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NONPARAMETRIC TESTING O F  
CLOSENESS BETWEEN TWO UNKNOWN 

DISTRIBUTION FUNCTIONS 
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Guelph, Ontario, N1G 2W1 

Canada 
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ABSTRACT 

Based on the  kernel integrated square difference and applying a central limit theorem 

for degenerate U-statistic proposed by Hall (1984), this paper proposes a consistent 

nonparametric test of closeness between two unknown density functions under quite 

mild conditions. We only require the unknown density functions to  be bounded and 

continuous. Monte Carlo simulations show that the proposed tests perform well for 

moderate sample sizes. 

1 Introduction 

Let f ( x )  and g(x) be two probability density functions (p.d.f.) with distribution func- 

tions F and G that  are absolutely continuous with respect t o  the  Lebesgue measure in 

RP. We are interested in testing the null hypothesis Ho: P [ f ( x )  = g(x)] = 1 (f (x)  = g(x)  

Copyright O 1996 by Marcel Dekker, Inc 
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almost everywhere (a.e.)) against the alternative HI:  f ( x )  # g(x)  on a set of positive 

measure. One widely accepted measure of global closeness between two functions f (x)  

and g(x)  is the integrated square difference 

The  measure I has the following properties that  make it a proper candidate for 

testing our null hypothesis Ho: 

1 2  0 and the equality holds if and only if f ( x )  = g(x)  a.e. 

Let X I ,  ..., X,, be independent observations with probability density function f ;  and 

6 ,  ..., Y,, be independent observations with probability density function g;  also X i  and 

Y, are independent for i # j .  We allow the possibility that  Xi and Y, are correlated. 

This may be  the  case if we have a panel of n (nl = n . ~  = n) individuals over two periods. 

Of course Xi and Y, can also be independent to each other, this can be  the  case if 

we have cross-sectional da ta  from two different regions. We will use f ( x ,  y) t o  denote 

the  joint p.d.f. of (X;,Y,). As will be shown in the next section, our test statistic has 

the same asymptotic distribution whether X, and Y, are independent or not. This is 

because the terms that  involve f ( x ,  y) have orders smaller than the leading term of an U- 

statistic in the  test statistic. There are many examples that  economists are interested in 

testing whether two density functions are the same, for example, comparison of income 

distributions across two regions. Also if  J indeed equals g,  one can pool the two da ta  

sets (using the  n1 + n2 observations) to obtain a more efficient density estimate. 

With observations {X,}:!!, and {yl}:~,, we can consistently estimate the unknown 

functions f and g by kernel estimators: 

1 "' x.-2 
fq (x)  == - I<(*) 

nl hp ,=I 

where I<(.) is the kernel function and h = h, is the smoothing parameter. Our proposed 

test will be bitsed on (1) with f (2)  and g(x)  replaced by f,,, (x )  and g,, (x )  respectively. 
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NONPARAMETRIC TESTING 263 

Recently Fan and Gencay (1993) derived a consistent nonparametric test for testing 

f ( x )  = g(x)  (a.e.) for the case nl  = nz = n.'. Their test statistic is based on "an affinity 

measure" introduced by Ahmad and Van Belle (1974), viz., 

However this test statistic is degenerate under the null hypothesis, i.e., J ; l ' (Xn - 1)  = 

op( l )  under Ho. To avoid the degeneracy, Fan and Gencay (1993) introduced a weighting 

scheme which assigns different weight to  odd and even observations. In this paper we 

will use a normalization factor nhpf2, under the conditions given in the  paper, we have 

n h p f 2 / f i  + m as n + co. Hence our test statistic is expected to  be asymptotically 

more powerful than the test proposed by Fan and Gencay (1993). The  fact that  our 

test statistic has a convergence rate faster than the &-rate (under Ho) should not be 

mis-interpreted as that  the test has a convergent rate faster than a parametric test.  

This is because our test statistic is based on the integrated square difference of two 

nonparametric density estimates. If one were to  construct a parametric test based on 

the integrated square difference of two parametric density estimates, the  convergent rate 

(under Ho) would be  n rather than fi. Other works related to ours are Mammen 

(1992), and Anderson, Hall and Titterington (1994). Both the test statistics proposed 

by Mammen (1992), and Anderson, Hall and Titterington (1994) involve some center 

terms. We will propose a test that  does not have a center term and our Monte Carlo 

simulations (see section 3) show that our test compare favorably with the  test statistics 

of Mammen (1992) and Anderson, Hall and Titterington (1994). Also our test does 

not involve any kernel convolution and hence it is computational simpler than the test 

proposed by Mammen (1992). 

