2) implies that h/a -O0. Hence, we must smooth the alternative 
regression model less than the model under the null hypothesis. 

THEOREM 3.1: Suppose Assumptions (Al) and (AS) are satisfied. Then under 
Hog, we have nhd/2I,a > N(0, 2 o.2) in distribution, where 

2 =E[T x,'Z)4(WT, Zl)f\41 [ 2(U) du]. 0a = (,9Z)o 

In addition, the vartiance a can be consistently estimated by Ca2 where 

52 n(n- 1)hd E[iiifwi] [ljfwjI Kij[fK2(u)dul. 
i j5o1 

The estimator 6 2 is obtained by noting that 

a2=E{UlfwJ12 { tW lE u 2w2 1 Zlg K }]|2(U) du, 0a= E[{f2f(W9Zl)E[u2f21 W 1\ 

where the unconditional expectation is replaced with the sample average, 
uifw in the sample average by [ifw, and the term inside the braces by 
[(n - l)h ]1 i[u fwj Kij. 

Define 

nhd/2I,a 
(7) T a= 

Then Theorem 3.1 implies that Ta -+ N(O, 1) in distribution under Ho. This 
forms the basis for the following one-sided asymptotic test for Hoa: reject Hoa at 
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872 YANQIN FAN AND QI LI 

significance level ao if T' > Zao, where Zao is the upper ao-percentile of the 
standard normal distribution. 

The consistency of this test is the last result of this section. 

THEOREM 3.2: Assume (Al) and (A2) hold. Then the above test is consistent. In 
addition P(Ta > Mn I Ha) -> 1, where Mn is any positive, nonstochastic sequence 
with Mn = o((nhd/2)). 

Theorem 3.2 follows from the facts that under Ha, Ia - E{f(X)[g(X) - 

r(W)]2f 2(W)}(> 0) in probability and A6 = Op(1). The proofs of these are 
straightforward and are thus omitted. 

4. CONSISTENT TESTS FOR SEMIPARAMETRIC MODELS 

4.1. A Consistent Test ForA Partially Linear Model 

Let vi = Yi- Z' - O(W). Then E(vi I Xi) = g(Xi) - [Z y + 0(W)] which 
equals zero a.e. if and only if the null hypothesis Hob is true. Hence, 
E[viE(vi IXi)] = E{[E(vi IXi)]2} ? 0 and the equality holds if and only if Hob 
holds. Thus, as in Section 3, we will base our test for Ho on an estimator of 
n1 i[vifwjE[vjfw, IXj]f(Xj) to overcome the random denominator problem in 
kernel estimation. 

The estimator of vifw, that we adopt is obtained by a two-step procedure as in 
Robinson (1988) and Fan, Li, and Stengos (1995). In the first step, we estimate y 
by A defined as (see Fan, Li, and Stengos (1995) for more details) 

(8) Z' S(2)fS(z )f(Y-)f, 

where as in Robinson (1988), SAfW, Bfl = nl Ei Aifw Bifw, and SAfW = SAfW, AW 

for scalar or column vectors Aifwi and Bifwi. In addition, Zi = 

[(n - 1)ai Ej ZjK1KJ/fw, estimates E[Zi W], f W and Yi are defined in 
(3) and (4) respectively. Let -vi = (Yi - 1) - (Zi - Zi)'9. Then, the density- 
weighted error vifwl is estimated by 

(9) fwi= -Yi fw-(z z Wi- (Zi - ( y- fw 

= [(a-a) +vi- ifwi- i-) (e- )fwi 

=Difwi - zi-i (e- fwi9 

where O 9 = 0(Wa), Oand vi are defined as in (3) with Yi replaced by 0(Wj) and v 
def(oi A)+vi _A respectively, and i3 = oj - )+ Vi 3. 
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Hence our test statistic will be based on 

(10) In n EI n ifw{ En 
[ fwjI K) 

1~~~~~~* 

n(n-l)hd ~ ~ ~ !~ E Vt][UfKij 

n(n - l)hd - fw n(n-)hd 

i j5i 

i j#i 

n(n - 1)hd Z E [(z,-i fW(zj -Z) 

XW (Ae- )'(A y)] Kij 

def 
Jn 2Jin +J2n, 

where the third equality is obtained by using (9). 
It is important to note that Jn is the same as In' given in (5) except that ui in 

Jn replaces ui in In,. Thus, Theorem 3.1 can be used to obtain the asymptotic 
distribution of Jn. We will show in Appendix A that both J1, and J2n are of the 
order o ((nhd/2)-l). Define 

nhd/21b 
(11) Tb = n 

V'ab 

where &b2 is the same as Ca2 defined in Theorem 3.1 with ui replaced by vi. 
By the results of Theorem 3.1 and 3.2, we immediately get the main result of 

this subsection. 

THEOREM 4.1: Let assumptions (Bi) and (Bi) be the same as (Al) and (A2) 
except that r(*) in (Al) is replaced with 0(0) in (Bi). Define (w) = E(Za I W = w). 
Then under (Bi), (B2), and the assumption that ( e -, the following results hold: 

(a) Under Hob, Tb _ N(0, 1) in distribution. 
(b) Under Hi', P(Tb ? M- ) 1, where Mn is any positive, nonstochastic se- 

quence with Mn - o((nhd/2)). 

