
Nonparpmetric Slalisrics, Vol. 10, pp. 245-271 
Reprinu available directly from the publisher 
Photocopying permitted by license only 

8 1999 OPA (Overseas Publishers Association) N.V. 
Published by license under 

the Gordon and Breach Science 
Publishers imprint. 

Printed in Malaysia. 

CENTRAL LIMIT THEOREM FOR 
DEGENERATE U-STATISTICS OF 

ABSOLUTELY REGULAR PROCESSES 
WITH APPLICATIONS TO MODEL 

SPECIFICATION TESTING 

YANQIN FANa7* and QI L I ~  

a Department of Economics, University of Windsor, Windsor, Ontario, 
N9B 3P4 Canada; 

b~epar tment  of Economics, University of Guelph, Guelph, Ontario, 
NIG 2 W1 Canada 

(Received 6 October 1996; Revised 11 June 1997; In final form 4 February 1998) 

Under quite general conditions we establish a central limit theorem for second order 
degenerate U-statistics of absolutely regular processes. The new central limit theorem is 
then used to establish the validity of an asymptotic test for the parametric functional 
form of a general regression model involving time series. 
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1. INTRODUCTION 

Since Hoeffding (1948) introduced the concept of a U-statistic, Central 
Limit Theorems (CLTs) for U-statistics have played an important role 
in deriving aysmptotic properties of both estimators and test statistics, 
the reason being that most of the estimators and test statistics either 
can be written as U-statistics or contain U-statistics as components. 
See Lee (1990) for a review of some basic results on U-statistics. 
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A second order U-statistic of a sample of n observations {z,)~=, 
takes the following form: 

where the 'kernel function' H,, may depend on n. The asymptotic dis- 
tribution of U,, depends on whether its kernel H, depends on n or not 
(constant kernel versus variable kernel) and whether it is degenerate or 
non-degenerate.' 

Recently, many nonparametric estimators such as kernel and series 
estimators have been used to estimate functionals of unknown density 
or regression functions, or form model specification tests. This leads 
to U-statistics with variable kernels. Examples, can be found in Powell 
et al. (1989); Hardle and Stoker (1989); Robinson (1989); Stoker 
(1989) and numerous papers on consistent model specification tests 
using nonparametric estimators (see Fan and Li, 1996a for references). 
Derivation of asymptotic distributions of these estimators or test statis- 
tics requires CLTs for U-statistics with variable kernels. For non- 
degenerate case, Powell et al. (1989) present a result for second order 
U-statistics when the observations are independent. For degenerate 
U-statistics with variable kernels and independent observations, Hall 
(1984) showed that under appropriate conditions, a.second order degen- 
erate U-statistic has an asymptotic normal distribution; Fan and Li 
(1996a) extended Hall's result to higher order case; De Jong (1987) 
and Khashimov (1 988) also presented CLTs for degenerate U-statistics. 

The CLTs in Hall (1984); De Jong (1987) and Fan and Li (1996a) 
for independent observations have proved to be an indispensable tool 
in establishing consistent model specification tests, see Fan and Li 
(1996a) for references. However, the corresponding CLTs for depend- 
ent observations are not well established. This has prevented similar 
tests to be developed for time series models, see e.g., Tjostheim (1994) 
and Hjellvik and Tjostheim (1995). The papers by Khashimov (1987, 
1992); Takahata and Yoshihara (1987) and Yoshihara (1989, 1992) 

 a an and Li (1996b) provide a detailed discussion on the existing asympotic results 
for U-statistics with constant kernels and the applications of these results in hypothesis 
testing. We note that the asymptotic null distributions of the tests in Bierens (1982); 
Bierens and Ploberger (1997) and Linton and Gozalo (1995) may also be derived by 
using results on degenerate U-statistics with constant kernels. 
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Also, we will suppress the dependence of Hn(., .) on n and write 
m, Y )  = Hn(x, Y ) .  

Our method of proof is the same as that of Takahata and Yoshihara 
(1987). That is, we first decompose the double sum in Un into sums of 
large and small blocks; Then we verify the CLT for the sum of large 
blocks by using Theorem 2.2 in Dvoretzky (1972) and show that the 
sum of small blocks does not affect the asymptotic distribution of U,. 