2 The Test Statistics and Their Asymptotic Distri- 
butions 

In this subsection we will consider the case of equal sample sizes: nl = nz = n .  T h e  

following assumptions are needed on the kernel function I ( ( . )  and the density functions 

'See the references in Fan and Gencay (1993) for other related tests in the literature. 
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f ( . )  and g( . ) .  

( A l )  1i' is a bounded, nonnegative function on RP satisfying J I{(u)du = 1, J u,If (u)du 

= 0 and Ju,u,II'(u)~u = 2kS,j  < cc for each i, where k (> 0)  does not depend on i (ui 

is the ith component of u). 

( A 2 )  f and g are continuous and bounded in RP. 

Throughout the remaining part of the paper, the above assumptions ( A l )  and ( A 2 )  

will be assu~ned to be true. Assumption ( A l )  requires a nonnegative second order 

kernel, this is purely due to  the fact that second order kernel is the most popular and 

convenience in practice. For our result in this paper to hold, the kernel function can 

be of any order. Assumption ( A 2 )  seems minimum, we do not require f and g to  be 

differentiable. 

Our result relies on Hall's (1984) Theorem 1. We present it below as a lemma for 

ease of reference. 

L e m m a  2.1 Assume Hn is symmetric, E[l?I,(Zl, Zz)lzl] = 0 a .  e. and E[H:(Zl, Z2)] < 

co for each n .  Define Gn(Z1, Z2) = EIHn(Z1,  Z)H,(zz, z ) ] .  If 

{E[G:(Zl, ZZ)] + n-'E[H;(Zl, ZZ)])/{E[H:(ZI, &)]I2  -+ 0 as n -+ 0, then 

Un = C,5i,,sn H n ( Z i l  2 , )  is asymptotically normally distributed with zero mean and 

variance given by :nZE[H:(Z1, Zz)]. 

Replacing f ( x ) ,  F ( x ) ,  g(x)  and G(x)  by fn(x) ,  Fn(x), gn(x)  and Gn(x)  in ( I ) ,  we 

obtain a feasible estimator of I .  

r n n  

where we used short hand notation Ii'c = K ( V ) ,  Ii'; = 1 f ( v ) ,  = ~ ( ( y )  

and I($" = ~ ( ( y ) .  Also we have used J M(x)dFn(x)  = C:=, M(Xi)  and J M ( x ) ~ G , ( x )  

= C:=, M(Y,), where Fn( .)  and Gn( . )  are the empirical distribution functions based 

on t h e  sample d a t a  {Xi):=, and {Y,}:,, respectively. 
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NONPARAMETRlC TESTING 265 

The asymptotic distribution of Iln and Izn are given in the next two lemmas. 

L e m m a  2.2 Assuming that h  + 0 and nhP + m, then 

Iln = + Op(n- l ) .  

Proof: El& CyZl l((T)I c ( n h p ) - l E [ I ( ( v ) ]  = n-I j  J f (x l ,  ~ ~ + h u ) ~ ~ ( u ) d u d ~ ~  

= O(n- I ) .  Hence Iln - = 2(nzhP)-' C:='=, I<(-) = Op(n- I ) .  

L e m m a  2.3 Under HoJ also assuming that h  + 0 and nhP + m, then 

nhp/'IZn 5 N(O,u;), where a; = 2 { $ [ j ( x )  + g ( ~ ) ] ~ d x ) [ j  I t ' 2 ( ~ ) d ~ ] .  

Proof: Izn = &Un, where Un = Clsi<jsn Hn(Zi,  2,) (Zi ( X i ,  K ) )  with Hn(Zi,  2,) = 

[I((?) + I((?) - I ( ( ~ ~ - ~  +) - I((+)]. x -yi Hn(Z i ,  2,) is symmetric in Zi and Z j .  

