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Abstract

In this paper we consider general hypothesis testing problems for nonparametric and
semiparametric time-series econometric models. We apply the general methodology to
construct a consistent test for omitted variables and a consistent test for a partially linear
model. The proposed tests are shown to have asymptotic normal distributions under
their respective null hypotheses. We also discuss the problems of testing portfolio
conditional mean-variance e$ciency and testing a semiparametric single index model.
Monte Carlo simulations are conducted to examine the "nite sample performances of the
nonparametric omitted variable test and the test for a partially linear speci"ca-
tion. ( 1999 Published by Elsevier Science S.A. All rights reserved.

JEL classixcation: C12; C14.
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1. Introduction

There is a rich literature on constructing consistent model speci"cation tests
using nonparametric estimation techniques.1 For example various test statistics
for consistently testing a parametric regression functional form have been

*Tel.: 519 824 4120 x8945; Fax: 519 763 8497; e-mail: qi@css.uoguelph.ca.
1Bierens (1982) was the "rst to give a consistent conditional moment model speci"cation test, see

also Bierens and Ploberger (1997) and the references therein. Using nonparametric estimation
technique to construct consistent model speci"cation tests was "rst suggested by Ullah (1985).
Robinson (1989) was the "rst to propose some nonparametric tests for time-series models.
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proposed by Bierens (1982, 1990), Bierens and Ploberger (1997), Eubank and
Spiegelman (1990), Eubank and Hart (1992), Fan and Li (1992), Gozalo (1993),
HaK rdle and Mammen (1993), Hong and White (1995), Horowitz and HaK rdle
(1994), Li (1994), Robinson (1991), Wooldridge (1992), Yatchew (1992), and
Zheng (1996), to mention only a few. Testing the insigni"cance of a subset of
regressors (omitted variable test) have been considered by Ait-Sahalia et al.
(1994), Fan and Li (1996a), Lavergne and Vuong (1996b) and Lewbel (1993).
For consistent testing some semiparametric versus nonparametric regression
models, see Ait-Sahalia et al. (1994), Fan and Li (1996a), Linton and Gozalo
(1997) and Whang and Andrews (1993). Delgado and Stengos (1994) and
Lavergne and Vuong (1996a) considered non-nested hypothesis testing prob-
lems. Lewbel (1993, 1995) considered general hypothesis testing problem with
independent data. Robinson (1989) considered general hypothesis testing prob-
lems for time-series econometric models.

Most of the above-mentioned works deal with independent data. While
Bierens and Ploberger (1996) and Fan and Li (1996b) allow for dependent data,
both Bierens and Ploberger (1997) and Fan and Li (1996b) only considered the
case of testing a parametric null model. Robinson (1989) considered general
hypothesis testing problem with time-series data, however, his procedure may
not produce consistent tests in the sense that there exist alternatives that cannot
be detected by Robinson's (1989) testing procedure. Recently, Chen and Fan
(1997) modify Robinson's general testing procedure and construct consistent
test statistics for time-series models. Their idea is similar to the approach of
Bierens (1982) and the asymptotic distributions of their test statistics are non-
standard. Hence, they suggest to use the conditional Monte Carlo method of
Hansen (1996) or the stationary bootstrap method of Politis and Romano (1994)
to approximate the null distribution of their test statistics. While bootstrap
methods are quite successful for providing reliable null approximations to test
statistics with independent data (e.g., HaK rdle and Mammen, 1993; Fan and
Linton, 1997; Li and Wang, 1998), they are less satisfactory with dependent
observations. In this paper we consider the general hypothesis testing problem
with time-series data and we establish the asymptotic normality of the proposed
test statistics. Thus, our results generalize many testing results including those in
Fan and Li (1996a) and Lavergne and Vuong (1996b) to time-series models. We
also show that our testing procedure can be applied to a wide range of
hypotheses testing problem (with weakly dependent data). The regularity condi-
tions we use are quite weak and they are very similar to the conditions used for
independent data cases (e.g., Fan and Li, 1996a). Some simple but important
tricks are used in establishing the asymptotic normal distributions of the test
statistics.

One leading case of the null hypotheses we consider in this paper is testing the
signi"cance of a subset of the regressors (a nonparametric omitted variable test).
Ait-Sahalia et al. (1994), Fan and Li (1996a) and Lavergne and Vuong (1996b) all
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consider such a testing problem with independent data. Recently, Christo!ersen
and Hahn (1997) applied the test statistics proposed by the above authors to test
whether ARCH volatility has additional explanatory power to option pricing
given other relevant economic variables. When applying the test of Fan and Li
(1996a) and Lavergne and Vuong (1996b) to a time-series model, Christo!ersen
and Hahn (1997) conjectured that this test is applicable with time-series data.
This paper provides a formal proof that the nonparametric signi"cant test
proposed by Fan and Li (1996a) and Lavergne and Vuong (1996b) is indeed
applicable for weakly dependent data.

The paper is organized as follows. In Section 2 we "rst describe a general
testing procedure with time-series data. In Section 3 we apply the methodology
presented in Section 2 to derive the asymptotic distribution of a nonparametric
signi"cance test. Section 4 presents a test for a partially linear model. Section 5
discusses the problems of testing portfolio conditional mean-variance e$ciency
and testing a semiparametric single index model. We examine the "nite sample
performances of the nonparametric signi"cance test and the test for a partially
linear model in Section 6. The proofs of the main results are given in
the Appendices A and B. Appendix C contains some technical lemmas that are
used in the proofs of Appendices A and B. Throughout the rest of this paper,
all the limits are taken as nPR. +
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2. A general framework of kernel-based test

In this paper we consider the general hypothesis testing problem of the form
E(;DX)"0 almost everywhere (a.e.) for some suitably chosen random variables
(vectors) ; and X. There are many examples that the null hypothesis can be
written as E(;DX)"0 a.e., for example, in the context of testing a parametric
regression model, say linearity, >"X@c#;. The null hypothesis of
E(>DX)"X@c a.e. is equivalent to E(;DX)"0 a.e. For a kernel based test for
parametric functional form, see Zheng (1996). Other examples that the null
hypothesis can be written as E(;DX)"0 a.e. including testing for omitted
variables (Ait-Sahalia et al., 1994; Fan and Li, 1996a; Lavergne and Vuong,
1996b; Lewbel, 1993) and testing semiparametric partially linear models (Ait-
Sahalia et al., 1994; Yatchew, 1992; Whang and Andrews, 1993; Fan and Li,
1996a), testing a semiparametric index model (Fan and Li, 1996a), testing
a rational expectation model (Robinson, 1989), testing conditional symmetry
Zheng, 1998a), testing conditional parametric distribution (Andrews, 1997;
Zheng, 1998b), and testing portfolio conditional mean-variance e$ciency
(Wang, 1997; Chen and Fan, 1997).

Even when the null hypothesis can be written as H
0
: E(;DX)"0 a.e., consis-

tent testing H
0

can still be done using di!erent distance measures. When the
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kernel estimation method is used, the distance measure I"E[;E(;DX) f (X)]
turns out to be a convenient choice. First note that I"EM[E(;DX)]2f (X)N*0
and the equality holds if and only if H

0
is true. Hence I serves as a proper

candidate for consistent testing H
0
. For the advantages of using distance

measure I to construct kernel-based consistent tests, see Li and Wang (1998)
and Hsiao and Li (1997). A kernel-based sample analogue of I is
I
n
"(n(n!1)hd)~1+

t
+

sEt
;

t
;

s
K((X

t
!X

s
)/h), where K( ) ) is the kernel function

and h is the smoothing parameter.
Often ;

t
is not observable but can be consistently estimated. When the null

models are parametric models, usually ;
t
can be Jn-consistently estimated

under quite general conditions, e.g., Fan and Li (1996b) and Hsiao and Li (1997).
In this paper we will consider the case that the null model contains some
nonparametric components, say the null model is a nonparametric or a
semiparametric regression model and we will use kernel methods to estimate
these unknown regression functions. In such cases, we can only consistently
estimate;

t
with the nonparametric (kernel estimation) rate which is slower than

the parametric rate of Jn. Thus, the derivation of the asymptotic distributions
of the test statistics in this paper is much more complex than the case of testing
a parametric null model (e.g., Fan and Li, 1996b; Hsiao and Li, 1997). One
leading example we consider in this paper is that the null model is
>"E(>D=)#;, where= is a proper subset of X. Then the null hypothesis of
E(;DX)"0 a.e. is a nonparametric omitted variable test because under this null
hypothesis, E(>D=)"E(>DX) a.e., the extra regressors in X (but not in =) do
not help to explain >.

Let= (= can be di!erent from X) be the variable that enter the null model
nonparametrically and denotes fK

wt
the kernel estimator of f

w
(=

t
), where f

w
(=

t
) is

the density function of=
t
. Also let;I

t
be a consistent estimator of;

t
(under H

0
).

Then fK
wt

will appear in the denominator of ;I
t
, the so-called random denomin-

ator problem associated with kernel estimation. In order to avoid the random
denominator problem, we choose to use a density weighted version of I (or I

n
) as

the basis of our test statistic: J"EM;f
w
(=)E[;f

w
(=)DX] f (X)N,

EMeE[eDX] f (X)N, where e";f
w
(=) and f (X

t
) is the density function of X

t
(e.g.,

Fan and Li, 1996a; Lavergne and Vuong, 1996b). A kernel-based sample
analogue of J is2

J
n
"

1
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t

+
sEt
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s
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,

1

n(n!1)hd
+
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+
sEt

e
t
e
s
K

ts
, (1)

2J
n
can be viewed as a conditional moment test with the weight function given by E(e

t
DX

t
) f (X

t
),

see Newey (1985) and Tauchen (1985).
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where e
t
";

t
f
wt
, f

wt
"f

w
(=

t
), K

ts
"K((X

t
!X

s
)/h) is the kernel function and

h"h
n

is the smoothing parameter.
A feasible test statistic is obtained by replacing e

t
";

t
f
wt

by its kernel
estimator ;I

t
fK
wt
:

JK
n
"

1

n(n!1)hd
+
t

+
sEt

;I
t
fK
wt
;I

s
fK
ws
K

ts
, (2)

where;I
t
and fK

wt
are the kernel estimators of;

t
and f

wt
respectively, their speci"c

de"nitions (depending on the speci"c null models) will be given later.
The test statistics (with independent data) considered by Fan and Li (1996a)

and Lavergne and Vuong (1996b) all have the form of Eq. (2) with Eq. (1) as the
leading term. J

n
given in Eq. (1) is a second order degenerate U-statistic. Hall

(1984) and De Jong (1987) established the asymptotic normal distribution for
a general second order degenerate U-statistics with independent observations.
Recently, Fan and Li (1996b) generalize Hall's (1984) result to the weakly
dependent data case. Therefore, one can use the result of Fan and Li (1996b) to
derive the asymptotic distribution of JK

n
provided one can show that JK

n
!J

n
has

an order smaller than J
n
. We re-state a result from Fan and Li (1996b) in

a lemma below for ease of reference.

¸emma 2.1. ¸et Z
t
"(e

t
,X@

t
)@ be a strictly stationary process that satis,es the

condition (D1) of Appendix A, e
t
3R and X

t
3Rd, K( ) ) be the kernel function with

h being the smoothing parameter that satisfy the condition (D2) of Appendix A.
De,ne p2e (x)"E[e2

t
DX

t
"x] and J

n
"(n(n!1)hd)~1+

t
+

sEt
e
t
e
s
K((X

t
!X

s
)/h).

¹hen nhd@2J
n
PN(0,p2

0
) in distribution, where p2

0
"2E[p4e (Xt

) f (X
t
)][:K2(u) du]

and f ( ) ) is the marginal density function of X
t
.

Proof. Lemma 2.1 is a special case of Theorem 2.1 of Fan and Li (1996b).
Note that with e

t
";

t
f
wt
, Lemma 2.1 gives the asymptotic normal distribu-

tion of J
n
de"ned in Eq. (1). In the remaining part of the paper we will apply the

above testing procedure to derive the asymptotic distributions of a nonparamet-
ric signi"cance test and of a test for partially linear model (with weakly
dependent data). We will also discuss some other hypotheses testing problems
that "t the above framework.

