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We point out the close relationship between the integrated conditional moment 
tests in Bierens (1982, Journal of Econometrics 20, 105-134) and Bierens and 
Ploberger (1997, Econometrica 65, 1129-1 152) with the complex-valued expo- 
nential weight function and the kernel-based tests in Hardle and Mammen (1993, 
Annals of Statistics 21, 1926-1947), Li and Wang (1998, Journal of Economet- 
rics 87, 145-165), and Zheng (1996, Journal of Econometrics 75,263-289). It is 
well established that the integrated conditional moment tests of Bierens (1982) 
and Bierens and Ploberger (1 997) are more powerful than kernel-based nonpara- 
metric tests against Pitman local alternatives. In this paper we analyze the power 
properties of the kernel-based tests and the integrated conditional moment tests 
for a sequence of "singular" local alternatives, and show that the kernel-based 
tests can be more powerful than the integrated conditional moment tests for these 
"singular" local alternatives. These results suggest that integrated conditional mo- 
ment tests and kernel-based tests should be viewed as complements to each other. 
Results from a simulation study are in agreement with the theoretical results. 

1,  INTRODUCTION 

Consider the following nonparametric regression model: 
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where (5,X,'},"=, is independently and identically distributed (i.i.d.) as {Y, X'}, 
g(.): R~ + R is the true but unknown regression function and uj is the error 
satisfying E [u, I X,] = 0. 

In parametric regression analysis, it is assumed that the functional form of 
the conditional expectation E(Y,IX,)(= g(X,)) is known apart from a finite num- 
ber of unknown parameters. Given this assumption, the researcher proceeds to 
estimate the vector of unknown parameters from the data and bases the statis- 
tical inference on the resulting estimate. It has long been recognized that mis- 
specifying the functional form of the regression function may result in misleading 
inferences. This motivated the development of model specification tests. Early 
tests such as the conditional moment (CM) tests of Newey (1985) and Tauchen 
(1985) employ only a finite number of moment conditions implied by the null 
hypothesis of correct model specification and thus are not consistent against 
the general alternative that the null hypothesis is false. Having realized the in- 
consistency of such parametric tests, researchers have recently devoted much 
effort to the development of consistent model specification tests. Bierens (1982) 
was the first to give consistent model specification tests. 

With respect to the regression model given by (I), consistent model specifi- 
cation tests refer to consistent tests for 

Ho :P(g(X) = go(X, Po)) = 1 for some PoE t? C RP against 

H, :P(g(X) = go(X,@))< 1 for all p E B, 

where go(x, P ) is a known function apart from the unknown parameter p .  
The existing consistent model specification tests in the literature can be clas- 

sified into two groups: one employs some nonparametric regression estimator, 
and the other does not. Tests that belong to the first group include fit-Sahalia, 
Bickel, and Stoker (1994), Fan and Li (1992, 1996, 1999), Gozalo (1993), Har- 
dle and Mammen (1993), Hong (1993), Hong and White (1995), Horowitz and 
Hardle (1994), Lavergne and Vuong (1996, 2000), Li (1999), Li and Wang 
(1998), Robinson (1989), Yatchew (1992), Whang and Andrews (1993), Wool- 
dridge (1992), and Zheng (1996), to mention only a few. Consistent model spec- 
ification tests that do not employ any nonparametric estimator of the regression 
function are presented in Andrews (1997), Bierens (1982, 1990), Bierens and 
Ploberger (1997), Chen and Fan (1999), Delgado (1993), Ploberger and Bier- 
ens (1995), and Whang (1998), among others. For brevity, we will refer to these 
two groups of tests as nonparametric tests and Bierens' tests hereafter. It should 
be noted that Stinchcombe and White (1998) extended Bierens' approach to 
specification testing in a more general context than the standard regression frame- 
work. We refer interested readers to Stinchcombe and White (1998) for details 
on the extension. 

Although both groups of tests achieve consistency, they have very different 
properties. For example, nonparametric tests typically have asymptotic normal 
distribution under Ho, whereas Bierens' tests are usually nuisance parameter 
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dependent and have non-normal asymptotic null distributions. The nonparamet- 
ric tests can detect Pitman local alternatives converging to the null at rates slower 
than n-'I2, whereas Bierens' tests can detect Pitman local alternatives that are 
distant apart from Ho by ~ ( n - ' I 2 ) .  Hence, Bierens' tests are more powerful 
than nonparametric tests (e.g., Ploberger and Bierens, 1995) against Pitman lo- 
cal alternatives. However simulation results in Fan and Li (1992) and Hong 
and White (1995) show that the power of Bierens' tests does not always dom- 
inate that of nonparametric tests. For some alternatives, Bierens' tests are more 
powerful; and for other alternatives, nonparametric tests are more powerful. 