Using f ( x )  = g ( x )  a.e. under Ho, it is easy to see that E[I~'(?) - K ( ~ ) \ x ~ ]  = 0 

and E [ I < ( ~ )  - K ( V ) ( Y J  = 0. Hence E[Hn(Z i ,  Z,)IZi] = 0. Define Gn(Z i ,  2,) = 

E[Hn(Z , ,  Z ) H n ( Z j ,  Z ) ] .  It is easy to check that E[H; (Z l ,  Zz)]  = O(hP), E[H;(Z1,  Z z ) ]  = 

O(hP) and EIG:(Zl, Z z ) ]  = O(h3p) as h + 0. Hence 

{ E [ G ; ( Z l ,  Z Z ) ]  + n- 'E[H;(Zl ,  Z z ) l ) / { E [ H ~ ( z l ,  Zz)])' = O(hP + (nhP) - ' )  + 0 

as n + m .  It follows from lemma 2.1 that Un is asymptotically normally distributed 

with zero mean and variance equal to i nZEIH; (Z1 ,  Z z ) ]  In the appendix we show that 

E I H i ( Z l ,  Zz)]  = y { a ;  + o(1)) .  Hence n h ~ / ~ I z ,  5 N ( 0 ,  a:). 

Summarizing lemmas 2.2 and 2.3, we have 

T h e o r e m  2.4 Under Ho, and assuming that h  + 0 and nhP + co, then we have 

(i) Jn, = n h p I 2 ( ~ ,  - c(n))/&o 5 N ( 0 ,  I ) ,  

(ii) Jn = n h ~ / ~ I ~ , / &  5 N ( 0 ,  I) ,  

where Zr; = & Cy=l Cy=l[I($ + I($ + 21(,7y][j I ( 2 ( ~ ) d ~ ] .  

Proof: Given the results of lemmas 2.2 and 2.3, we only need to show that 5: = a:+op(l). 

This follows from the fact that J ( j n ( x )  + gn(x ) )2dx  = J( f ( x )  + g ( ~ ) ) ~ d x  + o p ( l ) .  

R e m a r k  (i) The Jn, test is basically the same as the test statistic as proposed by 

Mammen (1992) except that here we take a simpler approach and therefore we do not 

need to use convolution kernels to avoid the numeral integrations, while the test statistic 
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proposed by Mammen (1992) requires the computation of four-fold convolution of the 

kernel function. The  fact that J,, has a center term is an undesirable property, because 

in finite sample applications, i f  Iln is not sufficiently close to c(n) ,  the  difference between 

the  two will bring a finite sample (sometimes substantial) bias term to the J,, test. In 

contrast, J, does not have this problem. In section 3 we will compare the finite sample 

performance of J,, and J, using Monte Carlo simulations. 

Remark (ii) The J,, test is also related to the Un test statistic proposed by Anderson, 

Hall and Titterington (1994). However a major difference is that  in the U, test of 

Anderson, Hall and Titterington (1994), the smoothing parameter h is fixed ( h  does not 

converge to  zero as n -+ m ) .  Hence their test statistic does not have an asymptotic 

normal distribution. 

Remark (iii)  Our test statistic has the same asymptotic distribution whether Xi and 

E: are independent or not. Because the terms associated with the joint p.d.f f ( X , ,  x) 
have orders smaller than O , ( ( n h ~ / ~ ) - ' ) .  

Remark ( iv )  Theorem 2.4 holds for a wide range of smoothing parameter choices. It 

allows the  da ta  to be under, optimally, or over smoothed as long as h -+ 0, nhP -+ m .  

While in Fan and Gencay (1993), the data  has to be under smoothed. 

Remark (v) Our test is obviously a consistent test because under the alternative hy- 

pothesis, and using similar proof as in the lemma 2.3, one can easily show that  , Izn I 

( I  > 0 under HI) .  Also note that 6; = a: + o,(l) under either Ho or HI. Hence 

J, = n h ~ / ~ I z , / 6 ~  = n h ~ / ~ I / o ~  + oP(nhp/') under H I .  So Prob[Jn > B,] -+ 1 as n -+ m 

for any nonstochastic sequence B, = o(nhpl2). 