3. A nonparametric signi5cance test

In this section we apply the general hypothesis testing procedure of Section 2
to construct a nonparametric signi"cance test. We consider the following
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nonparametric regression model:

>
t
"E(>

t
DX

t
)#;

t
, (3)

where >
t
is a scalar and X

t
3Rd.

Let X
t
"(=@

t
, Z@

t
)@, where =

t
is a q]1 vector (1)q)d!1) and Z

t
is of

dimension (d!q)]1. Then the null hypothesis that a subset of regressors,
Z

t
(say), is insigni"cant for the regression model (3) if E(>

t
DX

t
)"E(>

t
D=

t
) a.e.

Let r(w)"E(>
t
D=

t
"w), ;

t
">

t
!r(=

t
) and e

t
";

t
f
w
(=

t
). Then the null

hypothesis can be written as

Ha
0
: E(eDX)"0 a.e.

The alternative hypothesis is

Ha
1
: E(eDX)O0 on a set with positive measure.

Following the approach of Section 2, we construct our test statistic based on
sample analogue of J"EMeE[eDX] f (X)N. The sample analogue of J is J

n
as

given in Eq. (1). To obtain a feasible test statistic, note that;
t
">

t
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t
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t
)
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0
, we estimate e
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t
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by ;I
t
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and a is the smoothing parameter, and
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is the kernel estimator of f
w
(=

t
). Hence, replacing e

t
in J

n
of Eq. (2) by

(>
t
!>K

t
) fK

wt
, we obtain a feasible test statistic for Ha

0
:

JK a
n
"
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n(n!1)hd
+
t

+
sEt

(>
t
!>K

t
) fK
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(>

s
!>K

s
) fK
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K
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. (6)

To derive the asymptotic distribution of JK a
n
, the following assumptions will be

used, where we also use the de"nitions of Robinson (1988) for the class of kernel
functions Kj and the class of functions Gak, see Appendix A for details.
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(A1) (i) M>
t
, X@

t
Nn
t/1

is a strictly stationary absolutely regular process with the
mixing coe$cient bq that satis"es bq"O(oq) for some 0(o(1. (ii) f

w
( ) )3G=l ,

r( ) )3G4`gl , and f3G=l for some integer l*2, also f is bounded. (iii) the error
;

t
">

t
!r(=

t
) is a martingale di!erence process, E[D;4`g

t
D](R and

E[D;i1
t1
;i2

t2
,2,;il

tl
D1`m](R for some arbitrarily small g'0 and m'0, where

2)l)4 is an integer, 0)i
j
)4 and +l

j/1
i
j
)8, p2

u
(x)"E(;2

t
DX

t
"x),

k
4
(x)"E(;4

t
DX

t
"x), f

w
, f and r all satisfy some Lipschitz conditions:

Dm(u#v)!m(u)D)D(u)EvE, D( ) ) has "nite (2#g@)th moment for some
small g@'0, where m( ) )"p2

u
( ) ), k

4
( ) ), f

w
( ) ), f ( ) ) or r( ) ). (iv) Let fq1,2,ql(.,2, .) be

the joint probability density function of (X
1
,X

1`q1,2, X
1`ql) (1)l)3). Then

fq1,2,ql(.,2, .) is bounded and satis"es a Lipschitz condition:
D fq1,2,ql(x1

#u
1
,x

2
#u

2
,2, x

l
#u

l
)!fq1,2,ql(x1

, x
2
,2, x

l
)D)Dq1,2,ql(x1

, x
2
,2,

x
l
)EuE, where Dq1,2,ql(.,2, .) is integrable and satis"es the condition that

:Dq1,2,ql(x,2,x)ExE2m(M(R, :Dq1,2,ql(x1
,2,x

l
) fq1,2, ql(x1

,2,x
l
) dx(M(R

for some m'1.
(A2) (i) we use product kernel for both ¸( ) ) and K( ) ), let l and k be their

corresponding univariate kernel, then l( ) )3Kl, k( ) ) is non-negative and
k( ) )3K

2
. (ii) aP0, h"O(n~aN ) for some 0(aN ((7/8)d. (iii) hd/a2qP0,

nhd@2a2lP0 (all the limits are taken as nPR).

3.1. Some remarks on the regularity conditions

Condition (A1)(i) requires that M>
t
, X@

t
N to be a stationary absolutely regular

process with geometric decay rate. (A1)(ii)}(iv) are mainly some smoothness and
moments conditions, these conditions are quite weak in the sense that they are
similar to the ones used in Fan and Li (1996a) for independent data case.
However, for ARCH or GARCH type error processes as considered in Engle
(1982) and Bollerslev (1986), the error term ;

t
may not have "nite fourth

moments under some situations. For example, let;
t
D;

t~1
&N(0, a

0
#a

1
;2

t~1
),

Engle (1982) showed that;
t
does not have a "nite fourth moment if a

1
'1/J3.

Thus, assumption (A1)(iii) will be violated in such a case.
(A2) (i) requires ¸( ) ) to be a lth (l*2) order kernel, this condition together

with (A1)(ii) ensures that the bias in the kernel estimation (of the null model) is
O(al). The requirement that k is a non-negative second order kernel function in
(A2)(ii) is a quite weak and standard assumption. We emphasize here that the
assumption k is non-negative plays an important role in simplifying our proofs of
the main results. See the discussions below Theorem 3.1 for more details on this.
(A2)(ii) and (iii) imply hP0, nhdPR and na2qPR, (A2)(iii) comes from the fact
that the mean square error in the kernel estimation of the null model is of
smaller order than (nhd@2)~1, i.e., nhd@2(a2l#(naq)~1)"o(1). Our regular condi-
tions are quite weak in the sense that they are very similar to the ones used for
independent data case (e.g., Fan and Li, 1996a).

Q. Li / Journal of Econometrics 92 (1999) 101}147 107



¹heorem 3.1. Assume the conditions (A1) and (A2) hold. ¹hen

(i) ;nder Ha
0
, ¹a

n
$%&
"nhd@2JK a

n
/pL

a
PN(0, 1) in distribution, where pL 2

a
"(2/n(n!1)hd)

+
t
+

sEt
;I 2

t
fK 2
wt
;I 2

s
fK 2
ws

K2
ts

is a consistent estimator of p2
a
"2E[p4

u
(X

t
) f 2

w
(=

t
) f (X

t
)]

[:K2(z) dz].
(ii) ;nder Ha

1
, Prob[¹a

n
'B

n
]P1 for any non-stochastic sequence B

n
"o(nhd@2).

A detailed proof of Theorem 3.1 is given in the Appendix A. The proof involve
steps showing that (I) JK a

n
!J

n
"o

1
((nhd@2)~1), and (II) pL 2

a
"p2

a
#o

1
(1). (I) and

(II) imply that nhd@2JK a
n
/pL

a
"nhd@2J

n
/p

a
#o

1
(1). Hence Theorem 3.1(i) follows

from Lemma 2.1.
Here we would also like to comment on some simple but important tricks that

are used to greatly simplify the proof of Theorem 3.1. As can be seen from the
proof of Appendix A, we need to obtain probability bounds for terms that
involve four summations.3 The second moments of these terms have eight
summations and it is extremely tedious to get sharp bounds involving eight
summations with mixing data. In the proof we try to bound terms by non-
negative terms with a simple structure (i.e., with less summations). Then we only
need to compute the expectations of these non-negative terms. For example in
the proof of Lemma A.1, using the fact that k is nonnegative together with some
other simple tricks, we show that the leading term of J

n1
(see Appendix A for

de"nition of J
n1

) is nonnegative and contains only three summations, while in
Fan and Li (1996a) they have to compute the second moment of J

n1
, which

involves eight summations (because they did not assume k is nonnegative), in
order to evaluate the probability order of J

n1
. In contrast we only need to

compute the expectations of terms with three or four summations (rather than
dealing with eight summations). For details see Appendix A.

Theorem 3.1 generalizes the results of Fan and Li (1996a) and Lavergne and
Vuong (1996b) of independent observations to the weakly dependent data case.
It should be mentioned that Lavergne and Vuong (1996b) also studied the local
power property of their proposed test and showed that their test can detect local
alternatives that approach the null model at a rate of O

1
(n~1@2h~d@4). Although

I do not study the local power property of the JK a
n
test in this paper, I conjecture

that the local power property of the JK a
n

test is similar to the independent data
case as considered by Lavergne and Vuong (1996b), i.e., the JK a

n
test can detect

local alternatives that approach the null model at a rate of O
1
(n~1@2h~d@4).

Our Monte Carlo simulations show that the JK a
n

test has substantial "nite
sample bias which causes the JK a

n
test undersized. For the independent data case,

Lavergne and Vuong (1996b) suggested a modi"ed test which has smaller "nite

3Although Denker and Keller (1983) provide bounds for "nite order U-statistics with mixing
data, their results are not sharp enough to deliver the results we need.
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sample bias than the JK a
n
test. To motivate this new test of Lavergne and Vuong

(1996b), we substitute Eqs. (4) and (5) into Eq. (6) to get

JK a
n
"

1

n(n!1)3hda2q
+
t

+
sEt

+
lEt

+
kEs

(>
t
!>

l
)(>

s
!>

k
)¸

tl
¸
sk
K

ts
. (7)

The terms of l"s, l"t and k"t may cause "nite sample bias for the JK a
n
test

(since these terms contain squares of the error terms). Subtracting these terms
from JK a

n
and replacing n(n!1)3 by n(4)"n(n!1)(n!2)(n!3) lead to a new

test (denotes it by <a
n
) with possibly smaller "nite sample bias:

<a
n
"

1

n(4)
Mn(n!1)3JK a

n
!n(3)<a

1n
!2n(3)<a

2n
N, (8)

where n(3),n(n!1)(n!2), also

<a
1n
"

1

n(3)a2qhd
++ +

tEsEl

(>
t
!>

l
)(>

s
!>

l
)¸

tl
¸
sl
K

ts
(9)

and

<a
2n
"

1

n(3)a2qhd
++ +

tEsEl

(>
t
!>

s
)(>

s
!>

l
)¸

ts
¸
sl
K

ts
. (10)

The next corollary shows the <a
n
test has the same asymptotic distribution as

the JK a
n

test.

Corollary 3.2. ;nder the same conditions as in ¹heorem 3.1, we have

(i) ;nder Ha
0
, nhd@2<a

n
/pL

a
PN(0,1) in distribution, where pL 2

a
is the same as de,ned

in ¹heorem 3.1.
(ii) ;nder Ha

1
, Prob[nhd@2<a

n
/pL

a
'B

n
]P1 for any non-stochastic sequence

B
n
"o(nhd@2).

The proof of Corollary 3.2 is given in Appendix A.
Corollary 3.2 shows that the<a

n
test with weakly dependent data has the same

asymptotic distribution as the independent data case considered by Lavergne
and Vuong (1996b). However, our assumption that hd/a2qP0 as nPR (see
(A3)(iii)) is stronger than the condition of hd/aqP0 (as nPR) used by Lavergne
and Vuong (1996b). It might be possible to relax the condition (A2)(iii) to the
same condition as used in Lavergne and Vuong (1996b) in establishing Corol-
lary 3.2. But I am unable to provide a short proof for this conjecture.
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4. A test for a partially linear model

In this section we show that the result of the nonparametric signi"cance test of
Theorem 3.1 can be used to easily derive the asymptotic distribution for testing
a partially linear model.

Using the same notation as introduced in Section 3 (i.e., X"(=@,Z@)@), the
null hypothesis of a partially linear regression model is (e.g., Engle et al., 1986;
Robinson, 1988; Stock, 1989)

Hb
0
: E(>DX)"Z@c

0
#h(=) a.e.

for some c
0
3Rd~q and some smooth function h( ) ) :RqPR.

Given that the null model of a partially linear model also contains a non-
parametric component h(=), we present the null hypothesis in the following
density-weighted form. De"ne;">!Z@c

0
!h(=) and e";f

w
(=). Then the

null hypothesis can also be written as

Hb
0
: E(eDX)"0 a.e.

The alternative hypothesis is

Hb
1
: E(eDX)O0 on a set with positive measure.