We now introduce some notations. Let FiI,..,,b denote the joint 
distribution function of {Z i l , .  . . , Zij), j = 2 ,  3 ,  4; d Q i l , i 2 ( ~ i l ,  zi2) denote 
either dF(zi,)dF(zi,), or dFil,i2(zi1, zi2); dQil,i2,i3 ( z i l ,  zi2, zi3) be either 
dF(zi1 )dF(zi2 )dF(zi3 ), or dFil ,i2,i3 (zi1 Ziz 7 zi3) or dF(zjl )dFj2, j3 (zj2 , zj3), 
where { j l ,  j2, j3)  is any possible permutation of { i l ,  i2, i3}; dQilri2ri3,i4 
(z i l ,  zi2, zi,, zi,) is similarly defined. Also let {Zl):=, be an i.i.d, sequence 
having the same marginal distribution as (2,) and define 
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To construct small and large blocks, we let r = r, = [n1I4], m = 

m, = ~ ( r )  (m > 1, usually m -+ oo as n --+ oo), and k = k, = [n/(r + m)], 
where r and m are respectively the number of elements in the large 
and small blocks. Define a sequence {(ai, bi) ( i  = 1, . . . , k)} as follows: 

bo=O, a i=b j - l+m,  b i = a j + r - 1 ,  ( i = l ,  ..., k). 

Then we can decompose U, in the following way: 

where 

We will establish a CLT for U,, by showing that d ? ~ ~ / ( n a , )  -+ 

N(0, l )  in distribution, Bn/(nan) = op(l), and Qn/(nun) = op(l) To verify 
these results, we adopt the following assumptions: As n -+ co, 

(Al) (i) pn4$m/(n2u:) = 0(1), (ii) Ynm2/4=o(1), (iii) vnrm5/(n2a:) = 

4 ) ;  
(A2) (i) pnC2m4/u:=o(l), (ii) yncllm4/u:=o(l), (iii) .",m/(na;)= 

If (2,) is an i.i.d. process, one can take m = 1 in the above con- 
ditions. Then (A2) (i) becomes E [ G ~ ( ~ ~ , ~ ~ ) ] / O :  = o( l ) ,  and it is easy 
to see that the rest of the above conditions either hold trivially or are 
implied by E[H 4(21, 22)]/(na:) = o(1). Thus we get 

the condition used in Hall (1984) for i.i.d. data case. 
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With the above conditions, we now state the main result of this 
paper. 

THEOREM 2.1 Let {Z,)  be a strictly stationary, absolutely regular 
process, and assume that Assumptions ( A l )  to (A3) hold. Then 

A detailed proof of Theorem 2.1 is given in Appendix A. 
We will apply Theorem 2.1 to validating an asymptotic test for 

the parametric functional form of a regression model involving time 
series in the next section. 

3. A SIMPLE TEST FOR REGRESSION 
FUNCTIONAL FORM 

Let Z, = (Y,, xi)' be an absolutely regular process, where Y ,  is a scalar, 
and Xt is p x 1 which may contain lagged values of Y,. Often interest 
is in testing if E(Y,JX,) belongs to a specific parametric family. This 
can be characterized by the null hypothesis of the following form: 

Ho : P[E(YtIXt) = g(Xt, yo)] = 1, for some yo E B c R4. 

We take the alternative hypothesis as 

HI : P[E(Y,IX,) = g(X,, y)]  < 1 ,  for all y E 17 c Rq. 

Let E ,  = Y t  -g(Xt,yO). Then under Ho, E(&,IX,) = 0 almost every- 
where. For i.i.d. observations, Li and Wang (1996) and Zheng (1996) 
established a consistent test for Ho versus HI based on a consistent 
kernel estimator of E[E,E(E,IX,)~(X,)] defined as 

where f(.) is the probability density function of X,, k, = Y, - g(Xt,  j ) ,  
.j. is the nonlinear least squares (NLS) estimator of yo under Ho, 
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h E h, --+ 0 is a sequence of smoothing parameters, K,, = K((X,-X,)/h), 
and K(.) is a kernel function satisfying certain conditions. 

By using the CLT in Hall (1984) for i.i.d. observations, Li and 
Wang (1996) and Zheng (1996) showed that under Ho, I, is asymp- 
totically normally distributed. Fan and Li (1997) extended this test to 
the case where X, = Ytdl and g is linear. They established the asymp- 
totic normality of I, under Ho for absolutely regular process {Y,) by 
using the CLT in Khashimov (1992). However, one of the conditions 
in Khashimov (1992) requires that the error term E, be bounded. In this 
section, we'll show that the boundedness of E, can be relaxed by using 
Theorem 2.1 developed in Section 2. In addition, we allow X, to contain 
a finite number of lagged values of Y,  and other exogenous variables, 
and allow the function g to be nonlinear. 