2.2 The Case of nl # n2 

T h e  Monte Car10 simulation results of section 3.1 suggest tha t ,  for nl  = n2  = n ,  J, 

dominates ,In,. Hence in this subsection we only consider a test that  does not have a 

center term.  When n l  # n2, similar to Iz,, we define Iz,,,,,, as: 
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NONPARAMETRIC TESTING 267 

where in the second equality xi = C::, if the summand has X, ,  and C,  = x:zl if the 

summand has x. Similarly CjZi  = C7";,j=1 or C j f i  = Cy&l=l depending on whether 

the summand has X I  or Y,.  Then similar to Theorem 2.4 (ii), we have 

T h e o r e m  2.5 Under the satme conditions as in lemma 2.3, let X n  = n l / n 2 ,  assume 

An -+ X as n l  -+ ca, where 0 < X < ca is a constant. Then as n l  -+ m, we have 

Jn1,nZ = nlhp '212 ,n , ,nz / f i  5 N ( 0 )  I ) ,  

where 8: = 2 Ci G{$Ii': + + --&I{;' + &K:')[J K 2 ( u ) d u ]  is a consistent 

estimator of 5: = 2 [ J ( f ( x )  + X g ( ~ ) ) ~ d x ] [ J  K 2 ( u ) d u ] .  hlote that when nl = n2 = n ,  

An = 1 and the result of Theorem 2.5 reduces back to that of Theorem 2.4 (ii). 

Proof: The proof is similar to that of lemma 2.3, hence here we only sketch the proof of 

E[IZ , ,~ , ,~ ]  = 0 and var(n1 h p / 2 ~ ~ , n I , n z )  = u: + o(1). 

iiriting I2,nI,nZ = j$ Ci CjZi Pnl ,n, (Z i ,  Z , ) ,  where Pnl ,nz ( Z i ,  Z j )  = + 
1 ~ ( Y , - L I ( ? ! Y - L  

n 2 ( n z - 1 )  n l ( n z - l )  n l ( n z - l )  I{$'. Then it is easy to show that E[pn,,,,(Zi, 2,) = 

0 by the same argument as E [ H n ( Z , ,  2,) /Z i ]  = 0 in the proof of lemma 2.3. 

Next E[(12,n,,nZ)2] = & X i  CjZi  E[P;] ,nz ( Z ; ,  Z j ) ] .  Following the same derivation as 

we did for computing E [ H ; ( Z l ,  Zz)]  (see the appendix), one can show that EIP:l ,nz ( Z 1 ,  Z2)] 

- I{;z - L - E{  [ - K 2  + - nl (nz-1)  I{,";' - -I{;:]' 1 + ~ ( ~ ; ~ h ~ p )  = 

hP IS I(2(u)duIi  & S f 2 ( x ) d x  + / g 2 ( x ) d x  + S f ( x ) g ( x ) d x  + 
J f ( ~ ) ~ ( x ) d x ] + O ( n ; ~ h ~ p ) .  Hence E[(nlhp/212,n, ,nz)2] = n:hp{2h-2php[J I ( 2 ( ~ ) d ~ ]  

n:(n1-1)2 

n ~ ( n ~ - 1 )  J g 2 ( x ) d x  + - S S f ( x ) d ~ ) d ~ +  - J f ( ~ ) ~ ( x ) d x l )  + i L S  f2(x)dx+-  

O ( h P )  = 2 [ S ( f  ( 2 )  t X n g ( ~ ) ) ~ d ~ l [ S  I(2(u)du] + o ( l )  -+ 2 [ S ( f  ( 2 )  + X g ( ~ ) ) ~ d x ] [ J  I ( 2 ( u ) d ~ ] .  

3 Monte Carlo Results 

This section reports some Monte Carlo simulation results for the proposed tests Jn and 

Jnc. In section 3.1 we concentrate on the case of equal sample sizes ( n l  = n 2 )  and 

compare the estimated size for the test statistics Jn and Jnc (for p = 1) .  For small 

sample applications, we expect Jn perform better than Jnc because of the possible small 

sample bias due to the difference between Iln and c ( n )  in the Jnc test. We will also 

report simulation results for the test statistic Tn nh1/212n/80,  where 802 = I?: - 
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4h{2En[fZ(X)]  - [En(f (X))12}, where En[f  (X)]  = n-' EL, fn(Xt) and E n [ f Z ( X ) ]  = 

n-' C:=, f:(X;). In the appendix, we show that  5; = v a r ( n h ~ / ~ ~ ~ ~ ) + O ~ ( h ~ ) ,  while 6; = 

v a r ( n h ~ / ~ I ~ , )  + Op(h).  Hence for small samples, we expect 6; to  estimate v a r ( n h ~ / ~ I 2 ~ )  

more accurate than 6;. In section 3.2,  we will compare the finite sample performance 

of our test J n ,  the test statistic Un proposed by Anderson, Hall and Titterington (1994) 

and the test statistic Ti ') ,  where Ti1) is the same as Jn except that  h is a fixed value 

(h  = 1 in the simulations). 