The proof of Theorem 4.1 (a) is given in Appendix A. The proof of Theorem 
4.1 (b) follows from the facts that under H, Ib b -* E{f(X)[g(X) - (Z'y + 
O(W))]2f 2(W)} (>0) and b = Op(1) in probability. The proofs of these are 
straightforward and are thus omitted. 

This content downloaded from 128.194.113.59 on Tue, 30 Apr 2013 14:21:17 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


874 YANQIN FAN AND QI LI 

4.2. A Consistent Test ForA Single Index Model 

The test for Ho versus H' is constructed in a similar way to that 
for Hob versus Hi . Specifically, define vi=Yi -(a'Xi). Then a consistent 
test for Ho versus Hf can be based on an appropriate estimator of 
E[vifa(a'Xi)E{vifa(a'Xi)lXi}f(Xi)], where fa(-) is the density function of 
a 'Xi. 

Let a' be the density-weighted average derivative estimator proposed by 
Powell, Stock, and Stoker (1989).7 We assume that the conditions in Powell, 
Stock, and Stoker (1989) hold under Ho. Hence, a' - a = O(n'/2). Under Ho' 
the index function p( a'Xi) can be consistently estimated by 

(12) AY1Il'X )= [(n - 1)ha Ei YjKia 
fa(&A'Xi) 

where Ka) = k((& 'X, - & 'Xj)/ha) with kaQ) a univariate kernel function, ha 
is a smoothing parameter, and 

(13) fa(atX) a2 K 
(n-1)ha o 

Let vi = a- AYi I 'Xi). Then our test will be based on 

(14) n n E a( a (n -)h E v, fa a Ki1} 

n(n -1 E E [ Vifa ( j)] [fa a 'x )]Kij. 
i j1oi 

It follows from (12) and (13) that 
(15) Via ( At Xi) =[ Yi-(Yi l fXi)] fa (c i (15) vijfa(&a j)Y E ( a&'j)fa(&Xa 

= (n -1)h (Yi j 

= [-(Yi I a'Xi)] fa (a 'Xi) 

+ 
n- iYj ) [ K& iK a ] 1 

fna (n1 - 1)h[KJ -K1i 'fl 1)ha j a ji = vifa ( asXi) + n-)hE( iY)[ iK j] 

where E(Yi a a'Xi) and fa(a' Xi) are defined respectively in (12) and (13) with a 
replaced by ac, vi is the residual from kernel estimation of Yi = (c(a'Xi) + vi, 

7For the asymptotic theory for average derivatives in time series context, see Robinson (1989). 
Robinson (1989) and Stoker (1989) are the first papers using average derivatives in hypothesis 
testing. 
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CONSISTENT MODEL SPECIFICATION TESTS 875 

where a is treated as known, i.e., i = Y iI 'Xi) Pi vi vi 
with (pi = qp(a'Xj) and (pi and vi defined in the same way as E(Y I a'Xi) except 
that Yj is replaced by (pj and vj respectively. 

From (14) and (15), we get 

(16) n(n-1)hd E f[ai (f( Xi)]K[ijfa(a'Xi)]K 
i ji/i 

2 
+ D(n1)hdh E E E[iif(a'Xi)] 

xY- Y1)[KJ -K1Jl Ki1 

1 
+ 3 (Y - Yk)(y- Yl) 

n(n-1) h dh, j?i k?i i?] 

X [Klk- Ka] [ Kl - Kjl ] Kij. 

As for Inc, the asymptotic distribution of the first term on the right-hand side 
of (16) can be derived by using Theorem 3.1 under Assumptions (Cl) and (C2), 
where (Cl) and (C2) are the same as (Al) and (A2) except that 'p0-) in (Cl) 
replaces r( ) in (Al), and in (C2), q1 = 1 and a = ha- We shall show in Appendix 
A that the last two terms on the right-hand side of (16) are op((nhd/2)-l) under 
Hoc and the additional Assumption (C3) given below: 

(C3) a - a = O (n -2), k is M-order differentiable, and 

n(M- 1)h2(M+ 2)h -d 
00 

a 

Define 

nhd/2I,c 
(17) Tc= 

where (J2 is the same as o)a defined in Theorem 3.1 with iifW replaced by 
vfa( ^Xd) 

By the results of Theorems 3.1 and 3.2, we immediately get the main result of 
this subsection. 

THEOREM 4.2: Under the assumptions (Cl), (C2), and (C3), the following results 
hold: 

(a) Under Hoc, Tc - N(O, 1) in distribution. 
(b) Suppose a -^a * = op(1) for some a * under Hc. Then P(TC > Mn I HO) -> 1, 

where Mn is any positive, nonstochastic sequence with Mn = o((nhd/2)). 

The assumption (C3) is introduced to ensure that the last two terms on the 
right-hand side of (16) are of smaller order than (nhd/2)-1. The condition 
n(M -l)h2(M+ 2)h -d oo along with the differentiability of the kernel function up 
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876 YANQIN FAN AND QI LI 

to order M may be relaxed by using uniform convergence results for U-processes. 
However, the proof would become much more involved. Since the kernel 
function is chosen by the researcher, one can always choose a kernel function 
that has as many derivatives as possible so that the condition: 

n(M - l)h2(M + 2)h -d o 
a 

is satisfied for a wide range of values of ha and h. 