As in Section 3, we obtain our test statistic by replacing e
t
";

t
f
wt

in
J
n

of Eq. (1) by some estimate of it. We use a two-step method as in
Robinson (1988) and Fan and Li (1996c) to estimate ;

t
f
wt
. First we estimate

c
0

by4

cL"S
(Z~ZK )fK w

S
(Z~ZK )fK w,(Y~YK )fK w

, (11)

where S
AfK w, BfK w

"n~1+
t
A

t
fK
wt
B@
t
fK
wt

and S
AfK w

"S
AfK w,AfK w

. Note that ;
t
">

t
!

E(>
t
D=

t
)!(Z

t
!E(Z

t
D=

t
))@c

0
, therefore we estimate ;

t
by ;I

t
"(>

t
!>K

t
)!

(Z
t
!ZK

t
)@cL , where >K

t
is given in Eq. (4), fK

wt
is given in Eq. (5) and

ZK
t
"(1/(n!1)aq)+

sEt
Z

s
¸
ts
/fK
wt

(zL
t
is the kernel estimator of E(z

t
Dw

t
)). The density

4As correctly pointed out by a referee, one can use any Jn-consistent estimator of c, not
necessarily the one given in Eq. (11), the proof of Theorem 4.1 below remains unchanged. Here we
choose Eq. (11) because the regularity conditions that ensure cL!c

0
"O

1
(n~1@2) are quite weak, see

Theorem 2.1 of Fan and Li (1996c).
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weighted error e
t
";

t
f
wt

is estimated by ;I
t
fK
wt
. Hence, our test statistic for

testing Hb
0

is

JK b
n
"

1

n(n!1)hd
+
t

+
sEt

;I
t
fK
wt
;I

s
fK
ws

K
ts
. (12)

The asymptotic distribution of JK b
n
is given in the next theorem.

¹heorem 4.1. ¸et (B1) and (B2) be the same as (A1) and (A2) except that r( ) ) in (A2)
is replaced by h( ) ). Also de,ne m(w)"E(Z

t
D=

t
"w). ¹hen under conditions (B1)

and (B2), and the assumption that m( ) )3G4`dl , the following results are true:

(i) ;nder Hb
0
, ¹b

n
$%&
" nhd@2Ib

n
/pL

b
PN(0, 1) in distribution, where pL 2

b
"(2/n(n!1)hd)

+
t
+

sEt
;I 2

t
fK 2
wt
;I 2

s
fK 2
ws

K2
ts

with ;I
t
">

t
!>K

t
!(Z

t
!ZK

t
)@cL .

(ii) ;nder Hb
1
, Prob[¹b

n
'B

n
]P1 for any non-stochastic sequence B

n
"o(nhd@2).

Proof. We only prove (i) here since the proof of (ii) is much easier than that of (i).
First,

;I
t
fK
wt
"[(>

t
!>K

t
)!(Z

t
!ZK

t
)@c

0
] fK

wt
!(Z

t
!ZK

t
)@(cL!c

0
) fK

wt

"[(h
t
!hK

t
)#;

t
!;K

t
] fK

wt
!(Z

t
!ZK

t
)@(cL!c

0
) fK

wt

,;M
t
fK
wt
!(Z

t
!ZK

t
)@(cL!c

0
) fK

wt
, (13)

where ;M
t
"(h

t
!hK

t
)#;

t
!;K

t
, h

t
"h(=

t
), hK

t
"(1/(n!1)aq)+

sEt
h
s
¸

ts
/ fK

wt
and

;K
t
"(1/(n!1)aq)+

sEt
;

s
¸
ts
/ fK

wt
. Substituting Eq. (13) into Eq. (12), we get

JK b
n
"

1

n(n!1)hd
+
t

+
sEt

;M
t
fK
wt
;M

s
fK
ws

K
ts

!

2

n(n!1)hd
+
t

+
sEt

;M
t
fK
wt
(Z

s
!ZK

s
)@fK

ws
K

ts
(cL!c

0
)

#(cL!c
0
)@

1

n(n!1)hd
+
t

+
sEt

(Z
t
!ZK

t
) fK

wt
(Z

s
!ZK

s
)@fK

ws
K

ts
(cL!c

0
)

,J
1n
!2(cL!c

0
)J

2n
#(cL!c

0
)@J

3n
(cL!c

0
), say. (14)

Note that J
1n

can be obtained by replacing r
t
by h

t
in JK a

n
(see Eq. (A.1) of

Appendix A). Hence by the result of Theorem 3.1, we know that
nhd@2J

1n
/pL

b
PN(0, 1) in distribution.
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It remains to show the last two terms on the right-hand side of Eq. (14)
are both o

1
((nhd@2)~1). Recall that m

t
"E(Z

t
D=

t
) and de"ne g

t
"Z

t
!m

t
, we

have

J
2n
"

1

n(n!1)hd
+
t

+
sEt

;M
t
fK
wt
(Z

s
!ZK

s
) fK

ws
K

ts

"

1

n(n!1)hd
+
t

+
sEt

[(h
t
!hK

t
)#;

t
!;K

t
]

]fK
wt
[(m

s
!mK

s
)#g

s
!gL

s
] fK

ws
K

ts
.

Comparing the above expression of J
2n

with J
1n

, one can easily see that all the
terms in J

2n
is o

1
((nhd@2)~1) except J

2n,1
,(1/n(n!1)hd)+

t
+

sEt
;

t
g
s
K

ts
.

J
2n,1

"o
1
((nhd)~1@2) by Lemma A.1 of Hsiao and Li (1997). Hence,

(cL!c
0
)J

2n
"O

1
(n~1@2)o

1
((nhd)~1@2)"o

1
((nhd@2)~1) because cL!c

0
"O

1
(n~1@2)

by Theorem 2.1 of Fan and Li (1996c).
Finally, J

3n
"(1/n(n!1)hd)+

t
+

sEt
[(m

t
!mK

t
)#g

t
!gL

t
]@fK

wt
[(m

s
!mK

s
)#

g
s
!gL

s
] fK

ws
K

ts
. Compare J

3n
with J

1n
, one can easily see that J

3n
"(1/n(n!1)hd)

+
t
+

sEt
g
t
g
s
K

ts
#o

1
((nhd@2)~1)"O

1
(1). Hence, (cL!c

0
)@J

3n
(cL!c

0
)"

O
1
(n~1@2)O

1
(1)O

1
(n~1@2)"o

1
((nhd@2)~1). This "nishes the proof of Theorem

4.1(i). h

Similar to the <a
n

test of Section 3. One can also de"ne an asymptotically
equivalent (and possibly has less bias in "nite samples) test <b

n
as follows.

First note that JK b
n
can be written as

JK b
n
"

1

n(n!1)3hda2q
+
t

+
sEt

+
lEt

+
kEs

[(>
t
!>

l
)!(Z

t
!Z

l
)cL ]

][(>
s
!>

k
)!(Z

s
!Z

k
)cL ]¸

tl
¸

sk
K

ts
. (15)

Removing the terms of l"k, l"s and k"t in Eq. (15) and also replacing
n(n!1)3 by n(4)"n(n!1)(n!2)(n!3) leads to

<b
n
"

1

n(4)
Mn(n!1)3JK b

n
!n(3)<b

1n
!2n(3)<b

2n
N, (16)
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where

<b
1n
"

1

n(3)
++ +

tEsEl

[(>
t
!>

l
)!(Z

t
!Z

l
)cL ]

][(>
s
!>

l
)!(Z

s
!Z

l
)cL ]¸

tl
¸
sl
K

ts
(17)

with n(3)"n(n!1)(n!2) and

<b
2n
"

1

n(3)
++ +

tEsEl

[(>
t
!>

s
)!(Z

t
!Z

s
)cL ]

][(>
s
!>

l
)!(Z

s
!Z

l
)cL ]¸

ts
¸
sl
K

ts
. (18)

From Theorem 4.1, we immediately have the following corollary.

Corollary 4.2. ;nder the same conditions as in ¹heorem 4.1, we have

(i) ;nder Hb
0
, nhd@2<b

n
/pL

b
PN(0, 1) in distribution, where pL 2

b
is the same as de,ned

in ¹heorem 4.1.
(ii) ;nder Hb

1
, Prob[nhd@2<b

n
/pL

b
'B

n
]P1 for any non-stochastic sequence

B
n
"o(nhd@2).

The proof of Corollary 4.2 is similar to the proof of Corollary 3.2 except that
one needs to cite the result of Theorem 4.1 rather than the result of Theorem 3.1.
Therefore the proof for Corollary 4.2 is omitted here.

5. Extensions: Some additional hypotheses testing problems

In this paper we propose a general framework for consistent testing
time-series econometric models. We present a general methodology in Section 2
and apply it to construct a consistent test for omitted variables and a consis-
tent test for partially linear model, both with weakly dependent observations.
The test statistics are shown to have asymptotic normal distributions
under their respective null hypotheses. Using the technical lemmas pro-
vided in this paper, one can easily derive asymptotic distributions of
other consistent tests for time-series non-parametric or semiparametric
econometric models. We give two more examples in this section to illustrate this
point but due to space limitation, we will only provide a proof for the "rst
example.
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5.1. A test for portfolio conditional mean-variance e.ciency

The "rst example is testing for portfolio conditional mean-variance e$ciency
as considered by Chen and Fan (1997), see also Gibbons and Ferson (1985),
Gibbons et al. (1989), Cochrane (1996) and Wang (1997). Let r

m,t`1
be the return

on the portfolio m in excess of the riskless rate, and r
t`1

be a p]1 vector of
excess returns of the other assets. The null hypothesis that the portfolio m is
conditional mean-variance e$cient if

E[r
t`1

DF
t
]"E[r

m,t`1
DF

t
]

cov(r
t`1

, r
m,t`1

DF
t
)

var(r
m,t`1

DF
t
)

, (19)

where F
t
is the sigma "eld generated by all the state variables up to period t.

Under Markovian assumptions on the processes r
t
and r

m,t
, Eq. (19) is equiva-

lent to

E[r
t`1

DX
t
]"E[r

m,t`1
DX

t
]
cov(r

t`1
,r
m,t`1

DX
t
)

var(r
m,t`1

DX
t
)

, a.e. (20)

for some d]1 vector X
t
. Eq. (20) can also be written as

Hc
0
: EM(E[r2

m,t`1
DX

t
]!E[r

m,t`1
DX

t
]r

m,t`1
)r
t`1

DX
t
N"0 a.e. (21)

as considered by Chen and Fan (1997). If we de"ne ;
t
"(E[r2

m,t`1
DX

t
]!

E[r
m,t`1

DX
t
] r

m,t`1
)r
t`1

, then Hc
0

is just E(;
t
DX

t
)"0 a.e. To avoid the random

denominator problem in the kernel estimation, we can equivalently test:
E(e

t
DX

t
)"0 a.e. for e

t
";

t
f (X

t
). Note that this testing problem is slightly

di!erent from the earlier ones in that (i) ;
t
is a p]1 vector rather than a scalar,

and (ii)=
t
"X

t
rather than=

t
is a proper subset of X

t
. Nevertheless the testing

procedure is still the same. Let ;I
t
be the kernel-based estimator of ;

t
, i.e.,;I

t
is

obtained from ;
t
with E[r2

m,t`1
DX

t
] and E[r

m,t`1
DX

t
] replaced by their corre-

sponding kernel estimators EK [r2
m,t`1

DX
t
] and EK [r

m,t`1
DX

t
], respectively, where

EK [r2
m,t`1

DX
t
]"

1

(n!1)ad
+
lEt

r2
m,l`1

¸((X
t
!X

l
)/a)/fI

t
(22)

and

EK [r
m,t`1

DX
t
]"

1

(n!1)ad
+
lEt

r
m,l`1

¸((X
t
!X

l
)/a)/fI

t
, (23)
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with fI
t
being the kernel estimator of f (X

t
):

fI
t
"

1

(n!1)ad
+
lEt

¸((X
t
!X

l
)/a). (24)

Then a feasible test statistic for Hc
0

is given by a p]1 vector JK c
n
,

JK c
n
"(JK c

n1
,JK c

n2
,2, JK c

np
)@ (25)

where the ith component of Jc
n
is given by

JK c
ni
"

1

n(n!1)hd
+
t

+
sEt

;I
it
fI
t
;I

is
fI
s
K

ts
, (i"1,2, p), (26)

;I
it

is the ith component of ;I
t
and K

ts
"K((X

t
!X

s
)/h).