3.1 Comparison of J,,, Jn and Tn tests 

In this subsection, we used equal sample size nl  = nz = n and chose n = 50, 100, 200, 400 

and 800. We compare the estimated sizes for J,,, J, and Tn. The  data  generating process 

(DGP) is tha,t both f ( x )  and g(x) are $(I; 0, I ) ,  where 4(x;  p ,  a Z )  denotes the univariate 

standard normal probability density function corresponding to X N ( p , u 2 ) .  Also Xi  

and Y, are independent. The number of replications are 5,000 for all cases considered. 

The smoothing parameter is chosen by h = cn-'I5, c = 0.8,1,1.2 for all these three tests, 

the results are quite similar and hence we only report the case of c = 1 here to save 

space. Table 1 gives the estimated mean value, the  estimated standard deviation and 

the estimated sizes for these three tests. Clearly we see that  Jn, has a finite sample bias 

due to  the difference between c(n) and I,,. Although the bias show some decrease as n 

gets large, Jnc still has a significant negative bias even for n = 800. As a consequence 

(also due to  its over estimate the standard deviation of (nhpf21n)), Jnc test is quite under 

sized. In contrast, both Jn and Tn have mean quite close to  zero and both give much 

better estimated sizes than that of J,,. For small samples, Jn slightly under estimate the 

size and Tn :slightly over estimate the size. As n increases, the performances of both the 

Jn and the T, tests improve. Note that  as expected, 6; gives a more accurate estimate 

of v a r ( n h ~ / ~ I ~ , )  and hence the standard deviations of Tn are quite close to  1 for all cases 

considered. 

3.2 Comparison of TA' ) ,  Jn and U, tests 

Anderson, Hall and Titterington (1994) proposed a test statistic Un for testing Ho. Their 

test statistic Un is similar to  the test statistic Jn, but with smoothing parameter h being 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
x
a
s
 
A
 
&
 
M
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
7
:
4
5
 
1
2
 
J
a
n
u
a
r
y
 
2
0
0
9



NONPARAMETRIC TESTING 269 

fixed. As argued by Anderson, Hall and Titterington (1994), the advantage of using 

a fixed value of h is that  the resulting test can detect local alternatives that  approach 

to the null a t  the rate of n-'I2, while the test statistics like Jn ( h  -t 0 as n + m) 

can only detect local alternatives that approach to the null a t  the rate of n-1/2h-p/2. 

However disadvantages of using a fix value of h are (i) the asymptotic distribution of 

the test statistic is quite complicated, and the critical values of the test statistic has 

to  be approximated using bootstrap method. Hence it is computationally more costly 

than the Jn test especially when the sample size is large; (ii) when the DGP is generated 

by a fixed alternative, due to  its over smoothing procedure, the finite sample power of 

the Un test is often less than that  of Jn. Below we compare the small sample power 

performances of Jn, T;') and Un using both local and fixed alternatives. For the local 

alternative, we choose the same DGP as used by Anderson, Hall and Titterington (1994). 

DGP1: g(x)  = $(x; 0 , l )  and f (x)  = (1 - p)$(x; 0 , l )  + j$(x; 0, u 2 )  with p = cn;lf2, 

c = 2, 4, 6 and u2  = 2, 4. 

Table 2 reports the empirical powers of Un ( h  = l ) ,  Jn ( h  = n-'I5) and Ti1) ( h  = 1). 

Note tha t  for a fixed value of h,  Ti') does not have an asymptotically normal distribution. 

In fact T:') has the same asymptotic distribution as that of Un (see Anderson, Hall and 

Titterington (1994)). For all these three tests, the critical values are obtained using 

bootstrap procedure (resampling from the pooled sample). The number of replications 

is 1000, and in each replication, 200 bootstrap resamples were generated t o  give the  1%, 

5% and 10% critical values for the corresponding tests. The estimated power reported 

in Table 2 are the percentage of rejecting the null hypothesis (in 1000 replications). 