5. CONCLUSIONS 

We have proposed consistent tests for a partially linear regression model and 
an index model. In addition, we have developed a consistent test for omitted 
variables in a nonparametric regression model without specifying its functional 
form. These tests are constructed by invoking the CLT for degenerate U- 
statistics of order higher than two. As a result, they do not rely on any arbitrary 
modifications, and under the alternative hypotheses the test statistics diverge to 
+ oo at a faster rate than nl/2. 

Similar to the power analysis of consistent tests for a parametric functional 
form provided in Fan and Li (1992a), Hardle and Mammen (1993), one could 
also investigate the local power properties of the tests developed in this paper. 
Under some additional conditions, one can show that the tests proposed in this 
paper can detect sequences of local alternatives that differ from the respective 
null hypotheses by O((nhd/2)-1/2). Hence, they are more powerful than those 
based on arbitrary modifications, because the latter can only detect local 
alternatives distant apart from the respective null by O(n-l'/4). To the best of 
our knowledge, the tests proposed in this paper are the first consistent tests for a 
partially linear model, a single index model, and omitted variables that possess 
this desirable property. 

Another issue that deserves some discussion is the support of X. In this 
paper, we have assumed that the support of X is the whole Euclidean space Rd. 
One could easily show that the tests in this paper are still valid if the support of 
X is a finite convex subset of Rd and the density function of X vanishes on the 
boundary of its support. However, if the support of X is a compact subset of Rd 

and the density function of X is bounded away from zero on its support, then 
the tests presented in this paper need to be modified. In this case, some 
trimming method must be introduced to overcome the boundary effect. The 
simplest way of doing this is to introduce a fixed weight function such that the 
support of the weight is a proper subset of the support of X as in Fan and Li 
(1992b). However, the resulting tests will be consistent only against the alterna- 
tives that differ from the null on the support of the weight function. In order for 
the tests to be consistent against all the alternatives, the weight function must 
change with respect to the sample size in such a way that its support approaches 
the support of X as the sample size n goes to + oo. 
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APPENDIX A: PROOFS OF THE THEOREMS 

This appendix collects proofs of the main results stated in Sections 3 and 4. Throughout, the 
symbol C denotes a generic constant. When we evaluate the order of some terms, if there is no 
confusion, we will use n, (n - 1), and (n - 2) interchangeably. In addition, when an expression 
contains more than one summation, by slight abuse of notation, we will sometimes use the same 
symbol to denote this expression and different terms in the expression obtained from restricting the 
summation indices to different cases. For example, if we define LA = Ei EY Aij, then we will also use 
LA to denote Ei Ej i Aij and Ej Aii corresponding to i #j and i =j respectively. 

PROOF OF THEOREM 3.1: The following expression for I,, is immediate from (5) and (6): 

(A.1) nnn_lhE (-ri fwi(rj ri) Vj + UiUjfw f" + fiif^ ufij^ 
(A.1) I ~ --- 

Er'= '- (r - n(n - 1)jh 
((1 ,),,1* ,f1 

+ 2uifw (r. - P)f- 2j f,i(r? - 2ui)f f - 2uifw 'jfj}Kij 

def 
- I, + I2 + I3 + 2I4 + 2I5 2I6. 

We shall complete the proof of Theorem 3.1 by examining . I6 respectively in Propositions 
A.1 to A.6, and by showing that k 2 = 2+ op(1) in Proposition A.7. Since the proof is similar to that 
of Theorem 1 of Fan and Li (1992c), we will only provide some important steps here. Throughout 
this appendix, ij = (ui, Xi)' and Ei(-) = E( I Xi). 

PROPOSITION A.1: I, = op((nh'/2) 1 

PROOF: From (A.1), we get 

(A.2) n(n-1)hd E E )fjKij 

1 J# 

n(n-1)hda2, E . 1: ,(ri r,)Kw(rj-rk)Kj"kvKij-. n(n - W)h da2q, i~ j 1#li k#j 
i 

We will complete the proof by showing that E[(I)2] = o(n-2h-d). However a direct evaluation 
of E[(11)2] would be very tedious since it contains eight summations. Below we will first show 
that E(I) = o((nhd/2)-l). Then we will use this result and a symmetry argument to show that 
E[(I1)2 ] = o(n - 2h -d). 
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878 YANQIN FAN AND QI LI 

To show that E(I)=o((nhd/2)-l), we first consider the case where i,j,l,k in (A.2) are all 
different from each other and denote the resulting expression as Ill. Given the assumption that 
na277hd/2 -*0, we get 

E(Ill) = h -d a - - r2)Kw(r -r4)K3wK13 

= h-da -2qE{[Ej(rl-r2)Kw2][E3(r3 -r4)K3w]K13} 

< Ch-da272E[Dr(Wi)Dr(W3)K13] 

= O(a2,q) = o((nhd/2)-') 

by Lemma B.1 and Lemmas 2 and 3 in Robinson (1988). 
Let 112 denote the case where i, j, 1, k take no more than three different values. It is straightfor- 

ward to show that E(I12) = O(n-la -41) = o((nhd/2)-l ). Hence E(1) = o((nhd/2)-. 

Now we show that E[(I1)2] = o(n -2h-d ). From (A.2), it follows that 

(A.3) E[() 
(n-1) 2da4q 

x E: E Y. E E E, E E, Et [(r - r ) K'l (r - rk )KJwk K,j 
i j?i l?i k?j i' j'?i' l'1i' k'*j' 

X [(ri, - rl,)Kl(rj - rk,)Kr''k'Kij]} 

def 
= LA3. 