First, we list some assumptions: 

(Cl) (i) With probability one, E [E,IML, (X), M?-:(Y)] = 0; (ii) 
E [ I & , ( ~ + ~ ]  < co and ~ [ l c f t  E:, . . . , E:I ' ]  < M < co, where is an 
arbitrarily small positive number, E is slightly larger than one, 
2 5 I 5  4 is an integer; 0 5 zj < 4 and ~ j = ~  i, = 8; (iii) Let $(x) = 
E(E? Ix, = X) and p4(x) = E(&;(xt = x). Then a2 (x) and p4(x) satis- 
fy some Lipschitz conditions: /a2 (x + u) - u2(x)l 5 D(x) lluli 
and Ip4(x + U) - p4(x)I 5 D(x)IIuII with E [ I D ( x ) ~ ~ + ~ ' ]  < co for 
some q1 > 0. 

(C2) (i) Vg (X, .) and vZg (X, .) are continuous in X and dominated 
by a function (say M,(X)) with finite second moments, where 
Vg(X, .) and vZg(X, .) are q x 1 vector of first order partial 
derivatives and q x q matrix of second order partial derivatives 
of g with respect to y respectively; (ii) E [Vg (X, ,8)V1g (X, /?)I 
is nonsingular for y in a neighborhood of plim q; (iii) Let 

fT (.,...,.) be the joint probability density function of 
(XI, XI+,, , . . . ,XI+,) (1 I 1  L 3). Then for all (71, . . . , TI), f ,,..., T, 

(.,...,.) exists and satisfies a Liljschitz condition: IfT ,,..., T , ( ~ l +  
u1 ,x2+u2i . . . ,x~+~~)- fT l , . . . , T l ( ~ ~ , ~ ~ , . . . , ~ ~ ) I  < D ~ , , . . . , T l ( ~ 1 , ~ 2 ~ . . ~ , ~ ~ )  

IluII, where D ,,,,,,, . . . , .) is integrable and satisfies the conditions 
that J D ,  ,,.,,, (x,x, . . . ,x)Mit(x)dx < M < m, SfTl ,...,, ( w , .  . . , X)M;[ 
(x)dx<M<co, and JD ,,,.., Tl(x1,~2 ,..., xl)fTl ,..., T , ( ~ i , ~ ~ , . . . , ~ ~ ) d ~ <  
M < m f o r s o m e <  > 1. 
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(C3) K(.) is bounded and symmetric with JK(u)du = 1 and 
S I ~ u ~ ( ~ K ( u ) ~ u  < m. 

(C4) The smoothing parameter h = O(nTG) for some 0 < 6 < (718)~.  
(C5) The process {Z,) is absolutely regular with mixing coefficient 

P T  = 0 ( p T )  (0 < P < 1). 
(C6) j - 7 = op(l) under HI for some 7 E Rq. 

We now briefly comment on the above assumptions. (Cl) (i) states 
that the innovations { E ~ )  is a margingal difference; (Cl) (ii) imposes 
some moment conditions on {E~}: For i.i.d. observations, these con- 
ditions are equivalent to E [ ( E , I ~ + T  < cc for some arbitrarily small 
positive number q; (Cl) (iii) contains some smoothness conditions on 
the second and fourth conditional moment functions of E,. (C2) (i) and 
(ii) are standard assumptions adopted in nonlinear regression models. 
In particular, they ensure that under Ho and (C5), j - yo = ~ , ( n - ' / ~ ) .  
(C2) (iii) contains some Lipschitz type conditions and moment con- 
ditions. (C3) is a standard assumption on the kernel function; (C4) im- 
plies that (log n)hQl-+ 0 and n7/8hJ'/(log n)% --+ co for arbitrary positive 
constants 7,  and q2. It allows the choice of a wide range of smoothing 
parameter values and is slightly stronger than the usual conditions of 
h 0 and nW -+ m. (C5) requires that the underlying process {Z,) be 
absolutely regular with geometric decay rate. This is not a very restrictive 
assumption, because many well-known processes satisfy (C5), see the ex- 
amples in Fan and Li (1997). (C6) is known to hold under general 
conditions, see e.g., Fuller (1996) and White (1994). 