We observe that  Ti') is the most powerful test among the three. The fact that  Ti1) 

Table 1: Empirical size for J,,, Jn and Tn tests 

n = 50 
n = 100 
n = 200 
n = 400 
n = 800 
-- 

Jnc 

mean 
-.445 
-.414 
-.412 
-.398 
-.401 

Jn 

5% 
,014 
.Ol8 
.019 
.022 
.021 

std. 
,682 
,725 
.742 
.768 
.804 

mean 
.016 
.010 
,021 
-.001 
-.002 

Tn 
10% 
.025 
.029 
,032 
.035 
.036 

mean 
.034 
.017 
.029 
-.002 
-.003 

std. 
.712 
,731 
.782 
,810 
,824 

std. 
1.09 
1.03 
1.04 
1.03 
.998 

5% 
.033 
,037 
,043 
.043 
.044 

10% 
.061 
.066 
.069 
,071 
.078 

5% 
,085 
.076 
.071 
.068 
.066 

10% 
.I20 
,109 
,112 
,104 
,105 
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Test ( a Z )  
J ,  ( a Z  = 2) 

Ti') ( a Z  = 2) 
U, (u2  = 2) 
J ,  ( a 2  = 4) 

Ti') ( a 2  = 4) 
un ( a 2  = 4) 

Table 2: E m p i r i c a l  P o w e r  of J,, T;') a n d  U, 
Size n 1% 5 % 10% 

I n z  c = 2 ( c = 4 1  
/ 60 0.007 1 0.013 ( 

is more powerful than J,, supports the use of a fixed value of h when the DGP of a 

local alternative is very close to the DGP of the  null model (at  the rate n-'Iz). The 

result that T;') is more powerful than U, is similar t o  the finding of Anderson, Hall and 

Titterington (1994), who found U,  (which subtract a center term from the original test) 

is more powerful than a test that does not subtract a center term. Here we observe that  

the TL') test which does not include a center term, is more powerful than the  Un test 

that includes a center term. 

Table 3 gives the empirical of the J,  ( h  = n-'I5) and the T:') (h  = 1) tests under 

the following fixed alternatives: g(x) = $(x; 0 , l )  and 

D G P 2  : .fZ(x) = t(5),  

D G P 3  : f l ( x )  = x2(4), 

D G P 4  : f3(x) = U(x; 0, I ) ,  

D G P 5  : f4(x) = p1/2$(x;0, 1) + (1 - p)'/2X2(2) ( p  = 0.2, mixture distribution) 

where U ( x ; O ,  1)  is the p.d.f. of a uniform distribution with mean zero and variance 

one. All the random variables are standardized t o  have zero mean and unit variance. 

We observe from Table 3 that  while TA') is more powerful than J, for D G P 2 ,  it is less 

powerful than J,, for DGP3,4 ,5 .  Note that  t(5) is the most close to  $(x; 0 , l )  among 

the four fixed alternatives. This result show that  while the  test with a fixed h (h = 1) 

is indeed more powerful than the test with h -+ 0 (as n + co) for alternatives that  are 

close to the null, i t  is often less powerful when the alternatives are not close to  the null. 

Thus the optimal choice of h seems to choose a fixed value of h when the alternative 

is sufficiently close to  the null, and to choose a variable h (h -+ 0 as n -+ m) if the 
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Table 3: Empi r i c a l  Power  of J ,  a n d  Ti1) w i t h  f ixed a l te rna t ives  

CY-level 

t(5) 
X2(4) 

Uniform 
Mixture 

Table 4: Empi r i c a l  Power  of J,  a n d  Ti1) for  D G P 6 ,  7 

alternative is not close to the null. This also suggest an important research topic: how 

to design some automatic data driven procedure such that h can be chosen optimally in 

the sense that the power is maximized under both the local and the fixed alternatives. 

The answer for this question is beyond the scope of this paper. 

Finally one caution to the applied researchers is that  in practice the choice of h 

should depend on x,d, the standard deviation of the data {Xi}:=,. All the DGP1s we 

used above have standard deviation 1. In practice the value of x,d should take into 

account so that the testing result should be invariant to  the scale of measuring x.  For 

example for the univariate case, one can use h = x,d or h = ~ , d n - ' / ~  (rather than h = 1 

and h = n-'I5) for a 'fixed' value of h or a variable h. This is because when x,d is much 

larger (smaller) than 1, h = 1 will under (over) smooth the data too much, and this 

will lead to poor power performance of the test. As an illustration, Table 4 gives the 

estimated power for two such cases: 

DPG6:  g(x)  = 4(x; 0, a 2 )  and f (x )  = (1-p)$(x; 0, a 2 ) + ~ 4 ( x ;  0 ,4a2)  with p = 6n,1'2 

and a2 = 0.1. 