We first consider the case where the summation indices i, j, 1, k are all different from i', j', 1', k'. In 
this case, the two parts in two different square brackets are independent of each other. Hence by the 
same proof as that of E(I) = o((nhd/2)-1) given earlier, we know that LA3 =O(n-2h-d). 

Next we consider the case where exactly one index from i, j, 1, k equals exactly one of the indices 
i', j', 1', k' (so there are altogether seven different summation indices). By symmetry, we only need 
to consider the case (i) i = i', (ii) i = I', and (iii) I = 1'. 

Case (i) i = i': We have 

LA3 = E E i E E [(ri - rl)Kw(rj - rk )Kjwk Kti] 2 1)6 2d 4qI j #jHi # 

xl E E E(rirl,)lltri,rk')Ktk8KiiI ) 
n (n h a J*i 1*i'i l'?k k'?j 

=-^ 9 E{(r1 - 
r3)Kw(r2 

- r4)K2wK12[(r 
-r6)K1(rs- 

r7)K 

5K15]} 
1 

-h2dal E{[El(r1 - r3)KwL [E2(r2-r4)K?w] 

XK12[El(r, 
-r6)K 

-j[E (r5-r7)Kw]K15} 

a4,q 
< n2 E{Dr(Wi)Dr(W2)Ki2Dr(Wi)Dr(W5)Ki5} 

nh= l2Pr(WdDr=WdnKl5) 

-O(a4 '7n -1) - O(n2h -d). 
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For case (ii) i = 1', we have 

1A3 = _ _ _r)Kw (r_-rk)KjwkKi] 2 2d 
E f 

jri li kj 

x [riE (ri - rK)K w(r1 - rk')Kjk'Kij }i 
1~~~~~~~~ 1 i' ? i j ?i' k ' ? j 

2da4q E{(r1-r3)Kw (r2 -r4)K2K12[(r5-r1)K5w(r6-r7)K67K56]} 

1 
= ~2da4qE E{[El(r1 -r3)Kwl[E2(r2 -r4)Kjw] 

XK12(r5 -rl)Kwj[E6(r6 -r7)Kw]K56} 

< Y E{IDr (Wi)Dr(W2)(r5 - rl)KwKl 2Dr(W6)K56} nh 5 51 

O(a3nn- 1) =o(n-2h-d ) 

Similarly one can easily show that for case (iii), LA3 = O(a3nn - 1) = o(n -2h-d). 
Finally it is easy to see that when the eight summation indices i, j, 1, k, i', j', ', k' take no more 

than six different values, LA3 = 0(n-2a-2qj) = o(n-2h-d). Hence E[(11)2] = o(n-2h-d). 

PROPOSITION A.2: nhd/212 N(O, 2 o-2) in distribution, where 

27a= E[f(Xl )0f4(Xl)fw4l] [J2( u 0a ~ ~ . wlf.Kju) 
d 

PROOF: It follows from (A.1) that 

(A.4) 2 1 w E?fituifwjKij= 13d E E k 
n(n -1)h jo n(n - 1)3h da2~i i j#i lii kij] 

i 

1 

n(n - 1)3hda2qi E E E E u u KwKjwkKij +I2R=I2U+I2R, 

where I2U denotes the case where all four subscripts i, j, 1, k are different and I2R denotes the sum 
of the remaining terms. 

Rewriting I2U in terms of a U-statistic, we get 

(A.5) 12U 1 
) d 2q[ 4 

) 
n(n- ha 1<i[(n<Y- 

where P,(C2, 2j, -21, Zk) = E4! uiujKwKjwkKij with E4! extending over 4! =24 different permuta- 
tions of i, j, 1, k. 

Define P(-2i, 2j) = E[Pn(Ci, Zjq 219 Zk) J12, 2j]. We get 

P"(-C, 2j) = 2{uiujKijE[KwKjwk 12i, -j] 
+ 

uiujKijE[KiwKJwl 1-2i, 2j} 

= 4uiu KijE[KiwKJ , ] . 
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Hence, 

E[P,,2(Z1S,22)] = 16E{uu2 K 2(E[K- K- 1,Z2 ])2} 

= 16E(of2(Xi)of2(X2)Ki22 [Jff(w3)fw(w4)KP.3K2 dw3 dw4I 2) 

= 16E(o'2(Xi)of2(X2)Ki2 

X [Jff(W 1 + au)ff(w fK2 + Kw( dudv 2) 

= 164q ff(xi)f(x2)o2(xi)o2(x2)Kl22 

x [ ffW(w1 + au)fw(w2 + av)KW(u)KW(v) dudv]dl ctx1 

= 16a4E1hd(ff(xi)f(x2 + hs)K22(x1)o2(x +hs)K2(s) 

x [ffw(wl + au)fw(wi + hsW + av)KW(u)KW(v) dudvl dx1 ds} 

= 16a4qhd (ff(xl)f(x2 )b24(Xi )K2(s) 

x [ J ff2(wi )Kw(u)Kw(v) dudvl] dxw ds + o(l)) 

= 16a4q,hd(E[f(Xi)f.4(Xi)fw4 ]s[fK2(s)2ds] + o(1)}) 

-16a4q,1hd {ff(Xf + o(1l)} . 