De"ne g
(1)

(x)"E(r
m,t`1

DX
t
"x) and g

(2)
(x)"E(r2

m,t`1
DX

t
"x). The following

assumptions will be used to derive the asymptotic distribution of JK c
n
.

Let (C1) be same as (A1) with the following changes: (i)=
t
"X

t
rather than

=
t
is a subvector of X

t
, (ii) r(.)3G4`gl in (A1) is replaced by g

(1)
( ) )3G4`gl and

g
(2)

( ) )3G4`gl . Let (C2) be the same as (A2) except that the condition hd/a2qP0 is
replaced by hd/a2dP0, or equivalently, h/a2P0.

¹heorem 5.1. ;nder (C1) and (C2) as described above. ¹he following results hold:

(i) ;nder Hc
0
, ¹c

n
$%&
" n2hd(JK c

n
)@(XK

c
)~1JK c

n
Ps2(p) in distribution, where XK

c
is a p]p

matrix with its (i, j)th element given by (XK
c
)
ij
"(2/n(n!1)hd)

+
t
+

sEt
;I 2

it
fI 2
t
;I 2

js
fI 2
s
K2

ts
.

Note that XK
c
is a consistent estimator of X

c
, where the ijth element of X

c
is

(X
c
)
ij
"2ME[p4

ij
(X

t
) f 3(X

t
)]NM:K2(z) dzN with p2

ij
(X

t
)"E(;

it
;

jt
DX

t
).

(ii) If Hc
0

is false, Prob[¹c
n
'B

n
]P1 for any non-stochastic sequence

B
n
"o(nhd@2).

The proof of Theorem 5.1 is given in the Appendix B. Here we provide some
intuitions as why one should expect that Theorem 5.1(i) is true.

Using similar arguments as in the proof of Theorem 3.1(i), one can show that
JK c
ni
"Jc

ni
#o

1
((nhd@2)~1), where

Jc
ni
"

1

n(n!1)hd
+
t

+
sEt

;
it
f (X

t
);

is
f (X

s
)K

ts
. (27)

Q. Li / Journal of Econometrics 92 (1999) 101}147 115



Lemma 2.1 implies that nhd@2Jc
ni
PN(0, (X

c
)
ii
) in distribution under Hc

0
, where

(X
c
)
ii

is the ith diagonal element of X
c

as given in Theorem 5.1. Also it is
straightforward to show that cov(nhd@2JK c

ni
, nhd@2JK c

nj
)"(X

c
)
ij
#o(1). Then by

Cramer}Wold device, one can show that nhd@2JK c
n
PN(0,X

c
). Theorem 5.1(i)

follows because XK
c
"X

c
#o

1
(1).

As pointed out by a referee, the s2 statistic ¹c
n

given in Theorem 5.1 is
a two-sided test, it will reject the null when each of the components of JK c

n
take

large enough negative values, which asymptotically can occur only under the
null. Therefore the ¹c

n
test is less powerful than some properly constructed

one-sided test. Gourieroux et al. (1982) provide a general approach on linear
model speci"cation testing with inequality constraints and showed that
such tests usually have mixed (weighted) s2 distributions. The weights of the
mixed s2 statistics are in general quite complex and some simulations methods
may be needed to compute the weights numerically. The approach of
Gourieroux et al. (1982) method should be useful in our context in constructing
some more powerful one-sided tests against Hc

0
. However, the asymptotic

analysis of such one-sided tests will be quite complex since our null model
contains nonparametric components. Therefore this issue is left for possible
future research.

5.2. A test for a semiparametric single index model

In the second extension we consider the problem of testing a semiparametric
single index model. The null hypothesis is

Hd
0
: E(>DX)"g(X@a

0
) a.e.

for some smooth but unknown function g( ) ), where a
0

is d]1 unknown
parameter. Let ;

t
">

t
!g(X@

t
a
0
) and f

v
( ) ) be the density function of the

univariate variable <
t
"X@

t
a
0
. Then Hd

0
is equivalent to E(;

t
f
v
(<

t
)DX

t
)"0 a.e.,

a form of the conditional moment test discussed in Section 2. Denotes

fK
vt
"(na)~1+

iEt
¸((X

t
!X

i
)@aL /a), the kernel estimator of f

v
(<

t
), where aL is a Jn-

consistent estimator of a
0

under Hc
0

(e.g., Powell et al., 1989). One can estimate
;

t
by ;I

t
">

t
!EK (>

t
DX@

t
aL ), where EK (>

t
DX@

t
aL )"(na)~1+

iEt
>

i
¸((X

t
!X

i
)@aL /a)/fK

vt
is the kernel estimator of E(>

t
DX@

t
a
0
). Then a feasible test statistic for Hd

0
is given

by

JK d
n
"

1

n(n!1)hd
+
t

+
sEt

;I
t
fK
vt
;I

s
fK
vs
K

ts
,

where K
ts
"K((X

t
!X

s
)/h). Under some regularity conditions similar to

those as given in Power et al. (1989), and the conditions of Theorem 4.2 of
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Fan and Li (1996a), one should be able to show that the leading term of JK d
n
is

Jd
n
given by

Jd
n
"

1

n(n!1)hd
+
t

+
sEt

;
t
f
vt
;

s
f
vs
K

ts
, (28)

where f
vt
"f

v
(<

t
). Using Lemma 2.1, we immediately have nhd@2Jd

n
/pL

d
PN(0, 1) in

distribution under Hd
0
, where pL 2

d
"(2/n(n!1)hd)+

t
+

sEt
;I 2

t
fK 2
vt
;I 2

s
fK 2
vs
K2

ts
is a con-

sistent estimator of p2
d
"2ME[p4

u
(X

t
) f 2

v
(<

t
) f (X

t
)]NM:K2(z) dzN. This results in

nhd@2JK d
n
/pL

d
PN(0,1) in distribution under Hd

0
, provided one can show that

JK d
n
!Jd

n
"o

1
((nhd@2)~1). While I conjecture that JK d

n
!Jd

n
"o

1
((nhd@2)~1) under

some regularity conditions, I am unable to provide a simple (short) proof for this
result.

6. Monte Carlo results

In this section we report some Monte Carlo simulation results to examine the
"nite sample performances of the nonparametric signi"cance tests of JK a

n
and <a

n
,

and the JK b
n

and <b
n

tests for a partially linear speci"cation.

6.1. The case of the non-parametric signi,cant test

To study the size and power properties of the JK a
n

and <a
n

tests, we use the
following data generating processes (DGP):

DGP1: >
t
"=

t
#0.5=2

t
#;

t
,

DGP2: >
t
"=

t
#0.5=2

t
#a

1
Z

t
#a

2
Z2

t
#;

t
,

DGP3: >
t
"0.5>

t~1
#;

t
,

DGP4: >
t
"0.5>

t~1
#a

3
Z

t
#a

4
Z2

t
#;

t
,

where =
t
"0.5=

t~1
#<

t
, Z

t
"0.5Z

t~1
#g

t
, ;

t
, <

t
and g

t
are independent

processes and all of them are i.i.d. N(0, 1). DGP1 is the null model (Ha
0
) with

E(>
t
D=

t
)"E(>

t
D=

t
, Z

t
). DGP2 is an alternative model (Ha

1
). We consider two

di!erent cases for DGP2: case (i), (a
1
, a

2
)"(0.5J32/12, 0); and case (ii),

(a
1
, a

2
)"(0, 0.5). Under the above choices of a

1
and a

2
, we have

var(a
1
Z

t
)"var(a

2
Z2

t
), so that case (i) and case (ii) have the similar devi-

ations from the null model. Similarly, DGP3 is a null model with
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E(>
t
D>

t~1
)"E(>

t
D>

t~1
, Z

t
), and DGP4 is an alternative model and we also

consider two di!erent cases for DGP4: case (i), (a
3
, a

4
)"(0.5J4/3, 0); and case

(ii), (a
3
, a

4
)"(0, 0.5).

We use standard normal kernel functions for both ¸( ) ) and K( ) ) with
smoothing parameters chosen via a

w
"w

sd
n~1@5, h

w
"cw

sd
n~1@4 and

h
z
"cz

sd
n~1@4 for DGP1 and DGP2; a

y
"y

~1,sd
n~1@5, h

y
"cy

~1,sd
n~1@4 and

h
z
"cz

sd
n~1@4 for DGP3 and DGP4, where w

sd
, z

sd
and y

~1,sd
are sample

standard deviations of M=
t
Nn
t/1

, MZ
t
Nn
t/1

and M>
t~1

Nn
t/2

, respectively. The
smoothing parameter a is associated with kernel ¸( ) ) that is used for estimating
the (restricted) null model and h is the smoothing parameter associated with
kernel K( ) ). The above choices of a and h satisfy condition (A2) of Theorem 3.1.
To check the sensitivity of our tests with respect to di!erent values of a and h.
We "xed the value of a and change h via di!erent values of c: we use
c"0.25, 0.5, 1, 2. The number of replications is 2000 for all cases.

Estimated sizes of the JK a
n

and the <a
n

tests (for DGP1) based on asymptotic
one-sided normal critical values are reported in Tables 1 and 2, respectively.

From Table 1 we observe that the estimated sizes for the JK a
n

test under
estimates the nominal sizes for all cases considered. The results does suggest that
as n increases, the estimated sizes convergent to their nominal sizes although at
a fairly slow rate. The estimated sizes are closer to their nominal sizes for smaller
values of c (for the range of c values considered). This result can be explained by
the fact that the rate our test converges to a standard normal variate (under Ha

0
)

is O
1
(nhd@2(a2l#(naq)~1))"O

1
(nh(a4#(na)~1)). Hence, for a "xed value of

n and a, a smaller h (i.e., smaller c) will lead to a smaller error in the normal
approximation. But this does not mean that one should use a very small value of
h in practice. Because too small a h may cause the kernel estimation to be
inaccurate and more importantly, under Ha

1
, our test diverges to #R at the

rate of (nhd@2), too small a h will make the test not powerful (this is con"rmed in
our simulations, see Tables 3 and 4).

Table 2 shows that the estimated sizes for the <a
n

test are closer to their
nominal values than the JK a

n
test of Table 1. In contrast to the negative bias of

JK a
n
, <a

n
test has positive ("nite sample) bias which makes the <K a

n
oversized for

most cases for 0.25)c)1. For c"2, <a
n

is undersized mainly because its
standard deviation is signi"cantly less than one.

Table 3 gives the estimated powers of the JK a
n
and the <a

n
tests for DGP2. The

results show that for most cases, the power of<a
n
dominates the power of JK a

n
. This

is because the JK a
n

is undersized under Ha
0
. Therefore, this will hurt the "nite

sample power of JK a
n
under Ha

1
. In general, both the JK a

n
and the <a

n
tests are quite

powerful in detecting alternatives of case (i) and case (ii) of DGP2 as they should
since our nonparametric tests are consistent tests.