DGP7:  same as the DGP6 but with a2 = 100. 

We see that while the results for h = a and h = are invariant to  a (they 

are the same to the corresponding results in Table 2). The choice of h = 1 gives poor 

estimated power due to its over (under) smooth for DGP6 (DGP7). 

-115 I h = an ,  
DGP 

DGP6 ( a 2  = 0.1) 
DGP7 ( a 2  = 100) 

nl = n2 = 50 

h = u  

n l  = n2 = 100 

h = l  

nl  
20 
20 

Jn (h = n-'I5) 

n2 
60 
60 

1% 
.013 
.I28 
.058 
.301 

Ti1) (h = 1) Jn (h = n-'I5) 

1% 5%- 10% 

1% 
.019 
.040 
.014 
.080 

1% 
.017 
.368 
,133 
.745 

Ti1) (h = 1) 

.235 
,235 

5% 
,078 
.310 
.I80 
.582 

1% 
,022 
,107 
,013 
,213 

1% 
,270 
.270 

10% 
.137 
.438 
,290 
,712 

5% 
.081 
.I50 
.072 
,242 

5% 
,085 
,622 
,373 
,930 

.484 

.484 

1% 
,065 
,063 

10% 
.I63 
,246 
,133 
,386 

10% 
,153 
.745 
,524 
.970 

5% 
,113 
,294 
,055 
,476 

.602 

.602 

5% 
,552 
,552 

10% 
.I99 
.407 
,141 
,628 

10% 
,686 
.686 

5% 
,224 
,181 

10% 
,376 
.294 
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4 Conclusion 

Under mild conditions that f and g are bounded and continuous in RP, we proposed 

a simple test statistic for testing the closeness between two unknown density functions. 

Our test statistics have a simple asymptotic distribution for a wide range of smoothing 

parameter choices and it is interesting to observe that  the assumptions on the unknown 

density functions f and g considered in this paper are weaker than the corresponding 

assumption on f when testing whether f belongs to  a known parametric family ( Fan 

(1994)). Our Monte Carlo results show that the proposed tests performs well for sample 

size n 2 50 (when nl  = n2 = n) .  An important question that  has not been answered by 

this paper is: how to design some automatic data  driven procedure such that  h can be 

chosen optimally in the sense that the power is maximized under both the  local and the 

fixed alternatives. The answer for this question is left for future research. 
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Appendix 

( i )  Proof of E[H;(ZI ,  Z 2 ) ]  = ?{a: -t o , ( l ) } .  

Use the short hand notation I<r2 = I<(?), = I<(Y), I<:;' = ~((v) 
and I(:: = I((?), it is easy to see that 

E[(I<f2)2] = hP J J  f ( x1 )  f (x1+ hu)I<'(u)dudxl = hp{[J f 2 ( x ) d x ] [ J  K 2 ( u ) d u ]  + 0 ( 1 ) ) .  

Similar one can easily show that E[(I<1Y,)'] = hP{[Jg2(x )dx] [J  I<2(u)du]$o(1)},  E[(I(;;Y)2] 

= E[(I<,Y;")'] = hp{[J f ( x ) g ( x ) d x ] [ J  I<'(u)du] + o(1 ) ) .  

Hence E[H; (Z l ,  Z Z ) ]  = h P { S [ f ( x )  + g(x)12dx}[J K2(u)du]  t 4 1 ) )  = y { m ;  t o ( 1 ) ) .  

( i i )  Proof of 6 2  = var(nhpf212,) t Op(h2) .  