The main purpose of this paper is to attempt to provide a theoretical justifi- 
cation for the simulation results alluded to earlier and to point out the relation- 
ship between some kernel-based tests and the integrated conditional moment 
(ICM) tests of Bierens (1982) and Bierens and Ploberger (1997). Although there 
exist quite a number of consistent nonparametric tests, we will focus our atten- 
tion on kernel-based tests, in particular, the tests in HLdle and Mammen (1993), 
Li and Wang (1998), and Zheng (1996), and we will make slight modifications 
of these tests (see Section 2 for details). Other existing kernel-based tests are 
either inconsistent against deviations from the null outside a proper subset of 
the support of the regressor X as a result of fixed trimming, or are less power- 
ful than the preceding two tests because of sample splitting or other ad hoc 
modifications, or are not strictly asymptotically locally unbiased against Pit- 
man local alternatives because of the presence of the conditional bias of the 
kernel regression estimator. 

The main results of this paper are as follows. First, we show that the kernel- 
based tests in Hardle and Mammen (1993), Li and Wang (1998), and Zheng 
(1996) with a fixed smoothing parameter can be regarded as ICM tests of Bie- 
rens (1982) and Bierens and Ploberger (1997) with specific weight functions. 
Second, we show via a class. of "singular" local alternatives that kernel-based 
tests can detect such alternatives converging in probability1 to the null model 
at a rate faster than n-'12 and this rate can be made arbitrarily close to n-3/4, 
whereas the ICM tests can only detect such "singular" alternatives that ap- 
proach the null at rate n-'I2. The main feature of the "singular" local alterna- 
tives is that they have narrow spikes and change rapidly as the sample size n 
increases. Loosely speaking, these "singular" local alternatives can be thought 
of as representing high frequency alternatives and the Pitman local alternatives 
as representing low frequency alternatives. Hence, the ICM tests have higher 
power than kernel-based tests for low frequency alternatives and have lower 
power than kernel-based tests for high frequency alternatives. These results sug- 
gest that kernel-based tests provide complements to, rather than substitutes for, 
Bierens' ICM tests. 

Another way of investigating the asymptotic power properties of tests of the 
null hypothesis of a parametric regression model against general nonparamet- 
ric alternatives is the minimax approach of Ingster (1982, 1993a, 1993b, 1993~) .  
This approach was largely unknown in econometrics until the recent work of 
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Horowitz and Spokoiny (1999). As explained clearly in Horowitz and Spokoiny 
(1999), the aim of the minimax approach is to find the optimal rate of testing. 
The papers by Ingster (1982, 1993a, 1993b, 1993c) establish the optimal rate 
of testing for several classes of smooth functions with the order of smoothness 
known. In the case where the order of smoothness of the underlying function 
class is unknown, Spokoiny (1996) presents the optimal rate of testing. For 
more details on this approach, we refer readers to the previously mentioned 
papers. Horowitz and Spokoiny (1999) take the minimax approach and propose 
an adaptive, rate-optimal test of a parametric model against nonparametric 
alternatives. 

The remainder of the paper is organized as follows. Section 2 first provides 
a brief review of the two kernel-based tests and Bierens' ICM tests and then 
derives the relationship between the two kernel-based tests and the ICM tests 
of Bierens (1982) and Bierens and Ploberger (1997). In Section 3, we analyze 
the local power properties of the kernel-based tests and the ICM tests for the 
sequence of "singular" local alternatives. Section 4 presents some simulation 
results. The technical proofs are given in the Appendix. 

2. NONPARAMETRIC TESTS VERSUS BIERENS' TESTS 

Nonparametric estimation techniques such as kernel, series, spline, and sieve 
have all been used in consistent model specification testing. In this section, we 
examine some of the tests based on the kernel estimation of the regression func- 
tion. We are particularly concerned with their relationship with the ICM tests 
of Bierens (1982) and Bierens and Ploberger (1997). 