The next result concerns the asymptotic distribution of In under Ho. 

THEOREM 3.1 Under Assumptions (C1)- (C5) and Ho, we have 
nhJ'/*1,,/8~ -+ N(O,  1) in distribution, where 3 = (l/n2M') C, C,,, i:2,2 
K 2, is a consistent estimator of = 2 1 K (u)du f (x)04 (x)dx with 
02(x) = ~ ( € 2  Ixt = x). 

Proof Noticing that under Ho, 2, = E~ - [ g ( ~ , , j )  - g(~, ,yo)] ,  we can 
rewrite In in the following way: 
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We will prove Theorem 3.1 by showing that (i) nW/24, -+ N(O,4) 
in distribution, (ii) 8; = 4 + op(l); (iii) 12, = op ((nhP12)-'); and (iv) 
13, = op (n-I). 

Proof of (i): ~ w / ~ I ~ ,  -+ N(0, oi)  in distribution. 

To apply Theorem 2.1, we let U, = C El ,, , tSn E ~ E ~ K ~ ~  - 
C Elss< rSn  H(Zt, Zs), where Z, = (xi, q)'. We now verify Condi- 
tions (Al) to (A3) of Theorem 2.1 under (Cl) to (C6). Let r, m, ai and 
bi (i = 1, . . . , k) be defined as in Section 2 with m = [C logn], where C 
is a (large) positive constant. 

We will use the notation ii,, - 6, to denote that ii,, and 6, have 
the same order of magnitude. First we check (Al). Obviously = 

E[H2(21 ,%)I = J J ~ ~ ( x ) d ( y ) ~ ~ ( x  - ylh)f (x)f (y)dxdy = O ( P )  and 
pn4=E[H4 (21,%)1 = J J P ~ ( X ) I . L ~ ( Y ) K ~ ( X - Y I ~ ~ ~  (x)f (Y)~x~Y=o(W) .  

Denote K X ,  = K((x - Xs,)/h) (I = 1 , .  . . ,4), then by (C2) (iii), we 
have 

5 / pr (x) {ch4p} ll2f (x)dx = 0(h2p). 

x f (x) f (y ) f (z)dxdydz = 0 (h2~) .  

Ynll IE[H(Zt, Zs)H(Zt', Zsj)]l = IE J E ~ E ~ E ~ ~ K ~ K ~ w ] I  I [ E l ~ t ~ s ~ t '  
E,) I ' ] ~ / ' [ E I K ~ ~ K ~ I ~ I ~ ~ ] ~ / ~  = 0(h2plq) by assumptions (Cl) and (C2) (iii), 
where is slightly larger than 2 and q = (1 - c-')-'. Hence, y, = 

0 (h2*") (1 < q < 2). 
Similarly one can show that yn13 - 7 2 2  5 [ E ( E ~  E~,E:E: ("1 l'" [E IK~K;~ ,  

lq'] = 0(h2p/d), where is slightly larger than 1 and q' = (1 - (1 / 
,$'))-I > 1. Hence, v, = 0(h2plq'). 

Summarizing the above, we have shown that 4 = O(W), pn4 = O(W), 
7, = 0 (h2pi73, u, = 0(h2p/q1), where 1 < q < 2, and q1 > 1. These 
results, together with (C4), imply (Al) (i)-(iii). 
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Next, consider 

Noting that G(z,,z,) given in (3) already has a W factor, and then 
using the same arguments as above (by Holder's inequality), it is 
straightforward to show that 

where 7' > 1 (7' can be very large). Thus (A2) (i)-(iii) are satisfied. 
Finally it is easy to show that Mn is bounded by some positive 

constant given (C1)-(C3). Also = O(hP) and pm = O(pm) = 
O ( ~ - ~ ~ ' O ~ P " )  = 0(n-'7), where y = -1ogp > 0. Hence we have 
m2n2p$i1+6)/oi = o(1) which implies n2f$(1+6) = o(1) provided we 
choose C sufficiently large. Thus (A3) (i)- (ii) are all satisfied. 