We need to  assume Xi and Y, are independent of each other, i.e., f ( x ,  y )  = f  ( x ) g ( y ) ,  

and that both f ( x )  and g(y )  are twice differentiable and their derivatives are bounded 

by integrable functions. We will only prove the case of p = 1 .  Write 

We will first compute S1,. S I n  = E[(It';2)2] t E[(IL';;')~] - 2E[I<&I<:;'] = Slnl + 
Slnz - 2Sln3 

Slnl  = hP{[J f 2 ( x ) d x ] [ J  K2(u )du]  + O ( h 2 ) }  by the same proof of (i) .  The remaining 

term O ( h 2 )  follows from the fact 1 K2(u)du  = 0 and f ( x )  is twice differentiable. 
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Similarly Sln2  = h { [ J  f ( ~ ) ~ ( x ) d x ] [ J  K2(u )du]  + O ( h 2 ) ) ,  and Sln3 = 

J J J f ( x l ) f  ( ~ ~ ) g ( y ~ ) I ~ ~ I i ~ ; ~ d x ~ d x ~ d y ~  = h2 J J J f ( X I ) ~  (x~+hu)g(x~+hv)I((u)Ii'(v)dx~dudv 

= h 2 { J  f 2 ( x ) g ( x ) d x  -t O ( h ) ) .  Hence S1, = h { [ J ( f 2 ( x )  + f ( x ) g ( x ) ) d x ] [ J  IC2(u)du] - 

2 h J  f 2 ( x ) g ( x ) d x  + O ( h 2 ) ) .  

Interchange x  with y in S1,, we get S2,  = h { [ J ( g 2 ( x )  + f ( ~ ) ~ ( x ) ) d x ] [ J  I i 2 (u )du]  - 

2h J f ( x ) g 2 ( x ) d x  + O ( h 2 ) ) .  

Finally we consider S3n S3,, = E{[Ii'F2 - Ii'~;Y][Ii1Y2 - IilY;']) = {E[Ii:21i',Y2] - 

E[I(F2K,YiZ] - E[I(;iYIi,Y2] + E I I ( ~ . Y I ( ~ ] )  G SBnl - S3,2 - S3,3 + S3n4 

s3,1 = E[I(FJi,Y,] = J J J J f ( x ~ ) g ( y i ) f  (X~)~(YZ)I(T~I~,Y,~XI~X~~YI~YZ = h2 S J S S f  ( X I ) .  

g ( y l ) f ( x l +  h u ) g ( y ~  + hv)Ii'(u)Ii(v)dxldudy~dv = h 2 { J  J f 2 ( x )g2 (y )dxdy  t O ( h ) ) .  

s~n2 = E[I(&I(,YT] = J J J f ( x ~ ) g ( y l ) f  ( X Z ) I ( ; ~ I ( ~ ~ ~ ~ X I ~ Y I ~ X ~  

= h 2 { J  J J f (x2-t hu)g(x2+hv) f (x2)I((u)Ii '(v)dudvdx2 = h 2 { J  f 2 ( x ) g ( x ) d x + O ( h ) ) .  

Interchanging x  and y in S3,2, we get S3n3 = h2 { J  f ( x ) ~ ~ ( x ) ~ x  + O ( h ) ) .  Also similar 

to  the derivation of on can show that S3n4 = h 2 { [ J  f ( ~ ) ~ ( x ) d x ] ~  + O ( h ) ) .  

Summarizing above; we have shown that  EIH$(Z1 ,  Z 2 ) ]  = S I n  + S2,  $ 2S3, = 

W J ( f  ( x ) + ~ ( x ) ) ~ ~ x I ~ J  ~ ~ 2 ( u ) d ~ l - 4 h ~ J ( f 2 ( ~ ) g ( ~ ) + g ( ~ ) f 2 ( ~ ) ) d ~ l + 2 h { [ J  f 2 ( x ) d ~ l [ S g 2 ( x ) d x l  

+ [ J f  ( x )g (x )dx I2}  + O ( h 2 ) )  = h{a; - 4 h { 2 E [ f 2 ( X ) ]  - [ E (  f ( X ) ) I 2 )  + O ( h 2 ) } ,  where the 

last equality used the fact that  f = g  (a.e.) under Ho. Hence {a; - 4 h ( 2 E [ f 2 ( X ) ]  - 

[ E (  f ( X ) ) 1 2 ) }  = h- 'E[H,(Zl ,  Zz)]  + O ( h 2 ) .  This result together with the facts that  

602 = 0; + O p ( h )  and E, [ f (X ) I  = E [ f ( X ) ]  + O,(h) and E n [ f 2 ( X ) ]  = E [ f 2 ( X ) ]  + O,(h) 

implies that  6; = v a r ( n h ~ 1 ~ 1 ~ , )  + 0 , (h2 ) .  
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