Similar to Fan and Li (1992c), one can easily verify the conditions of Lemma B.4. Hence from 
(A.5) and Lemma B.4, it follows that 

nhd/212 U = - _ 3d a/2a2q[(4) < < <l<k n] 

= S ! ff } s e B 2142q(4-1 ) 2[ 16a4 hdX2 ] ) 

S a F N(O,2i19 2) in distribution. 

It is easy to see that 

E[( I_ R)2] =-n (-)h2aq ) (42aq 

Hence 

12R =(n(n -1)3 hd a2'l) Q(fl3hdaq1) -O~((naq1)') =o ((nhd/2)'1). 

Thus from (A.4) we get 

nhd/2I2=nhd/2I2UU +op ( l) N(O, 2n) 

in distribution. 
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PROPOSITION A.3: I3 = op((nhd/2)-1). 

PROOF: From (A.1), we get 

13= n(n - 1)hd E uiuja,1a f,fIKij 

n(n1)3 Ud2q 
I U 

uuk Kil Kj'k Kq] n(n - h)3da2q, 1 io i o ko j 

We consider two cases: (i) 1 = k and (ii) 1 # k separately. We use I3F and I3S to denote these two 
cases. 

Case (i): 1 = k. In this case, it is easy to see that 

E(I3F) = I )3d2w 

1(-)3 da2q, E E[ lI Kjl Kil n(n - h ~~i:#j#1I 

= n-lh-da - 2q'E[ 0- 2 (X3 )Kw K2w Kl] 

0(n-a -ql) = o(n-1h -d/2) and 

2 1 
E[(I3F) ] 2 (n-1)6h2da4q, 

x Ef fE E[lKwIKjwKI ][1,1lKw,,lj } 
iojoI i#jl# 

By using similar arguments as in the proof of E[( 1)2] = o(n -2h -d) (see the proof of Proposition 
A.1), one can easily show that E[(I3F)2] = 0(n-2a-2qj) = o(n-2h-d). Hence I3F = op((nhd/2)-l). 

Case (ii): 1 # k. Note that 

1 

n- J)3 d 2q E UlUkKiwKJwkKIj n(n - h a i joi Ioi kI,!, 

def 1 ~UUKKKJIS 

n(n1)3 ha ul uk KwIKjwk K, + I3 SS 
n(n - h)3da2q, ooo 

def 
= I3SF + I3SS, where 

(A.6) E[(I3SF)2] 

1 
E[ U2 U2K w Kjwk Kw jK w Kj,kK ] 

- 4q E[ LKEwuKj2KilKw K,KU ] KkK 
i0j=3 i''3 

def 
= LA6. 
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The leading term of LA6 corresponds to the case where i, j, i', j' are all different from each 
other. In this case, 

LA6 = 2 E2 4w1 [u2u2Kw KwKKw KwK6 

= 
2 2d 4q, E( o2(Xl)2(X2)[ff(x3)f(x4)KwK v4K34dx3dx4I } 

h 2d (r 
n2a4q E( o2(X)2(X2)Iff(w,+hu,z,+hs) 

hu hv 
Xf(W2 + hv, Z2 + ht)Kw ( Kw(t ) 

(Wl-W2 Zl -Z2 )2) 
XK(1h +(U _V) 'h + s -t)dudsdvdt]2 

h 2d 
=~ 24 (h d) = 0(n -2h3da - 4qj ) = o(fn - 2h - d) 

When some of the i, j, i', j' take the same value, LA6 will have at most an order of 
(ll/n6h2da4q, )(n3h2da3qj) = 0(n-3a-ql) = o(n-2h-d). Thus we have shown that I3SF = 

op((nh d/2)- 1). 

Finally it is easy to see that 

E II3SSI = 
n4hdaq, 0(n3hdqa) 0(n -la o((nhd/2)) 

Hence I3 S = op((nhd/2)-1) 

PROPOSITION A.4: I4 = op((nhd/2) 1). 

PROOF: From (A. 1), it follows that 

4= n(Z I)h'E E ufwi(rj 
- 

j)fw Kij 14 d Ui r 
n(n -1)h jo 

1 def 1 
n( n-1)3hda2ql Eui(rj-rk)K.wKJwk Ki -j - uiSi. 

n(n - h d 2, 
j 1#li k#j nf i 

Note that E(14) = 0 and 

(A.7) E[(14)2] = - E E(u?S?) =E[ -2(X1)Sl] 
n 

- 1 ~~~~~~~~~~~~-2 X)( = 7hff Y E E E E E EE[ r(l(j rk)KjwkKwK,j n a j? 1? k?j j'?l 1'?1 k'?j' 

X (rj, -rk,)KjW,k,Kw,Kj,1] 

def 
= LA 7. 

If 1, j, 1, k, j', 1', k' are all different, by using Lemma B.1 and Lemmas 2 and 3 in Robinson (1988), 
it is easy to see that LA7 is of the order O(n - ' a27q) = o(n-2h -d ). 

Next we consider the case where two of the subscript indices 1, k, j, ', k', j', 1 are the same. By 
symmetry, we only need to consider three cases: (i) 1 equals one of the other indices, (ii) k equals 
one of the other indices, and (iii) j equals one of the other indices. It is straightforward to show that 
for case (i), LA7 = n-2W(an1a-ql) = o(n-2h-d); for case (ii), LA7 = n-20(a-q1) = o(n-2h-d); and 
for case (iii), LA7 = n-'O(a-q1) = o(n-2h-d). 
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Finally, when more than two indices take the same value, LA7 will have at most an order of 
0(n-3a - 2qi) = o(n -2h-d). Hence E[(I4)2] = o(n 2h-d). 