An interesting fact is that for all cases considered in Table 3, and for c values
between 0.5 and 2, the higher value is the smoothing parameter h (i.e, higher
value of c), the higher are the powers of the JK a

n
and the<a

n
tests. This result can be
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Table 1
Size of JK a

n
(DGP1)

c"0.25 c"0.5

n 1% 5% 10% Mean (std) 1% 5% 10% Mean (std)

50 0.002 0.032 0.083 !0.154
(0.981)

0.008 0.034 0.062 !0.239
(0.944)

100 0.004 0.043 0.094 !0.102
(0.981)

0.009 0.045 0.073 !0.220
(0.969)

200 0.007 0.042 0.095 !0.101
(1.00)

0.011 0.032 0.078 !0.191
(0.973)

500 0.006 0.043 0.078 !0.125
(0.986)

0.009 0.036 0.067 !0.209
(0.953)

1000 0.009 0.043 0.083 !0.062
(0.986)

0.011 0.036 0.072 !0.190
(0.966)

c"1 c"2

1% 5% 10% mean (std) 1% 5% 10% Mean (std)

50 0.007 0.021 0.043 !0.381
(0.852)

0.003 0.005 0.010 !0.527
(0.606)

100 0.006 0.024 0.047 !0.358
(0.855)

0.004 0.015 0.024 !0.404
(0.678)

200 0.008 0.029 0.052 !0.309
(0.893)

0.005 0.014 0.025 !0.361
(0.705)

500 0.007 0.028 0.058 !0.291
(0.908)

0.005 0.019 0.036 !0.297
(0.736)

1000 0.009 0.025 0.048 !0.260
(0.882)

0.006 0.020 0.038 !0.278
(0.768)

Table 2
Size of <a

n
(DGP1)

c"0.25 c"0.5

n 1% 5% 10% Mean (std) 1% 5% 10% Mean (std)

50 0.002 0.039 0.106 0.046 (0.915) 0.006 0.043 0.094 0.056 (0.871)
100 0.007 0.061 0.117 0.090 (0.961) 0.015 0.063 0.120 0.143 (0.932)
200 0.010 0.059 0.120 0.082 (0.959) 0.017 0.067 0.118 0.117 (0.939)

c"1 c"2

1% 5% 10% Mean (std) 1% 5% 10% Mean (std)

50 0.010 0.042 0.082 0.114 (0.773) 0.005 0.020 0.048 0.151 (0.577)
100 0.022 0.063 0.114 0.230 (0.855) 0.014 0.038 0.072 0.286 (0.660)
200 0.018 0.060 0.116 0.221 (0.856) 0.013 0.049 0.087 0.264 (0.694)
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Table 4
Size of JK a

n
(DGP3)

c"0.25 c"0.5

n 1% 5% 10% Mean (std) 1% 5% 10% Mean (std)

50 0.003 0.030 0.075 !0.211
(0.975)

0.004 0.024 0.056 !0.379
(0.943)

100 0.005 0.038 0.073 !0.208
(0.999)

0.006 0.029 0.048 !0.335
(0.950)

200 0.004 0.032 0.064 !0.201
(0.960)

0.003 0.028 0.052 !0.345
(0.922)

500 0.005 0.035 0.079 !0.187
(0.981)

0.006 0.024 0.056 !0.331
(0.927)

1000 0.009 0.049 0.089 !0.132
(10.00)

0.007 0.030 0.060 !0.277
(0.964)

c"1 c"2

n 1% 5% 10% Mean (std) 1% 5% 10% Mean (std)

50 0.002 0.010 0.027 !0.583
(0.809)

0.001 0.006 0.011 !0.716
(0.570)

100 0.005 0.017 0.028 !0.560
(0.825)

0.002 0.007 0.012 !0.689
(0.601)

200 0.003 0.013 0.025 !0.554
(0.821)

0.003 0.008 0.015 !0.664
(0.654)

500 0.005 0.015 0.032 !0.534
(0.861)

0.004 0.013 0.021 !0.658
(0.741)

1000 0.005 0.023 0.040 !0.487
(0.912)

0.005 0.019 0.030 !0.604
(0.824)

explained by the fact that our tests diverge to #Rat the rate of nhd@2 under Ha
1
.

Hence, a higher h (in certain range) will lead to a more powerful test against
some "xed alternatives (in "nite samples). Another explanation for this result is
that the DGP2 contains a low frequency linear (function) deviation from the null
model, and it is known that a relative large value of h should be used for low
frequency alternatives. But we caution the applied researchers that in practice,
h cannot be chosen too large, a very large h will in fact lead to a test that does not
have any power because it over smooth the data too much and hence obscure
any deviation of the data from the null DGP.

Summarizing the results of Tables 1}3, we observe the followings: (i) for the
range of c values we considered, c"2 gives the best power results for both
the JK a

n
and the <a

n
tests but at the same time, c"2 also correspond to the most

size distortions. However, the size distortions are at the direction of under size.
Therefore, the case of c"2 also give the smallest type I error. In this sense the
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c"2 case gives the best results because both tests have the smallest type I and
type II errors for c"2 (c"2 is the most undersized under Ha

0
and the most

powerful one under Ha
1
). This result is quite interesting because usually the

size-power trade o! of a test statistic is that the more powerful case also tends to
be the more over-sized case. Of course one cannot draw general conclusions
about the JK a

n
and the <a

n
tests based on the limited Monte Carlo experiments

reported above.
The estimated sizes for the JK a

n
and the <a

n
tests for DGP3 are reported in

Tables 4 and 5, respectively.
For the JK a

n
test, the result is very similar the case of DGP1 as given in Table 1,

i.e., the JK a
n

test under estimates the nominal sizes for all cases considered,
the smaller values of c gives better estimated sizes (for 0.5)c)2). Also, the
estimated sizes seem to convergent to their nominal sizes although at a fairly
slow rate.

For the <a
n

test, from Table 5 we observe that the estimated sizes of <a
n

are
much better than that of the JK a

n
test of Table 4. In particular, the biases of <a

n
are fairly small for all cases. The estimated standard deviation of<a

n
decreases as

c increases, causing the <a
n

test undersized for large values of c.
Table 6 gives the estimated power of the JK a

n
and the <a

n
tests against

DGP4. Similar to the case of DGP2 (see Table 3), the results of Table 6
show that the power of <a

n
dominates the power of JK a

n
. Both tests are quite

powerful in detecting these alternative processes. For the range of c values
considered, the larger value of c (or h) leads to a more powerful tests against
DGP4.

Table 5
Size of <a

n
: (DGP3)

c"0.25 c"0.5

n 1% 5% 10% Mean (std) 1% 5% 10% Mean (std)

50 0.004 0.040 0.101 0.019 (0.910) 0.006 0.043 0.089 0.002 (0.878)
100 0.006 0.047 0.097 0.003 (0.952) 0.011 0.043 0.090 0.010 (0.909)
200 0.007 0.039 0.088 !0.003

(0.923)
0.010 0.046 0.091 0.013 (0.885)

c"1 c"2

n 1% 5% 10% Mean (std) 1% 5% 10% Mean (std)

50 0.006 0.029 0.068 !0.006
(0.760)

0.003 0.016 0.028 !0.021
(0.540)

100 0.011 0.035 0.067 0.010 (0.792) 0.002 0.018 0.036 0.013 (0.579)
200 0.009 0.030 0.069 0.012 (0.787) 0.005 0.022 0.044 0.032 (0.637)
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6.2. Testing the null of a partially linear model

This subsection reports Monte Carlo results to study the "nite sample
performances of the JK b

n
and the <b

n
tests. For testing the null of a partially linear

model, we use the following data generating processes:

DGP5: >
t
"1#Z

t
#=

t
#;

t
,

DGP6: >
t
"1#Z

t
#=

t
#a

5
(=

t
Z

t
)#;

t
,

DGP7: >
t
"0.5>

t~1
#=

t
#;

t
,

DGP8: >
t
"0.5>

t~1
#=

t
#a

6
(>

t~1
=

t
)#;

t
,

where =
t
, Z

t
and ;

t
are generated by the same ways as in DGP1}DGP4.

DGP5 is an null (Hb
0
) of a partially linear model:

>
t
"1#Z

t
#=

t
#;

t
,Z

t
#h(=

t
)#;

t
. DGP6 is an alternative model (Hb

1
)

and we choose a
5
"1. Similarly DGP7 is an null of a partially linear model:

>
t
"0.5>

t~1
#h(=

t
)#;

t
. DGP8 is an alternative model (Hb

1
) and we choose

a
6
"0.5.
Again we use standard normal kernel functions and the smoothing para-

meters are chosen using the same methods as in Section 6.1. In particular, we "x
the smoothing parameter a and change the smoothing parameter h via di!erent
choices of c (c"0.25, 0.5, 1, 2). The number of replications are 2000 for all cases.

Table 7 reports the estimated sizes for the JK b
n

and the <b
n
tests for DGP5.

For the JK b
n
test, the results is in general similar the case of DGP1 (see Table 1).

That is, the JK b
n

test under estimates the nominal sizes and a larger c value
corresponds to a larger size distortion. The case of c"2 is even more down
sized than the case of c"1, the estimated sizes of JK b

n
for c"2 is not reported

here to save space.
For the <b

n
test, the estimated sizes are much closer to their nominal values

than the JK b
n
test. The biases are fairly small for all cases considered. Similar to the

case of DGP1 and DGP3, the standard deviation of <b
n
decreases as c increases

causing the <b
n

test downsized for large values of c. The case of c"2 is more
undersized than the case of c"1, the estimated sizes of <b

n
for c"2 is not

reported here to save space.
Table 8 reports the estimated power of the JK b

n
and the <b

n
tests against DGP6.

We observe that the <b
n
test dominates the JK b

n
test. Also as expected we observe

that the power of both tests increase as n increases. However, for the range of
c values considered, the power of these tests are no longer monotone in c. There
are a few cases that the powers of both tests are larger for c"1 than for c"2.
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As we mentioned earlier, a large value of c corresponds to over-smooth the
alternative model and hence may lead to a low power test if it over-smooth too
much the data (especially for high frequency alternatives).

Finally, Tables 9 and 10 give the estimated sizes and powers of the JK b
n
and the

<b
n
tests for DGP7 and DGP8. The results are similar to the cases of DGP5 and

DGP6. In particular, the JK b
n
test is under-sized while the <b

n
test has much better

estimated sizes. The JK b
n
test is negatively biased while the <b

n
test has fairly small

biases. This is why <b
n
is more powerful than JK b

n
. Also from Table 10 we observe

that both the JK b
n
and the<b

n
tests are more powerful for the case of c"1 than the

case of c"2, giving more evidence that over-smooth too much the data will
lead to low power tests.

Summarizing the limited Monte Carlo simulation results reported above. The
JK
n
(JK a

n
or JK b

n
) test is substantially undersized for all cases considered. The <

n
(<a

n
or <b

n
) test gives much better estimated sizes than the JK

n
test.

In general the JK
n

test is less powerful than the <
n

test due to the fact that
the JK

n
test is biased toward accepting the null (i.e., it is substantially undersized).

The estimated powers of both tests are sensitive to the relative smooth-
ing parameter choices (as is often the case with nonparametric kernel estimation
methods). For low frequency alternatives, a relatively large smoothing
parameter h will lead to a high power test. While for high-frequency alternatives,
a relatively small smoothing parameter h should be used (will lead to a high
power test). Therefore, how to choose the relative smoothing parameters
optimally in the sense that the power of the tests are maximized and at the
same time to keep the type I error under control is an important future research
topic.

Another research topic that deserves e!ort is to investigate the possibility of
using various parametric and nonparametric bootstrap methods (for dependent
data) to approximate the null distributions of the proposed tests. Bootstrap tests
may provide better estimated sizes than both the JK

n
and the <

n
tests. To my

knowledge, even with the independent data, the tests considered in Fan and Li
(1996a) and Lavergne and Vuong (1996b) have not been investigated by boot-
strap methods. The asymptotic theory established in this paper will be useful to
the bootstrap analysis of these tests (for dependent data case). The theoretical
justi"cation of bootstrap techniques in our context, and speci"cally the condi-
tions under which they apply, are left for future research.
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Appendix A. Proof of the Theorem 3.1 and Corollary 3.2

Below we "rst list the conditions (D1) and (D2) that are used in Lemma 2.1
and the two de"nitions for the class of kernel function Kj and the class of
function of Gak (see Robinson (1988)).

Let Z
t
be a strictly stationary process and Mt

s
(Z) denote the sigma algebra

generated by (Z
s
,2, Z

t
) for s)t. The process Z

t
is called absolutely regular, if

as qPR,

bq"sup
s|N

EC sup
A|M=

s`q

MDP(ADMs
~=

)!P(A)DNDP0.

The following conditions are used for Lemma 2.1.