Throughout the rest of this paper, we use X, to denote X,"=, and C, C,,, to 
denote E;=,Xj",r,J=,. 

2.1. Kernel-Based Tests 

In this subsection, we briefly review two kernel-based tests: (i) the test in HL- 
dle and Mammen (1993) and (ii) the test in Li and Wang (1998) and Zheng 
(1996). The test for Ho versus H I  established in Hardle and Mammen (1993) 
employs the Nadaraya-Watson kernel estimator of g(x) for x E Rd given by 

where KJx = K[(XJ - x)/h], K(.) :Rd -+ R is a symmetric kernel function, h = 

h, -+ 0 is a smoothing parameter, andf(x) is the kernel estimator of the prob- 
ability density function (p.d.f.) f (x) of the regressor X given by 
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Let p be the nonlinear least squares (NLS) estimator of Po under Ho. Define 
g(x) = ,go(x,b). Hkdle and Mammen (1993) use a weighted integrated squared 
difference between the kernel estimator g(x) and the kernel-smoothed paramet- 
ric estimator g(x) to construct a consistent test for Ho versus H, :  

where the range of integration in (4) is the support of X, W( . ):R" 4 R is a 
smooth weight function, and 

For regressor X with compact support, Hardle and Mammen (1993) show 
that under certain conditions, T, is asymptotically normally distributed under 
Ho and the test based on T, is a consistent test of Ho against H I .  In addition, 
the test can detect Pitman local alternatives that converge to the null at rate 
~ ( ( n h ~ / * ) - ' / ~ )(more slowly than n-'I2). They also provide a "wild bootstrap" 
procedure to approximate the finite sample distribution of T,, under Ho when 
the sample size n is small. 

Li and Wang (1998) and Zheng (1996) independently propose a simple con- 
sistent test for Ho versus H ,  based on 

where ii, = I; - g(Xj) is the (parametric) residual and Kl, = K[(Xi - Xj)/h]. 
The asymptotic properties of the test based on I, are similar to those of the 

test in Hhdle and Mammen (1993). However, its simplicity (it is easy to com- 
pute) may appeal to applied researchers. 

We note that an alternative expression for I, is given by 

where g-l(Xi), f - I ( ~ i ) ,  and Kh,,,-[ * g(Xi) are leave-one-out versions of ( 2 ) ,  
(3), and (5) ,  respectively. It is obvious from (4) and (7) that the conditional 
bias of the kernel regression estimator under Ho has been removed from both 
T, and I,, which results in the strictly asymptotically locally unbiasedness of 
the tests based on T, and I, (see Hardle and Mammen, 1993; Zheng, 1996). 
This desirable feature distinguishes T, and I, tests from other kernel-based tests 
such as those in Hong (1993) and Ai't-Sahalia et al. (1994). 
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2.2. Bierens' Tests 

In contrast to the nonparametric tests mentioned earlier, Bierens' tests do not 
make use of any nonparametric estimator of the regression function g(.). In 
fact, they can be viewed as extensions of the class of conditional moment tests 
proposed by Newey (1985) and Tauchen (1985). To achieve consistency, Bie- 
rens (1982, 1990) and Bierens and Ploberger (1997) employ an infinite number 
of conditional moment conditions obtained by using a class of weight func- 
tions indexed by a continuous nuisance parameter (for details, see Bierens and 
Ploberger, 1997, and the references therein). The asymptotic null distributions 
of these tests are typically non-normal and nuisance parameter dependent. 

The ICM tests proposed by Bierens (1982) and Bierens and Ploberger (1997) 
are based on 