PROPOSITION A.5: I5 = op((nhd/2)-l). 

PROOF: Note that 

n(n-1)h d E E if i(ri r)fKii 

- )3d2q E E E E u(rj- rk)KKjwkKijK. 

The rest of the proof is very similar to that of Proposition A.4 and thus is omitted. 

PROPOSITION A.6: I6 = Op((nhd/2)-1). 

PROOF: 

1 
'6 E E ui)iuhjjK 

1 

-)3 E E E E UiUkKwKjwkKij. 

We consider two cases: (i) i = k and (ii) i # k. We use I6 F and I6 S to denote these two cases. 
Case (i): i = k. 

1 
E(6F) = E '3Edq1 E E[u?KwKjw'Kij] 

n(n - 1)3h da2q, i E E Kj#i 1i 
I 

-hd 2q1 E[ 2(X1)Kw KwK2] + K d29 E[o2(Xi)(Kw2 Ki2] 

= 0(n-la -ql) + 0(n - 2a- 2q,) o((nhd/2)-1). 

E[(I6F) ] 
n2(n- 1)6h2da4q 

X Ef[ui2KwKjwKij ][Ul2 K wlllKijlpKilj,] 
i j?i l?i i' j'?i' I'?i' 

If all the summation indices i, j, l, i', j', l' are different from each other, by the same proof as 
E(U6F) = o((nhd/2)-l), we know that E[(U6F)2] = o(n -2h -d). If the six summation indices take at 
most five different values, then it is straightforward to see that 

[( F)2] = 
1 5 2d 2q, - 

-2qj_2_-d_ E(I6F) ] n2(n _- )6h2da4ql 0(n h a 0(n a =o(n- h 

Case (ii): i # k. Note that 

1 

n(n-1) hda2ql E E E E~~ UiIwKjwk Kij n(n- 3 d 2q, E E E E UiUk KilKJKIJ n(n - 1 h a ij#i l#i koj,koi 

def = I6SF + I6SS, where 
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(A.8) E[(I6SF) ] = n6h2d1 a Eq E E 11 
j#l=3 j'#l'= 3 

def 
= LA8. 

The leading term of LA8 is obtained when j, 1, j', 1' are all different. In this case, we have 
1 - U 

L48 E=?KK lKK5K5 nA n2h2da4qB, 2Eu u 14 32K 316KsK 

= 2h2d4q E{Xff (}(X2)[E(Kl4K32K 

= ~2h2dg4q1 E(o-2(Xl)o.2(X2)[ff(x3)fw(w4)K4K'2Kl3 dX3 dw4I} 

-212qi E(o2(Xi)oJ2(X2) 

x[ff(wi + hu, z1 + hs)fw(wi + av)KW(v)Kw K(u, s) dudsdv 

= (n2a2q,) )-1(aql) = O(n- 2aql) = o(n- 2h-d). 

Similarly one can show that when j, 1, j', 1' take no more than three different values, 

LA8 = (n6h2da4q1) l(1 ,3h2da2q,) = o(n-2h-d 

Finally it is easy to see that 

I6SS = 0d Z,/ Op(n3 daq1)= ((nhd/2)-1). 

Hence I6S =o((nhd/2)-l). Q.E.D. 

PROPOSITION A.7: 
&2 = 

0-2 
+ op(l). 

PROOF: Since the detailed proof is similar to that of Proposition A.2, we will only sketch it here. 
By using (6) and (4), one can show that 

n(n - Ohd 
LI 

Uij [ wif] i 

i j#i 
1~ ~ ~~~~. ( l)hd E E Ui?Uj2fif Ki + op(l) 

= 1 u?u?[f f]2K+ (1 
n(n - )hd j i + op(l) 

i j#i 
=E 1{lfl {tW,Z)E[ult2 l W, Zl]} + op(l), 

which implies that a2 = 0a2 + op(l). Q.E.D. 

PROOF OF THEOREM 4.1: By the result of Theorem 3.1, we only need to prove that both Jjn and 
J2,, defined in (10) are of order op((nhd/2)-l). Note that we do not require that 5'- y= OP(n-1/2). 
Hence the conditions in Robinson (1988) or in Fan, Li, and Stengos (1995) are not required here. 
Under the conditions given above, we have 5 - y = Op(n-1/2 + (naql)-1 + a2,7); see Fan, Li, and 
Stengos (1995) for a proof of this result. Then from (10), it follows that 

J = ) d E E (Zj-Zj)twiMifwi - (^Y-S Jllndef 
Jln 

=- 
4dy E (Z1 -21)f'uif, = (j' Y11 

n(n -1)hd - o 
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Define 4i = E(Zi I W) and q1 = Zi - 4j. We have 

Jlln )hd E [(4 
)fi 

+ Nf wj f](r + uif uif Kij. nn 1h i j#i 

Comparing the terms in Jlln and the terms in In' given in (A.1), it is obvious that Jlln has at 
most an order of Op((nhd/2)-l). Hence Jln has the order of OP(n + (na4?)-' + a2'DOp(Jlln) = 

op((nh d/2)- 1). 