(D1) (i) ¹he process Z
t
"Me

t
, X@

t
N (X

t
3Rd) is strictly stationary and absolutely

regular with the mixing coe.cient b
m
"O(om) for some 0(o(1; with probability

one, E[e
t
DMt

~=
(X),Mt~1

~=
(e)]"0. (ii) E[De4`g

t
D](R and E[Dei1

t1
ei2
t2
,2, eil

tl
D1`m](R

for some arbitrarily small g'0 and m'0, where 2)l)4 is an integer,
0)i

j
)4 and +l

j/1
i
j
)8. (iii) Let p2e (x)"E(e2

t
DX

t
"x), ke4(x)"E(e4

t
DX

t
"x).

p2e (x) and ke4(x) satisfy some ¸ipschitz conditions: Dp2e (u#v)!p2e (u)D)D(u)EvE
and Dke4(u#v)!ke4(u)D)D(u)EvE with E[DD(X)D2`g{](R for some small g@'0.
(iv) ¸et fq1,2,ql(.,2, .) be the joint probability density function of
(X

1
, X

1`q1,2, X
1`ql) (1)l)3). ¹hen fq1,2,ql(.,2, .) exists and satis,es a ¸ip-

schitz condition: D fq1,2,ql(x1
#u

1
, x

2
#u

2
,2,x

l
#u

l
)!fq1,2,ql(x1

, x
2
,2,x

l
)D)

Dq1,2,ql(x1
,x

2
,2,x

l
)EuE, where Dq1,2,ql(.,2, .) is integrable and satis,es the condi-

tion that :Dq1,2,ql(x,2, x)ExE2m(M(R, :Dq1,2,ql(x1
,2, x

l
) fq1,2, ql(x1

,2,x
l
)

dx(M(R for some m'1.
(D2) (i) K( ) ) is bounded and symmetric with :K(u) du"1 and :EuE2K(u) du(R.

(ii) ¹he smoothing parameter h"O(n~aN ) for some 0(aN((7/8)d.
The following de"nitions are adopted from Robinson (1988).

De,nition A.1. Kj,j*1, is the class of even functions k :RPR satisfying

P
R

uik(u) du"d
i0

(i"0, 1,2, j!1),

k(u)"O((1#DuDj`1`e)~1), some e'0,

where d
ij

is the Kronecker's delta.

De,nition A.2. Gak, a'0, k'0, is the class of functions g : RdPR satisfying: g is
(m!1)-times partially di!erentiable, for m!1)k)m; for some o'0,
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sup
y|(zo

Dg(y)!g(z)!Q
g
(y,z)D/Dy!zDk)D

g
(z) for all z, where /

zo"
My: Dy!zD(oN; Q

g
"0 when m"1; Q

g
is a (m!1)th degree homogeneous

polynomial in y!z with coe$cients the partial derivatives of g at z of orders
1 through m!1 when m'1; and g(z), its partial derivatives of order m!1 and
less, and D

g
(z), have "nite ath moments.

The remaining parts of this appendix prove Theorem 3.1 and Corollary 3.2.
Throughout, the symbol C denotes a generic constant. The notation A&B
means that A has an order no larger than that of B. We denote
fK
t
"(1/(n!1)hd)+

sEt
K((X

t
!X

s
)/h), the kernel estimator of f (X

t
).

Proof of ¹heorem 3.1. We will only prove Theorem 3.1(i) since the proof
of Theorem 3.1(ii) is similar to and in fact much simpler than the proof
of Theorem 3.1(i). We often write u

t
for ;

t
and w

t
for =

t
to save space.

Variables with subscript are always random variables even when small letter
case is used.

Using ;I
t
">

t
!>K

t
"(r

t
!rL

t
)#;

t
!;K

t
, where r

t
"r(=

t
) and

rL
t
"(naq)~1+

sEt
r
s
¸
ts
/fK
wt
, the following expression for JK a

n
is immediate from

Eq. (6):

JK a
n
"

1

n(n!1)hd
+
t

+
sEt

M(r
t
!rL

t
) fK

wt
(r
s
!rL

s
) fK

ws
#u

t
u
s
fK
wt

fK
ws

#uL
t
fK
wt
uL
s
fK
ws
#2u

t
fK
wt
(r
s
!rL

s
) fK

ws
!2uL

t
fK
wt
(r
s
!rL

s
) fK

ws

!2u
t
fK
wt
uL
s
fK
ws

NK
ts
$%&
" J

n1
#J

n2
#J

n3
#2 J

n4
!2 J

n5
!2 J

n6
. (A.1)

We shall complete the proof of Theorem 3.1(i) by showing that
J
ni
"o

1
((nhd@2)~1) for i"1, 3, 4, 5, 6 and nhd@2J

n2
/pL

a
PN(0, 1) in distribution.

These results are proved in Lemmas A.1 to A.6 below.

¸emma A.1. J
n1
"o

1
((nhd@2)~1).

Proof. Note that K( ) ) is a non-negative function and fK
t
"(1/(n!1)hd)+

sEt
K

ts
,

we have

EDJ
n1

D"EK
1

n(n!1)hd
+
t

+
sEt

(r
t
!rL

t
) fK

wt
(r
s
!rL

s
) fK

ws
K

tsK
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)

1

2(n(n!1)hd
+
t

+
sEt

EM[(r
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!rL

t
)2fK 2

wt
#(r

s
!rL

s
)2fK 2

ws
]K
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N

"

1
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+
t

+
sEt

E[(r
t
!rL

t
)2fK 2

wt
K

ts
]

"n~1+
t

E[(r
t
!rL

t
)2fK 2

wt
fK
t
],J

1b
, say.

J
1b
"n~1+

t

E[(r
t
!rL

t
)2fK 2

wt
f
t
]#n~1+

t

E[(r
t
!rL

t
)2fK 2

wt
( fK

t
!f

t
)]

)Cn~1+
t

E[(r
t
!rL

t
)2fK 2

wt
]#n~1+

t

E[(r
t
!rL

t
)2fK 2

wt
( fK

t
!f

t
)]

"O(a2l#(naq)~1)"o((nhd@2)~1)

by Lemmas C.3(i) and C.4(i).

Summarizing the above, we have shown that EDJ
n1

D)J
1b
"o((nhd@2)~1).

Hence, J
n1
"o

1
((nhd@2)~1).

¸emma A.2. (i) nhd@2J
n2
PN(0,p2

a
) in distribution, where p2

a
"2E[ f (X

1
)

p4(X
1
) f 4

w1
][:K2(u) du],

(ii) pL 2
a
"p2

a
#o

1
(1).

Proof of (i).

J
n2
"

1
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+
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+
sEt

u
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K
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#

2

n(n!1)hd
+
t

+
sEt

u
t
u
s
( fK

wt
!f
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) f

ws
K

ts

#

1
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+
sEt

u
t
u
s
( fK

wt
!f
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)( fK

ws
!f

ws
)K

ts

,J
n21

#2J
n22

#J
n23

, say
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J
n21

is a second order degenerate U-statistic of the form of Eq. (2) with
e
t
"u

t
f
wt
. It is easy to check that the conditions (A1)}(A2) imply (D1)}(D2).

Hence by Lemma 2.1, we have J
n21

PN(0,p2
a
) in distribution.

Next, J
n22

"o
1
((nhd@2)~1) by Lemma C.5(ii).

Finally,

E D J
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( fK

ws
!f

ws
)2K

ts
N

"

1

n(n!1)hd
+
t

+
sEt

E[u2
t
( fK

wt
!f

wt
)2K

ts
]

"n~1+
t

E[u2
t
( fK
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.
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t
( fK
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wt
)2( fK
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!f

t
)]

"O(a2l#(naq)~1)

by Lemmas C.3(ii) and C.4(ii).

Hence, EDJ
n23

D)J
2b
"O(a2l#(naq)~1)"o((nhd@2)~1), which implies

J
n23

"o
1
((nhd@2)~1).

Proof of (ii). pL 2
a
"p2

a
#o

1
(1). The proof for (ii) is similar to (and much easier

than) that of (i). Hence, we will provide a sketchy proof here. Using
uJ
t
"u

t
#o

1
(1), one can show that

pL 2
a
"

2
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+
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+
sEt

[uJ
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(1), say.

Q. Li / Journal of Econometrics 92 (1999) 101}147 131



Finally the proof of pN 2
a
"p2

a
#o

1
(1) follows from the facts that (using Lemma

C.1)

E(pN 2
a
)"p2

a
#
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n(n!1)hd
OA+
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sE

bd@(1`d)
m B

"p2
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J
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¸emma A.6. J
n6
"o

1
((nhd@2)~1).

Proof.

J
n6
"

1

n(n!1)hd
+
t

+
sEt

u
t
fK
wt
uL
s
fK
ws
K

ts

"

1

n(n!1)hd
+
t

+
sEt

u
t
f
wt
uL
s
fK
ws

K
ts
#

1

n(n!1)hd
+
t

+
sEt

u
t
( fK

wt
!f

wt
)uL

s
fK
ws
K

ts

,J
n61

#J
n62

, say.

J
n61

"o
1
((nhd@2)~1) by Lemma C.5(iii).
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EDJ
n62

D)1/2n(n!1)hd+
t
+

sEt
EMu2

t
( fK

wt
!f

wt
)2K

ts
#uL 2

s
fK
ws
K

ts
N"(1/2)n~1+

t
E

Mu2
t
( fK

wt
!f

wt
)2fK

t
#uL 2

t
fK
wt

fK
t
N"J

2b
#J

3b
"o((nhd@2)~1) by the proofs of Lemmas

A.2 and A.3. Hence, J
n62

"o
1
((nhd@2)~1).

Proof of Corollary 3.2. We will only provide a proof for Corollary 3.2(i) since the
proof of Corollary 3.2(ii) is much easier than the proof of Corollary 3.2(i).

From Eq. (8) and given the result of Theorem 3.1(i), it su$ces to show that
(n(3)/n(4))<a

1n
"o

1
((nhd@2)~1) and (n(3)/n(4))<a

2n
"o

1
((nhd@2)~1).

n(3)

n(4)
<a

1n
"

1

n(4)a2qhd
+ + +

tEsEl

(>
t
!>

l
) (>

s
!>

l
)¸

tl
¸
sl
K

ts

"

1

n(4)a2qhd
+ + +

tEsEl

[(r
t
!r

l
)#u

t
!u

l
] [(r

s
!r

l
)

#u
s
!u

l
]¸

tl
¸
sl
K

ts
. (A.2)

First we consider the term on the right-hand side of Eq. (A.2) that does
not have an error term u. We use <a

1n,1
to denote it.

<a
1n,1

,(1/n(4)a2qhd)+++
tEsEl

(r
t
!r

l
)(r

s
!r

l
)¸

tl
¸
sl
K

ts
. ED<a

1n,1
D"n~4O(n3a2l)"

O(a2l)"o((nhd@2)~1) by assumptions (A1) (ii) and (A2). Hence, <a
1n,1

"

O
1
(a2l)"o

1
((nhd@2)~1).

Next, we consider the terms with one error term u. One such term
is <a

1n,2
,(1/n(4)a2qhd)+++

tEsEl
(r
t
!r

l
)u

s
¸

tl
¸
sl
K

ts
. <a

1n,2
"o

1
((nhd@2)~1) by

Lemma C.5(i). Similar arguments show that all the terms with one error term u is
of the order of o

1
((nhd@2)~1).

Finally, we consider the terms with two error terms. Say
<a

1n,3
,(1/n(4)a2qhd)+++

tEsEl
u
t
u
s
¸
tl
¸
sl
K

ts
. <a

1n,3
"o

1
((nhd@2)~1) by Lemma

C.5(iii). By the same reasoning one can show that all the other terms (with two
error terms) are of the order of o

1
((nhd@2)~1).

Summarizing the above we have shown that (n(3)/n(4))<a
1n
"o

1
((nhd@2)~1).

Similarly one can show that (n(3)/n(4))<a
2n
"o

1
((nhd@2)~1). Therefore,

nhd@2<a
n
/pL

a
"nhd@2JK a

n
/pL

a
#o

1
(1)PN(0, 1) under Ha

0
by Theorem 3.1(i). This "n-

ishes the proof of Corollary 3.2(i).

Appendix B. Proof of Theorem 5.1

Proof of ¹heorem 5.1. We will only prove Theorem 5.1(i) since the proof of
Theorem 5.1(ii) is similar to, and in fact much simpler than, the proof of
Theorem 5.1(i).
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We will "rst prove that nhd@2Jc
in
PN(0, (X

c
)
ii
) in distribution.