Hence, by the result of Theorem 2.1 and E(UJ  = 0 (by (Cl)), we 
get &&/(non) -+ N(0, l )  in distribution. By noting that nhp1211, = 
(2/(n - 1)hPI2)~, and using the fact that on = ~ / ~ [ ( c q & )  + o(l)], we 
obtain n h ~ / ~ l ~ ,  i N ( 0 ,  (J;) in distribution. This finishes the proof of (i). 

Proof of (ii): i$ = 4 + op(l). 

Under the assumptions of Theorem 3.1, it is easy to show that 

and ~ a r ( 3 )  = o(1). Hence in order to prove (ii), it suffices to show 
that 5; = I?[?$] + op(l). By Lemma 1 in Yoshihara (1976), we have 
E[*;] - a; = (nhP) - ' 0 (~ :=~  p,) = 0 ( ( n ~ ) - ' )  = o(1). 
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Proof of (iii): Izn = op ((nhPi2)-I). 

Using g(X1, ?) - g(X1, yo) = V'dXt, yo)(? - yo) + 1 / 2 ( j  - yo)' 
v ~ ~ ( x ~ ,  y ) ( j  - yo), where 7 is between j and yo, we get 

We first consider Aln. Let (a) denote the case of min(1s - s'l, Is - ti, 
1s - t'l) > m, (b) the case of min{(s - s ' J ,  1s - tl, 1s - t'l) I m and W, r 
Vg (X,, y o )  We have 

5 (n2~)-2{cn4p~l( '+6)  + mn3) max E[W W1esad KtSKt,s/] 
l#s,t'#sl 

for some 1 < 7 < 2, because we can choose C > 4(1 + S)/(yS) in 
m = [Clog(n)] and 

by (C2) (iii), where 7 = (1 - t-')-' (< > 2, 1 < 7 < 2). 
Hence E l l ~ ~ ~ 1 1 ~  = o ((n2hP)-2) + 0 (m (nh2P(9-1)13-1) and this im- 

plies Aln = op ((n2p)-l) + 0, (mil2 (n-1i2h-p(9-1)'q)), which leads to 
A1,(j - y) = n-1/20p((n2h~)-1) + ~~(m~/~n- 'h -p(" - ' ) /q )  = o , ( ( n ~ / ~ ) - ' )  
because 1 < 71 < 2, m = [C log (n)] and h - n-"((7/8)p > d > 0) .  
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It remains to evaluate the order of A2n. By (C2) (i), we have 

Hence (9 - r o ) ' ~ 2 n ( i  - 70) = ~ ~ ( ( n h ( q - ' ) ~ l ~ ) - ' )  = op((nhJ'12)-' ). 
Summarizing the above, we have shown that Z2,, = op((nWi2)-I). 

Proof of (iv): I ~ , ,  = op (n-'1. 

By the mean value theorem and (C2) (i), we have Jg(x,+)- g(x,yo)) 5 
cWx) 119-7011. Hence hn I ( C ~ I ~ ~ ~ ) C C , + ~ M ( X ~ ) M ( X ~ )  &lli-yol12= 
~ , ( ( + - , 1 1 ~ =  oP(n-') because E I S,I = O(1) by (C2) (iii) and ?-yo= 
0, (n-'I2). 

Consistency of this test against H I  is proved in Fan and Li (1996b). 
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APPENDIX A: PROOF OF THEOREM 2.1 

Throughout this appendix, c is a generic positive constant. We first 
give a lemma that will be used to prove Theorem 2.1. 

LEMMA A.0 Let c l , .  . . , c, be random vectors taking values in Rp satis- 
fying an absolute regularity condition with coeficient Pm. Let h ( y , z )  
be a Bore1 measurablefunction, r l  be an M! -measurable random vector, 
and ( be an Mr+m - mea~urable~random vector such that for some 6 > 0,  
M = m a x { E [ ( h  (q, ~ ) \ l + ~ ] ,  SSlh ( y ,  z )~ '+ 'Q (dy)R (dz))  exists, where Q 
and R are probability distributions of 7 and ( respectively. Further, let 

g ( Y )  = E [ h  ( y ,  01. Then 

Proof The proof is similar to the proof of Lemma 2 in Takahata 
and Yoshihara (1987) and is thus omited here. 

We recall that U, = C C15,,15n H (Z,, Z,). Let 3, = MY-"" 
( a  = 1 ,  . . . , k ) .  Define, for a = 1, . . . , k ,  T,  = ~ y : y ~ + ~  H(Zl ,  Z,) 
( a  = 1 , .  . . , k), and V, = ~ k , = ,  T,. We will show that V, and Un have 
the same asymptotic distribution. We first prove some lemmas. 