Similarly, define J22n from J2n = ( vY)"J22n(A - y). It is easy to see that E IJ22nl = 0(1). Hence 
J2n has the order of (- y)'(5 - y) = Op(n - + a4) op((nhd /2 ). Q.E.D. 

PROOF OF THEOREM 4.2: Let II and III denote the second and the third terms on the right-hand 
side of (16) respectively, i.e., 

(A.9) H = 
1)2 d [viifa( a'Xi)Y[y - Y][K&l -Kj, IKij, n(n - 1)h ha i j#i $j 

(A.10) III = 3 E E , E (Yi-Yk - Yj -Y, Ki&k-K a Kjl-Kjal Kij. 
n(n- 1)3hdh~a i j$i k$i 1l[j 

Since Vijfa(a 'Xi) = [(n - 1)ha]1 k i(Yy - Yk)Kiak, we get from (A.9): 

A11 
= 

H 
n 

3 d 2 iY ky- E 
-Yk)(;-Y,)Kiak[K-KjflKij. n(n - 1) h ha i j$i k?i l$j 

By Taylor expansion, it follows that 

(A. 12) ~~~M 1 
A 

0!'(X X))[(aa)t(X X)]s (A.12) 
s! h h J 

1 ra (M+1) (A-a)'(X, -X) (M+ 1) 
-k,(M+l)( Ip (M +1)! ha ] 

where ka,(s)(.) is the sth derivative of ka(.) and tj, is between [a'(X, - X1)]hj1 and 
[a' (Xj -X1)1h7'. 

Substituting (A.12) into (A.11), we get 

deM 1 1 

II 
= { 1 

~3 d 2 E EE (Yi Yk)(Yj 
- Y)K kK,a S 

s=1 s! tn(n - ) h ha i j$i k$i l$j 

[ a o-o a)'(Xj -XI) ]sK ) 

+( M + 1) !n(n -1)3 hdh2 E . kE E (Yi-Yk )(Yj-Yl )KiakKa (qM + 

[ ha ] j 

def 
M 

- -Hs + 1)! +1) where 
S != S! (S + 0 
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We shall complete the proof for II=op((nhd/2)-l) by showing that (nhd/2)IIs =op(l) for 
s = 1. M, (M + 1). The proofs for s = 1. M are similar. Hence, we will only provide the proofs 
for s = 1 and s =M+ 1. For s = 1, we have 

(A.13) II = n(n- 1)3h dh2 i +l kYk j ILha I ,kf j K ijhKkK 
ai j#i k#i l#ja 

def 
= (a C-a)'BB. 

By comparing II, and I,a, we can see immediately that apart from (a' - a)', the terms in II, are very 
similar to those in I,,. Thus, we will only consider the leading term in IIl which is obtained from the 
case where i 1j # k # 1. In this case, if the null hypothesis holds, then 

__ (X2 - X4) 
(A.14) E[BB] = hdh E (X - ( X3 a ) ]( X2a - (X4 a ) ] ( 

1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~h } 
hdhE E{Ei[(p(Xla) - p(X3a))Ka ] 

-p(X 
a)) K,l 

h XEEj[(SO(Xja) ] j 
XE2 [( p(X20c -(p(X40 

X2 )) Xh K2' )] K1) 2 ~ ~ ~~~~ha 24 1 2 

1~~~~~~~~~~~ 
= 2 O(h1+ l)O(h~(2d) 

=O(ha+ . 

Similarly, one can show that var[h-(+' 1)BB]=o(1). Thus, BB=Op(hq+1+) which implies that 
(nh d/2)II1 = Op((nh d/2 )n- 1/2h V + 1) = O ([nh dh 2,7+ 2 ]1/2) = o (1). 

Now, for s = (M + 1), we get 

n2-( M+ 1)/2 
E[nhd2II(M+lI]=O hdh2 Q O(hd)hj-(M+ l)0(h ) 

1 
O( n(M+ 1)/2h(M+ 1) 

= o((nhd/2)-1) 

under the assumption that n(M- 1)h 2(M+ 2)h -d oo. Similarly, one can show that III op((nh=d/2)- 1). 

APPENDIX B: TECHNICAL LEMMAS 

Lemmas B.1 and B.2 given below are slight modifications of some of the lemmas in Robinson 
(1988). Lemma B.3 is from the well-known H-decomposition due to Hoeffding (1961) and is used to 
prove Lemma B.4. Lemma B.4 generalizes the Central Limit Theorem for second order degenerate 
U-statistics of Hall (1984) to degenerate U-statistics of any finite order, which is used in deriving the 
asymptotic distributions of the test statistics proposed in this paper. 

LEMMA B.1: For A, ,u satisfying l-1 < A < l, m-1 <,u < m, where 1> 1, m > 1 are integers, and 
for 8 2 1, let f eySA, g e.W'5, k e-+ m - 1. Then 

IE[{g(X2) -g(X1)}K21 IX,]I < Dg(Xi)(h(d+ n)), 

where Dg() has finite 8th moment and iq = min(A + 1, u). 
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PROOF: See the proof of Lemma 5 in Robinson (1988). Q.E.D. 