Let r
(i),t

denote the ith component of r
t
(i"1,2, p) and de"ne the following

short-hand notations: g
1,t
,E[r

m,t`1
DX

t
], g

2,t
,E[r2

m,t`1
DX

t
], r2Y

m,t
,

EK [r2
m,t`1

DX
t
] and rL

m,t
,EK [r

m,t`1
DX

t
] (see Eqs. (22) and (23)). Then we have

;I
it
"(r2Y

m,t
!rL

m,t
r
m,t`1

)r
(i),t

"(g
2,t
!g

1,t
r
m,t`1

)r
(i),t

#[(r2Y
m,t

!g
2,t

)!(rL
m,t

!g
1,t

)r
m,t`1

]r
(i),t

,;
it
#[(r2Y

m,t
!g

2,t
)!(rL

m,t
!g

1,t
)r
m,t`1

]r
(i),t

, (B.1)

where ;
it
"(g

2,t
!g

1,t
r
m,t`1

)r
(i),t

.
Substituting Eq. (B.1) into Eq. (26) we get

JK c
ni
"

1

n(n!1)hd
+
t

+
sEt

M;
it
;

is
#2;

it
[(r2Y

m,s
!g

2,s
)!(rL

m,s
!g

1,s
)r
m,s`1

]r
(i),s

#[(r2Y
m,t

!g
2,t

)!(rL
m,t

!g
1,t

)r
m,t`1

]r
(i),t

[(r2Y
m,s

!g
2,s

)

!(rL
m,s

!g
1,s

)r
m,s`1

]r
(i),s

NfI
t
fI
s
K

ts
,Jc

ni,1
#2 Jc

ni,2
#Jc

ni,3
, (B.2)

where Jc
ni,1

"(1/n(n!1)hd)+
t
+

sEt
;

it
;

is
fI
t
fI
s
K

ts
and the de"nitions of Jc

ni,2
and

J
ni,3

should be apparent.
First for Jc

ni,1
. Comparing Jc

ni,1
with the J

n2
term of Lemma A.2, we immedi-

ately know that nhd@2Jc
ni,1

PN(0, (X
c
)
ii
) in distribution (by the same proof of

Lemma A.2 (i)), where (X
c
)
ii

is the ith diagonal element of X
c

as de"ned in
Theorem 5.1.

Next, to evaluate the order of Jc
ni,2

. De"ne v
1,t
"r

m,t`1
!

E[r
m,t`1

DX
t
],r

m,t`1
!g

1,t
and v

2,t
"r2

m,t`1
!E[r2

m,t`1
DX

t
],r2

m,t`1
!g

2,t
.

Also de"ne gL
1,t
"(nad)~1+

sEt
g
1,s

¸
ts
/fI
t
, gL

2,t
"(nad)~1+

sEt
g
2,s

¸
ts
/fI
t
, vL

1,t
"

(nad)~1+
sEt

v
1,s

¸
ts
/fI
t
, and vL

2,t
"(nad)~1+

sEt
v
2,s

¸
ts
/fI
t
.

Then obviously we have

rL
m,t

"gL
1,t
#vL

1,t
and r2Y

m,t
"gL

2,t
#vL

2,t
. (B.3)
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Using Eq. (B.3), we have

Jc
ni,2

"

1

n(n!1)hd
+
t

+
sEt

;
it
M(gL

2,s
!g

2,s
)#vL

2,s
![(gL

1,s
!g

1,s
)

#vL
1,s

]r
m,s`1

]Nr
(i),s

fI
t
fI
s

"

1

n(n!1)hd
+
t

+
sEt

;
it
M(gL

2,s
!g

2,s
)

#vL
2,s

!(gL
1,s

!g
1,s

)r
m,s`1

!vL
1,s

r
m,s`1

Nr
(i),s

fI
t
fI
s

,D
1n
#D

2n
!D

3n
!D

4n
.

D
1n
"

1

n(n!1)hd
+
t

+
sEt

;
it
(gL

2,s
!g

2,s
) fI

t
fI
s

"O
1
(a2l#(nad)~1)"o

1
((nhd@2)~1)

by the same proof as Lemma A.4. D
2n
"(1/n(n!1)hd)+

t
+

sEt
;

it
vL
2,s

fI
t
fI
s
"O

1
(a2l#(nad)~1)"o

1
((nhd@2)~1) by the same proof as Lemma A.6.

Similar arguments lead to D
3n
"o

1
((nhd@2)~1) and D

4n
"o

1
((nhd@2)~1).

Thus, Jc
ni,2

"o
1
((nhd@2)~1).

Similarly for Jc
ni,3

, using Eq. (B.3) we have

Jc
ni,3

"

1

n(n!1)hd
+
t

+
sEt

M[(gL
2,t
!g

2,t
)#vL

2,t
!(gL

1,t
!g

1,t
)r
m,t`1

!vL
1,t

r
m,t`1

][(gL
2,s

!g
2,s

)#vL
2,s

!(gL
1,s

!g
1,s

)r
m,s`1

!vL
1,s

r
m,s`1

]Nr
(i),t

r
(i),s

fI
t
fI
s
K

ts

"O
1
(a2l#(nad)~1)"o

1
((nhd@2)~1)

by the same proofs as in Lemmas A.1, A.3 and A.5.
Summarizing the above, we have proved that

nhd@2Jc
ni
"nhd@2Jc

ni,1
#o

1
(1)PN(0, (X

c
)
ii
) in distribution.
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Next, let (;M
it
,XM

t
) denote an independent process that has the same marginal

distribution as (;
it
, X

t
). Also denote KM

ts
"K((XM

t
!XM

s
)/h). Then follow the same

arguments as in the proof of Theorem 2.1 of Fan and Li (1996b), it is straightfor-
ward to show that the covariance between nhd@2JK c

ni
and nhd@2JK c

nj
is

cov(nhd@2JK c
ni
,nhd@2JK c

nj
)"

2

(n!1)2hd
+
t

+
sEt

E[;
it
;

jt
;

is
;

js
K2

ts
]#o(1)

"

2

(n!1)2hd
+
t

+
sEt

E[;M
it
;M

jt
;M

is
;M

js
KM 2

ts
]#o(1)

"2E[;M
i1
;M

j1
;M

i2
;M

j2
KM 2

12
]#o(1)

"2E[p2
ij
(XM

1
)p2

ij
(XM

2
)KM 2

12
]#o(1)

"2E[p4
ij
(X) f (X)]CPK2(u) duD#o(1)"(X

c
)
ij
#o(1),

where p2
ij
(x)"E[;

it
;

jt
DX

t
].

By the Cramer}Wold device, one can show that for any c3Rp with DDcDD"1
(here DD.DD is the Euclidean norm), c@[nhd@2JK c

n
]PN(0, c@Xc). Therefore, we obtain

the desired result that

nhd@2JK c
n
PN(0, X

c
) in distribution.

Finally XK
c
!X

c
"o

1
(1) follows similar arguments as in the proof of Lemma

A.2(ii). This "nishes the proof of Theorem 5.1(i).

Appendix C. Some useful lemmas

This appendix presents some useful lemmas. Throughout this appendix. We
will use the tilde notation to denote independent process. For example, MXI

t
Nn
t/1

is an i.i.d. sequence having the same marginal distribution as MX
t
N. We

will use the shorthand notation: rJ
t
"r(=I

t
) and KI

t,s
"K((XI

t
!XI

s
)/h), etc.

Also E
t1
[A(X

t1
, X

t2
)],:A(X

t1
, x) dF(x) and E

t1, t2
[B(X

t1
,X

t2
,X

t3
, X

t4
)],

::A(X
t1
,X

t2
,x, y) dF

@t4~t3@
(x, y), where F( ) ) is the marginal distribution function

for X
t
and Fq(., .) is the joint distribution function for (X

t
, X

t`q). Like in appendix
A, we often use u

t
for;

t
and w

t
for=

t
to save space. These should not cause any

confusions because variables with subscripts always mean random variables
even small letter case is used.
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¸emma C.1. ¸et m
1
,2, m

n
be random vectors taking values in Rp satisfying an

absolute regularity (i.e., b-mixing) condition and denote by bq the mixing coe.cient
(see Appendix A for the de,nition of bq). ¸et h(x

1
,2,x

k
) be a Borel measurable

function such that for some d'0,

M"maxG P
Rkp

Dh(x
1
,2,x

k
)D1`ddF(x

1
,2,x

k
), P P

Rkp

Dh(x
1
,2, x

k
)D1`ddF(1)

](x
1
,2,x

j
) dF(2)(x

j`1
,2,x

k
)H

exists. ¹hen

K P
Rkp

h(x
1
,2,x

k
) dF(x

1
,2,x

k
)! P

Rkp

h(x
1
,2,x

k
) dF(1)(x

1
,2,x

j
) dF(2)

(x
j`1

,2,x
k
)K)4M1@(1`d)bd@(1`d)q ,

where q"i
j`1

!i
j
, F, F(1), and F(2) are distribution functions of random vectors

(m
i1
,2, m

ik
), (m

i1
,2, m

ij
), and (m

ij`1
,2, m

ik
), respectively, and i

1
(i

2
(2(i

k
.

Proof. This is Lemma 1 in Yoshihara (1976).

¸emma C.2. ¸et r( ) )3Gla, fw3Gal and ¸( ) )3Kl, where l*2 is an integer. w3Rq,
aP0 as nPR. ¹hen

(i) DE[¸((=!w)/a)!aqf
w
(w)D)aq`lD

f
(w), uniformly in w,

(ii) DEM[r(=)!r(w)]¸((=!w)/a)ND)aq`lD
r
(w), uniformly in w,

where both D
f
( ) ) and D

r
( ) ) have ,nite ath moments.

Proof. (i) and (ii) were proved in Lemmas 4 and 5 of Robinson (1988), respect-
ively.

¸emma C.3. (i) n~1+
t
E[(rL

t
!r

t
)2fK 2

wt
]"O((naq)~1#a2l).

(ii) n~1+
t
E[( fK

wt
!f

wt
)2g2

t
]"O((naq)~1)#a2l), where g

t
"1, or g

t
"u

t
or g

t
"u2

t
.

(iii) n~1+
t
E[uL 2

t
f K 2
wt
]"O((naq)~1).
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Proof. (i) is proved in the proof of Lemma A.2 of Fan and Li (1996c). Intuitively
this result is easy to understand. It says that the average mean square error
(MSE) of (rL

t
!r

t
) fK

wt
is O((naq)~1#a2l). While this is a standard result with

independent observations, one can show that the same average MSE conver-
gence rate holds for weakly dependent data.

For (ii), the case g
t
"u

t
is proved in the proof of Lemma A.1 of Fan and Li

(1996c). By exactly the same proof of Lemma A.1 of Fan and Li (1996c), one can
show that (ii) holds when g

t
"1 or g

t
"u2

t
.

Finally (iii) is proved in the proof of Lemma A.4(i) of Fan and Li (1996c).

¸emma C.4. (i) A
1n

$%&
" n~1+

t
E[(r

t
!rL

t
)2fK 2

wt
( fK

t
!f

t
)]"o(a2l#(naq)~1)"

o((nhd@2)~1).

(ii) A
2n

$%&
" n~1+

t
E[u2

t
( f

wt
!fK

wt
)2( fK

t
!f

t
)]"o(a2l#(naq)~1)"o((nhd@2)~1).

(iii) A
3n

$%&
" n~2+

t
E[uL 2

t
fK 2
wt
( fK

t
!f

t
)]"o(a2l#(naq)~1)"o((nhd@2)~1).

Proof of (i). Let m"[b log(n)] (the integer part of b log(n)) and b is a large
positive constant so that n8bd@(1`d)

m
"o(1) by (A1)(i).

Using rL
t
fK
wt
"(1/(n!1)aq)+

iEt
r
i
¸

it
, fK

wt
"(1/(n!1)aq)+

iEt
¸

it
and fK

t
"

(1/(n!1)hd) +
sEt

K
ts
, we have

A
1n
"(n3a2q)~1+

t

+
iEt

+
jEt

EM(r
t
!r

i
)¸

it
(r
t
!r

j
)¸

jt
[n~1+

sEt

(h~dK
ts
!f

t
)] N.