LEMMA A.1 5; = [ (n2 /2 )  + o(n2)]u;,  where 5: = E ( v ~ ) .  

Proof It follows from the definition that 3: = E ( v ~ )  = E[(c~,=,.T,)~] = 

~ k , = ~  E(T?) + - 2 ~ l < , i a , < k ~ ( ~ , ~ c , ' ) .  - Define Y,(x) = ~ y : f  "+I H(x,z,) 
( a  = 1 , .  . . , k) . Then T, = z;zaa Y, (Z,) and 

= I, + 211a, (say). 

Note that 
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Below, we discuss three possible cases: s = s'; 1 < I s - s'( 5 m; and 
IS - s'J > m. 

(a) If s = s', then by definition and Lemma 1 in Yoshihara (1976), 

(b) If 1 5 1s - s'I 5 m, then 5 cra,myn; 
(c) If 1s - s '1 > m, then I,(,) 5 0 + cra;Mi1('+ 6),&(If") by Lemma 1 in 

Yoshihara (1976). 

Hence, using r ~ ; = ,  (a, -m+ I) = (n2/2) +o(n2), r ~ : = ~  1 5 n and 
k 

5 n, we get x,Tt(:+~~fiT$~(LI) +Io(b) f I ~ ( c ) ) =  [(n2/2) +o(n2)] 
0; + 0(n2myn) + 0(n3Mn ,& ) = [(n2/2) + o(n2)]u$ by Assump- 
tions (Al) and (A3). 

Next observe that 

One can easily show that 

(b) If max(lt- t'l, Is-s'l) im, then IEIH(Zt,Zs)H(Ztt,Zst)]I < ynll. 

Thus, III,l 5 ra,m2 + cr a, k ~:/(~+~)pdm/( '+~),  and x,=l III,~ 5 n2 
liiii6) '/'+') = o(n20i), given (A 1) and (A3) Finally we m2yn + crn3Mn ,Om 

consider the case of a < a ' :  By Lemma 1 in Yoshihara (1976), we have 
a I -m+l  

E ( T J d )  = x:zaa Cz;mil z)lae, ESLl E[H(zt,zs)H(zt~,zs/)] 5 0  

$.~r~a,a,/~i~('+~)~i'(~+~), because t' - rnax(t, s, s t )  2 m. Hence, 
~lla. ,o '5t E(T,T,/) 5 c ~ ~ M ~ / ( ~ + ~ ) & ~ ( ~ + ' ~  = o(n2$) n 9 given (A3). 

Summarizing the above, we have shown that 3: = (n2/2)ai + o(n2ui). 
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Proof of (i) By Lemma A.0, we have ~ 2 . ~  EIE(T,JF,)I 5 x i = ,  
1/(1+6 p z ( l + 6 )  5 cn2 

c!:~,c~~~+~E(E{H(z~,z~)JF~)I 5 0 + c r ~ ~ = ~ a , M ~  
~ ~ ~ ~ ~ ~ ' p 6 m ' ( ~ + ~ )  =o(nnn) =o(Sn) by (A3) .  Hence c*,=~ E(T,(F,)=O~(Q. 

a,-m+l Define G(x, y) = E [H(Z,, x) H (Z , ,  y)]. Since IF ,  = C s = l  
C:P:;"+' E[H(Zt ,  Zs)H(Zt ,  Zst)IFJ, we get by using Lemma A.0: 

Hence, 

k a,-m+la,-m+l 

= r C  G ( z ~ , z ~ ~ )  +oP(3i) -An +op($) ,  given ( A 3 ) .  
a=l s=l s'=l 
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Next we show that (A,/$) = 1 + o p ( l ) .  For this purpose, we note 
that 

Below we will show: Aln = j i ( 1  + o p ( l ) )  and A2, = oP($). In fact we 
will prove a stronger result of AZn = op(j:/m).  

Proof of A,, = ~ i ( 1  + o p ( l ) )  

a,-m+l By the proof of Lemma A. 1, we know that j i  =c:=, CS=, 
E [ H ~ ( z , , ~ ~ ) ]  + o ( j i )  E E(&,) + o(3;i). Hence, it suffices to show that 
var(Aln) =o(S;). It follows from the definition that 

by (A2) (iii) and (A3). 