LEMMA B.2: For ,u satisfying m - 1 < < m, where m > 1 is an integer, and for 8 ? 1, let g e &?2 
and = min( ,u, 1). Suppose supu[ uI I+ dK'(u)] < o. Then 

lE[{g(X2 )-g(Xl )}6l lK 1Xl]l< Mg(Xl )(h(8;+ d)) 

where Mg(-) has finite second moment. 

PROOF: Since Xl and X2 are independent, we have 

E[fg(X2 )-g(X, )} K2 1 X1 ] 

f [g(x) g(Xl)] 8K( 
x 

h f(x) dx 

< C'S [g(x)-g(X,)-Qg(x, Xl)] K' ( h f(x)dx 

+ CB Qg(x, X1)K ( h ) f(x) dx 

+c f g (x)K5( h )f(x) d + C8f g(X1)K5( 
x 

)f(x) x 

<Ch'(Xl)fXx-X1I 8K5( hx ) dx 

+ CG I(Xi) fi (E Ix-xl 1 K' x -Xl f(x) dx 

+ C supU{[Iu I+d/8 K(u)j] }h+d[E(g'(X)} +g8(Xl)] 

where E[IG(Xl)128] < . Thus, the result holds by Lemma 1 in Robinson (1988) and the Lebesgue 
dominated convergence. Q.E.D. 

The next lemma is from the well-known H-decomposition due to Hoeffding (1961). We need to 
introduce some notations and definitions. Let Un be a U-statistic of order k given by 

Ull= nk E ln(Xilx.. xXdk 
(n, k) 

where tf,n is a symmetric function that depends on n, X1,..., X,, are independent and 
identically distributed random variables (or vectors), and the sum E(n k) is taken over all 
subsets 1 < il < ... <ik < n of {1, 2,...,n}. We assume without loss of generality that Un has been 
centered, so that E[ qfn(X1,...,Xk)] = 0 for each n. In this case, Un is said to be degenerate if 
E[ in(Xj,.. ., Xk) IX1] = 0, almost surely. 

Define, for c = 1. k, the conditional expectations 

nc(xlX * , Xc) = E[ fn (X1,..., Xk) I (Xl,..., Xc) =(x . xc 
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888 YANQIN FAN AND QI LI 

and their variances o, =var[ qfi,(X1,...,Xe)]. Obviously, o21 = 0 for a degenerate U-statistic. 
Further, let h(l)(xl) = qifi,(xl) and 

c - 1 

h(Ncxj XC) = qinjxj,... xc) h(ni)l x., x for c = 2,..,, k. 
j=1 (c,j) 

LEMMA B.3: Forj = 1. k, let Hni) be the U-statistic based on the kernel h(j). Then 
?~~~~~~~~~~~~~~~~~~~~ 

n Hn ( J ) n 

j=1 

-1 

where H,()=j j) = n 
h(j)(x ...xe.) satisfies the following properties: 

(a) The U-statistics H .(1)..., Hn,k) are uncorrelated. 

(b) var[H,i1] = ( ) var[h(n)(X1,...,Xj)] for j 1. k. 

j 

(c) var[h(j)(Xl ... x1] = W_c (~) Jon2 for j=1 k. 
(c)nc - 1 ( c=) 

PROOF: See Lee (1990, Section 1.6). 

LEMMA B.4: Assunte lin is symmetric, E[tfn(Xl, . Xk) I X1] = 0 almost surely, and 

E[qiAn2(Xj,... Xk)] < o? for each n. If on2co/n22 = o(n(c 2)) for c = 3,..., k and 

(B.1) 
E[Gn-2(Xl X X2) ] - 

n 
1E[ qin42( X) 

(B.1) X2]2 
{E[ f n22(Xl, X2)]} 

as n -+ oo, then nUn is asymptotically normally distributed with zero mean and variance given by 
2-1k2(k - 1)2on22, where Gn(x, y) = E[ 4f'n2(X1, X)f'n 2(X1, Y)] 

PROOF: Since Un is degenerate, h(l)(X1) = 0 almost surely. Lemma B.3 implies 

k(k -1) 
2Xi (B.2) h =j) + Rh(2)) 

n(n-1) 1?i<j?n 

where 

k 
? 

R(n2) = /(j )Hnj) 

is the remainder term and h Xj) = ( Xj). Noting that E[h (2)(Xl, X2) IX1] = 

E[ qin(X1,..., Xk) I X1] = 0, it follows that apart from a constant factor, the first term on the 
right-hand side of (B.2) is a degenerate U-statistic of second order. Thus, by Theorem 1 of Hall 
(1984), we know that Lemma B.4 is true if we can show that the remainder term R (2) in (B.2) is of a 
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smaller order than the first term. The fact that R (2) is of a smaller order than the first term on the 
right-hand side of (B.2) follows by noting that 

k ,~2 

var[no,21R()] = var[H(j)](n 2n2) 

k 
k/,2/\ 

-1 

=E( J ) ( j ) var[h(P)(Xi,..., Xj)](nn42) 
j=3 \ \ 

=n E ( J. ) ) [, (-1)- (c O(rncJ2 ) () 

where the first equality is obtained by Lemma B.3 (a), the second by Lemma B.3 (b), the third by 
Lemma B.3 (c) and the degeneracy of Un, and the last by the assumption that /n24=n22 =o(n(c -2)) 

for c = 3,..., k. Hence, n0rn-21Rn) = op(1). 
Note that if k = 2, Lemma B.4 reduces to Theorem 1 in Hall (1984). 
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