We consider two di!erent cases for A
1n

: (a) minMDs!tD, Ds!iD, Ds!jDN'm
and (b) minMDs!tD, Ds!iD, Ds!jDN)m. We use A

1n(a)
and A

1n(b)
to denote these

two cases. For case (a), denote K
x,t
"K((x!X

t
)/h) and use Lemma C.1, we

have

A
1n(a)

)

1

n3a2q
+
t

+
iEt

+
jEt
KEG[(rt!r

i
)¸

it
(r
t
!r

j
)¸

jt
]n~1

]+
sEt
P(h~dK

x,t
!f

t
) dF(x)HK#4(a2qhd)~1M1@(1`d)

n
bd@(1`d)
m

)Ch2n~1+
t

EM(r
t
!rL

t
)2fK 2

wt
N#C(a2qhd)~1bd@(1`d)

m

"O(h2)O
1
(a2l#(naq)~1)#O(n3bd@(1`d)

m
),
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where we used facts that :(h~dK
x,t
!f

t
) dF(x)N"O(h2) and M

n
&

max
iEt,jEt,sEt

E[D(r
t
!r

i
)¸

it
(r
t
!r

j
)¸

jt
K

ts
D1`d)Cmax

iEt
E[(r

t
!r

i
)2(1`d)]"O(1)

(M
n

is the bound function as de"ned in Lemma C.1).
Next, for case (b), without loss of generality, we assume Ds!tD)m. Hence, for

any t, n~1+
@s~t@xm

(h~dK
ts
!f

t
))Cn~1mh~d"O(m(nhd)~1). Thus, using

Lemma C.1, we have A
1n(b)

)Cm(nhd)~1n~1+
t
E[(r

t
!rL

t
)2fK 2

wt
]"

O(m(nhd)~1)O(a2l#(naq)~1) by Lemma C.3(i).
Hence, A

1n
"O((h2#m(nhd)~1)(a2l#(naq)~1))#O(n3bd@(1`d)

m
)"o(a2l#(naq)~1).

Proof of (ii). The proof of (ii) follows the same steps as the proof of (i) above
except that we need to cite Lemma C.3(ii) instead of Lemma C.3(i) in the proof.

Proof of (iii). The proof of (iii) is exactly the same as (i) above except that we need
to cite Lemma C.3(iii) instead of Lemma C.3(i) in the proof.

¸emma C.5. (i) B
1n

$%&
"(1/n(n!1)hd)+

t
+

sEt
u
t
f
wt
(r
s
!rL

s
) fK

ws
K

ts
"o

1
((nhd@2)~1).

(ii) B
2n

$%&
" (1/n(n!1)hd)+

t
+

sEt
u
t
u
s
( fK

wt
!f

wt
) f

ws
K

ts
"o

1
((nhd@2)~1).

(iii) B
3n

$%&
" (1/n(n!1)hd)+

t
+

sEt
u
t
f
wt
uL
s
fK
ws

K
ts
"o

1
((nhd@2)~1).

In the proofs below m"[b log(n)] as de"ned in the proof of Lemma C.4(i).

Proof of (i). Writing B
1n

as (n3hdaq)~1+++
t1,t2Et1,t3Et1

u
t1
f
wt1

(r
t2
!r

t3
)¸

t2,t3
K

t1,t2
, its

second moment is

EB
1
$%&
"E[B2

1n
]"(n3hdaq)~2++ +

t1,t2Et1,t3Et1

++ +
t4,t5Et4,t6Et4

]E[u
t1
f
wt1

(r
t2
!r

t3
)¸

t2,t3
K

t1,t2
u
t4
f
wt4

(r
t5
!r

t6
)¸

t5,t6
K

t4,t5
]

We consider four di!erent cases: (a) for all i's, Dt
i
!t

j
D'm for all jOi; (b) for

exactly four di!erent i's, Dt
i
!t

j
D'm for all jOi; (c) for exactly three di!erent i's,

Dt
i
!t

j
D'm for all jOi; (d) all the other remaining cases. We will use EB

1(s)
to

denote these cases (s"a, b, c, d).
Using Lemma C.1, we have

EB
1(a)

)0#Cn6bd@(1`d)
m

"O(n6bd@(1`d)
m

)"O(n~2)"o((n2hd)~1).
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For case (b), we only need to consider the case Dt
1
!t

4
D)m, since otherwise

we will have t
1

or t
4

is at least m periods away from any other indices and by
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m
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4
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i
at least m periods away from any other indices for

i"2, 3, 5, 6. Hence, use Lemma C.1 four times and let t
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denote all t
j
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jOi, we get (recall the tilde notation is for independent random variables),
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by Lemma C.2(ii).
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) by Lemma C.1. By symmetry we only need to consider i"2 and
i"3. First for i"2, using Lemma C.1 three times, we have
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Similarly for i"3, using Lemma C.1 three times, we get
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Note that case (d) has at most n3m3 terms, then using Lemma C.1, it is

straightforward to show that
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Proof of (ii). B
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Finally note that for case (c), it has at most n3m3 terms and using Lemma C.1,
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Using Lemma C.1 four times, we have
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Finally note that for case (c), it has at most n3m3 terms and using Lemma C.1,

it is easy to show that

EB
3(c)

)Cn3m3(n3hdaq)~2O(a(q`l)hd#h2d)

"(n2hd)~1m3O(al(nhd)~1#(na2q)~1)"o((n2hd)~1).

References

Ait-Sahalia, Y., Bickel, P.J., Stoker, T.M., 1994. Goodness-of-"t tests for regression using kernel
methods. Manuscript, University of Chicago.

Andrews, D.W.K., 1997. A conditional Kolmogorov test. Econometrica 65, 1097}1128.
Bierens, H.J, 1982. Consistent model speci"cation tests. Journal of Econometrics 20, 105}134.
Bierens, H.J, 1990. A consistent conditional moment test of functional form. Econometrica 58,

1443}1458.

Q. Li / Journal of Econometrics 92 (1999) 101}147 145



Bierens, H.J., Ploberger, W., 1997. Asymptotic theory of integrated conditional moment tests.
Econometrica 65, 1129}1154.

Bollerslev, T, 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econo-
metrics 31, 307}327.

Chen, X., Fan, Y., 1997. Consistent hypothesis testing in semiparametric and nonparametric models
for econometric time series. forthcoming in Journal of Econometrics.

Christo!ersen, P., Hahn, J., 1997. Nonparametric testing of ARCH for option pricing. Unpublished
manuscript.

Cochrane, J, 1996. A cross-sectional test of an investment-based asset pricing model. Journal of
Political Economy 104, 572}621.

DeJong, P, 1987. A central limit theorem for generalized quadratic forms. Probability Theory and
Related Fields 75, 261}277.

Delgado, M.A, Stengos, T, 1994. Semiparametric testing of non-nested econometric models. Review
of Economic Studies 75, 345}367.

Denker, M., Keller, G., 1983. On U-statistics and v. Mises statistics for weakly dependent processes.
Zeitschrift Wahrscheinlichkeitstheorie verw, Gebiete 64, 505}522.

Engle, R.F, 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of
united kingdom in#ation. Econometrica 50, 987}1008.

Engle, R.F, Granger, C.W.J, Rice, J, Weiss, A, 1986. Semiparametric estimation of the relation
between weather and electricity sales. Journal of the American Statistical Association 81,
310}320.

Eubank, R, Hart, J, 1992. Testing goodness-of-"t in regression via order selection criteria. The
Annals of Statistics 20, 1412}1425.

Eubank, R, Spiegelman, S, 1990. Testing the goodness of "t of a linear model via nonparametric
regression techniques. Journal of the American Statistical Association 85, 387}392.

Fan, Y., Li, Q., 1992. The asymptotic expansion for the kernel sum of squared residuals and its
applications in hypotheses testing. Manuscript, University of Windsor.

Fan, Y., Li, Q., 1996a. Consistent model speci"cation tests: omitted variables, parametric and
semiparametric functional forms. Econometrica 64, 865}890.

Fan, Y., Li, Q., 1996b. Central limit theorem for degenerate U-statistics of absolutely regular
processes with applications to model speci"cation tests. Journal of Nonparametric Statistics,
forthcoming.

Fan, Y., Li, Q., 1996c. Root-N-consistent estimation of partially linear time series models. Journal of
Nonparametric Statistics, forthcoming.

Gibbons, M, Ferson, W, 1985. Testing asset pricing models with changing expectations and an
unobservable market portfolio. Journal of Financial Economics 14, 217}236.

Gibbons, M, Ross, S, Shanken, J, 1989. A test of the e$ciency of a given portfolio. Econometrica 57,
1121}1152.

Gourieroux, C, Holly, A, Monfort, A, 1982. Likelihood ratio test, Wald test, and Kuhn}Tucker test
in linear models with inequality constraints on the regression parameters. Econometrica 50,
63}80.

Gozalo, P.L, 1993. A consistent model speci"cation test for nonparametric estimation of regression
function models. Econometric Theory 9, 451}477.

Hall, P, 1984. Central limit theorem for integrated square error of multivariate nonparametric
density estimators. Journal of Multivariate Analysis 14, 1}16.

Hansen, B.E, 1996. Inference when a nuisance parameter is not identi"ed under the null hypothesis.
Econometrica 64, 413}430.

HaK rdle, W, Mammen, E, 1993. Comparing nonparametric versus parametric regression "ts. The
Annals of Statistics 21, 1926}1947.

Hong, Y, White, H, 1995. Consistent speci"cation testing via nonparametric series regression.
Econometrica 63, 1133}1159.

146 Q. Li / Journal of Econometrics 92 (1999) 101}147



Horowitz, J.L, HaK rdle, W, 1994. Testing a parametric model against a semiparametric alternative.
Econometric Theory 10, 821}848.

Hsiao, C., Li, Q., 1997. A consistent test for conditional heteroskedasticity in time-series regression
models. Manuscript.

Lavergne, P., Vuong, Q., 1996a. Nonparametric selection of regressors: the nonnested case. Econo-
metrica 64, 207}219.

Lavergne, P., Vuong, Q., 1996b. Nonparametric signi"cance testing. Manuscript.
Lewbel, A., 1993. Consistent tests with nonparametric components with an application to Chinese

production data. Manuscript, Brandeis University.
Lewbel, A, 1995. Consistent nonparametric testing with an application to testing Slusky symmetry.

Journal of Econometrics 67, 379}401.
Li, Q., 1994. Some simple consistent tests for a parametric model versus semiparametric or

nonparametric alternatives. Manuscript.
Li, Q., Wang, S., 1998. A simple consistent bootstrap test for a parametric regression functional

form. Journal of Econometrics 87, 145}165.
Linton, O., Gozalo, P.L., 1997. Consistent testing of additive models. Manuscript.
Newey, W.K, 1985. Maximum likelihood speci"cation testing and conditional moment tests.

Econometrica 53, 1047}1070.
Politis, D.N, Romano, J.P, 1994. The stationary bootstrap. Journal of the American Statistical

Association 89, 1303}1313.
Powell, J.L, Stock, J.H, Stoker, T.M, 1989. Semiparametric estimation of index coe$cients. Econo-

metrica 57 (6), 1403}1430.
Robinson, P.M, 1988. Root-N-consistent semiparametric regression. Econometrica 56 (4), 931}954.
Robinson, P.M, 1989. Hypothesis testing in semiparametric and nonparametric models for econo-

metric time series. Review of Economic Studies 56, 511}534.
Robinson, P.M, 1991. Consistent nonparametric entropy-based testing. Review of Economic Studies

58, 437}453.
Stock, J.H., 1989. Nonparametric policy analysis. Journal of the American Statistical Association 84,

567}575.
Tauchen, G, 1985. Diagnostic testing and evaluation of maximum likelihood models. Journal of

Econometrics 30, 415}443.
Ullah, A, 1985. Speci"cation analysis of econometric models. Journal of Quantitative Economics 2,

187}209.
Whang, Y.J, Andrews, D.W.K, 1993. Tests of speci"cation for parametric and semiparametric

models. Journal of Econometrics 57, 277}318.
Wooldridge, J, 1992. A test for functional form against nonparametric alternatives. Econometric

Theory 8, 452}475.
Yatchew, A.J, 1992. Nonparametric regression tests based on least squares. Econometric Theory 8,

435}451.
Wang, Q., 1997. A nonparametric test of the conditional mean-variance e$ciency. Ph.D Thesis.

University of Chicago.
Zheng, J.X, 1996. A consistent test of functional form via nonparametric estimation technique.

Journal of Econometrics 75, 263}289.
Zheng, J.X., 1998a. Consistent speci"cation testing for conditional symmetry. Econometric Theory

14, 139}149.
Zheng, J.X., 1998b. A speci"cation test of conditional parametric distribution using kernel estima-

tion methods. Manuscript.

Q. Li / Journal of Econometrics 92 (1999) 101}147 147