Proof of A2, = o P ( S ~ / r n )  
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where 

Because of symmetry, we only need to consider the case where 
s < S' < S "  < s"' for Din: 

(a) If max(sl - s, sl" - st') > m, then by Lemma 1 in Yoshihara (1976), 

We now analyze D2,,: 
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Therefore, for a < a' ,  we have 

It is easy to see that E[s~;,] 5 E[a,,li,,~] ( a  < a ' ) .  Hence the above 
bounds is also valid for & = a'. Substituting the above expression into 
E[&] yields 

by Assumptions (A2) and (A3). This finishes the proof of (A,/$) = 

1 + o p ( l ) .  
In remains to show IIF, = oP(3;;). Define G ( , - ~ o ( z ~ , z ~ ~ )  = 

H(zr ,  Zs)H(z t / ,  Z s~)dFl , ,~ ( z , ,  z , ~ ) .  Then we obtain by Lemma A.0, 

(1," -in+ 1 a,. -in+ I 
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Hence, 

by (A3), where 

First E(B~,I 5 ~ k , = ,  rmaayn 5 n2myn = o(n2ai) = o($) by (Al). 
Next, consider BZn: Obviously B2, has an order no larger than d z , .  

Hence by the same proof of A2n = o,($/m), we get B 2 n  = op($).  
Finally, B3, satisfies 
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2 2 = o(n  a,) = O ( F ; ) ,  

by (A3). This completes the proof of Lemma A.2. 

Proof Let Q,  be the distribution function of ( Z a a 1 . .  . ,Zb , ) .  By Cr- 
inequality, we have max{E/ T :  1 E J IT:  ( ' ' 6 d ~ , }  < ( r n ) 4 ( ' + 6 ) ~ , .  
Hence, by Lemma A.0, we obtain 

where 

Let x(k) be the summation over all sl, . . . , sk such that 1 < sl, . . . , sk < 
a, - m + 1 and si # s, (i # J). Lal contains terms of C (I,, . . . , C(4). The 
bounds for these cases are given in (A. 1) to (A.5) below. 
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By Lemma 1 in Yoshihara (1976), we have 

Obviously, 

Next we evaluate the order of CO):  we consider three possible cases: 
(a) Is2 - s31 > 2m; (b) Is2 - $31 < 2m and min {Isl - s2(, Is1 - s31} > in; 
(c) Is2 - 331 < 2m and min {Isl-s21, sl-s31} 5 m. First note that if 
(t3-t2( > 2m, then max(lt2-tll,(t3--.tll) > m. Then by Lemma 1 
Yoshihara (1976), we have 

Now we consider the zc4) term, we ditinguish three sub-cases: 

(a) If sl 2 sz < s3 < s4 and max(s2 - sl ,  s4 - s3) > m, then by Lemma 1 
in Yoshihara (1976), I JE{II~~H(Z,Z, , ) )~F(Z)I  < c(Mn +Mn) 1/(1+4 
P p 6 ) .  1 

(b) If sl < s2 < s3 < s4, max(s2 - sl, s4 - s3) < m and s3 - s2 > m, then 
1/(1+6) 6/(1+6) IJE{nLlH(~,Zs,))d~(z)Iiyn+c(Mn+Mn) Pm ; 

(c) If sl < s2 < s3 < s4, max(s2 - s1, s4 - s3) < m and s3 - s2 < m, then 
I ~ { n ! = l ~ ( z , ~ s , ) ) d ~ ( z ) l  L vn. 
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Hence, we have 

('4.5) 
Now we are ready to show that c:=~ Laj = o($) for j = 1, .  . . , 5 .  

Proof of ~ k , = ,  Lal = O(S :) 

Define 

Note that although G,,, = G, we will write the argument z for reasons 
that will be apparent later. By (A.l)-(A.5),  we have 

G,,, I ca,{pn4 + a,m2yn + m3vn + a i ~ ; ~ ( ' + ~ ) @ ( ~ +  6 ) ) .  (A.7) 
Assumptions (Al ) ,  (A3), Eq.  (A.7) and the fact that 3: = 0(n4a;) lead 
to 

k Proof of C,=, La2 = o(s:)  

By Schwartz's inequality (used twice) and (A.7), we have 

- - cr{n 2 pn4+n 3 m 2 yn+n2m3vn + n 5 ~ 1 / ( 1 + 6 )  6 / ( l + 6 )  
n P ,  ) 

= o(n4ai) = o(sft), given ( A l )  and (A3).  (-4.9) 
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Proof of ~ k , = ,  La3 = ~(itf) 

The proof is similar to the proof of ~ k , = ~  La2 = o(3;:). 

Proof of ~ k , = ,  La4 = ~ ( ~ t f )  

Note that if Itg - t21 > 2m, then max(lt2 - t l [ ,  It3 - tl() > m. Hence by 
Lemma 1 in Yoshihara (1976), we have in this case, 

< - 0 + c a : ( ~ ,  + ~,)~/( '+~)p:( '+~) .  

Holder's inequality and (A.7) lead to 

Proof of ~ k , = ~  La5 = o($)  

Since s, # s2 # s3 # $4, it suffices to show that 

(A. 11) 
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By Lemma 1 in Yoshihara (1976) and Holder's inequality, we have 

= o(n4u;) = ~(3:) given (A1 ) and (A3) 

where &/ (C(2)1) denotes the summation over all tl (I = 1,. . . ,4) such 
tdat a, 5 tl < t2 < t3 < t4 5 ba, and max(t2 - t,, t4 - t3) > m (max(t2 - 
t ~ ,  t4 - t3) 1 m). 

Thus, we have proved that 

finishing the proof of Lemma A.3. 

k 
Proof We recall that U, = V, + B, + Q,, where V, = Ca=l  

a,-m+l C;zae x S = l  H(Zt, Zs), Bn = c ~ = I  ~k~~ Caa-"1+2ss<tH(Zt,~I)' and 
Q, = cL, ~;:$~ii Cs<tH(Zt,Zs). It easy to see that Q, = O(m/r) 
0, (V, + B,) = o, (V, + B,). Also be Lemma A. 1, we know that V, = 
O,(S,). Hence in order to prove the lemma, it suffices to show that 
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B, = o p ( j n )  or E [ ( B ~ ) ]  = o ( $ ) .  To this end, we note that 

For R I , ,  we consider three possible cases for the summation indices 
t, s, t', s': (a) the four summation indices take two different values; (b) 
they take three different values; and (c) all four indices are different. 

Case (a) We have RI,,  5 ~ k , = ~  r ( r + m ) { 4 +  C M , C ~ _ ~  c ~ L ~ ,  
c:&~+~ /$!y6'} = o ( n r 4 )  + O ( n )  = o(n2u:) given (Al); 

Case (b) Rl,(b) < z * = l  r ( r  +m)", 5 n(r+rn)2y,,  = o(n2u:)  g i v e n ( ~ l ) ;  

For R2n, we consider two cases: (i) max{tl - s ', t - s} > m ;  (ii) max 
i t ' - s l , t - - s )<m.  

Case (i) If t '  - s '  > m ,  then t '  - max(sl, t, s) > m; If t - s > m, then 
min(tl, s', t) - s > m. 

In either case, E [ H ( Z ~ , Z , ) H ( Z ~ I ,  Zs l ) ]  < 0 + C M ' / ( ~ + ~ ) P ~ ( ' + ~ ) .  Hence, 
we have by (A3) 

Case (ii) Using E [ H ( Z t , Z s ) H ( Z t ~ , Z s ~ ) ]  < y,, we obtain R2n(ii) 5 c 
r2m2-y, F n2m2y,  = o(n2<)  by (Al). Hence, R2, = o(s : )  

and E(B:) = R 1 ,  + R2, = o(s:). 
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We are now ready to prove Theorem 2.1. 

Proof of Theorem 2.b By Lemmas A.2 and A.3, we know that 
/ ,  a - 0, ( v ~ : )  c ~ = , { E ( T , ' I F ~ )  - I E ( T ~ I F ~ ~ ) I ' I :  1 ,  
and (I/$) ~ z = ~  E ( T ~ )  P 0. Hence, by Theorem 2.2 in Dvoretzky 
(1972), we get ( l / Q V n  + N ( 0 , l )  in distribution. 

Moreover, Lemmas A. 1 and A.4 imply, 3 = [(n2/2)  + o(n2)]o: and 
U,, - Vn = o,(S,). Hence, f i ~ ~ / ( n a , )  -4 N(O,1) in distribution. 