where Z is a compact subset of R ~ ,  p([) is a probability measure on Z, 

wj([) is a weight function that can take the form wj([) = w(S1@(Xj)) or wj([) = 

w (5  + @ (X,)), and @ (.) is a bounded Borel measurable mapping from R~ to R~ 
such that @(Xj) and Xj generate the same euclidean Borel field. To achieve con- 
sistency, one can take E to be a neighborhood of the origin and take w (.) to sat- 
isfy certain conditions. For example, if wj(() = w(t1@(X,)), then w(.) must 
satisfy the conditions of Theorem 1 in Bierens and Ploberger (1997); if wj([) = 
w ([ + @(Xj)), then w ( a )  must be proportional to the moment generating func- 
tion or the characteristic function of an absolutely continuous distribution with 
density having bounded d-dimensional support (see Bierens and Ploberger, 1997, 
Theorem 2). In Bierens (1982), wj([) = exp(i['@(Xj)) and dp([) = d[, where 
i 2  = -1. The ICM test with the preceding choice of wj(-) and p ( . )  was origi- 
nally constructed from a Fourier transform characterization of conditional 
expectations (see Bierens, 1982). Corollary 3 of Bierens (1982) ensures consis- 
tency of this test. Bierens (1982) also derives upper bounds for the asymptotic 
critical values of this test based on Chebeyshev's inequality. Recently, Bierens 
and Ploberger (1997) show that for a general weight function and a general 
probability measure, the asymptotic null distribution of p is given by that of an 
infinite sum of weighted independent X :  random variables. Because the asymp- 
totic critical values of the null distribution are case dependent, Bierens and 
Ploberger (1997) propose to approximate these critical values by the condi- 
tional Monte Carlo approach of Hansen (1996) and De Jong (1996) and derive 
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sharper upper bounds for the asymptotic critical values of these tests than ob- 
tained from Chebeyshev's inequality. 

2.3.The Relationship 

The tests in Hiirdle and Marnmen (1993), Li and Wang (1998), and Zheng (1996) 
and the ICM tests of Bierens (1982) and Bierens and Ploberger (1997) are de- 
veloped from completely different ideas. Moreover, the existing expressions 
for the test statistics look completely different (compare (4)-(6) and (a), (9)). 
However, in this subsection we will show by using Fourier transforms that al- 
ternative expressions exist for the appropriately modified versions of T,, p, (say), 
and I,, p, (say), that are in essence the same as the ICM test ( p )  with specific 
weight functions and probability measures. 

To motivate the modified version of T,, the basis of the test in Hardle 
and Mammen (1993), we follow Bierens (1982) by noting that E[{Y, -
go(X,,P)>IX,] = E[{q - go(X,,p))lZj] as. ,  where Zj = @(Xj) and a(.)is 
a bounded Borel measurable mapping from R~ to Rd such that XI and Zj 
generate the same euclidean Borel field. Hence, Ho and H ,  are, respectively, 
equivalent to 

H ~ : P ( E [ { I ; - g o ( X j , ~ o ) ) l Z j ] = O ) = lf o r s o m e p o E Z ? C R P  and 

Hi :P(E[{I;. - go(Xj,/3))(Zj] = 0) < 1 for all p E B. 

Thus, we can test Ho versus H I  by testing HA versus Hi via the test in Hardle 
and Mammen (1993). Specifically, let fz(.) andfz(.) be, respectively, the p.d.f. 
of Z = @(X) and the kernel estimate of fz(.). In addition, let &(.) and Kh,n,Z * 
g(.) denote the kernel estimate of E ( Y ( Z  = .) and E(g(X)IZ = .). By choos- 
ing W ( . )=@(.) in (4) and letting p l  denote the resulting test statistic, we get 

where 2, = Y, - g(Xj) and Zj = @(Xj). We point out here that the range of 
integration in (10) is Rd, although Z is bounded. One can show that under ap- 
propriate conditions including h + 0, p ,  yields an asymptotically valid test for 
Hh versus H;. 
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Let A(z) = (nhd)-' x, ii, K[(Zj - z)/h] and A(.) be the Fourier transform of 
A(.). By definition and the fact that A(z) is well defined for all z E R ~ ,we get 

1 -- i i  Lde x p i t z
nhd(27r)d'2 

where K(.) is the Fourier transform of K(.). Thus, by Parseval's identity and 
symmetry of K(.), we obtain the following lemma. 

LEMMA 2.1. pl = iij exp ( i t ' ~ , )1~K~( th )  @(Xj).. fRd(( l /n)xj  dt, where 2, = 

It is interesting to note that the alternative expression for p, given in Lemma 
2.1 is in essence the basis of the ICM test in Bierens (1982) and Bierens and 
Ploberger (1997), where the weight function is wj(5)= exp(i['@(Xj)) and 
the probability measure (apart from a constant) is d,u(() = K2(th)d[. It fol-
lows immediately from Corollary 3 in Bierens (1982) or Theorem 1 in Bierens 
and Ploberger (1997) that for a fixed h, the test based on p, is a consistent 
test for H, versus HI,provided that the kernel function K(.) is absolutely 
integrable and its Fourier transform K(.) satisfies the condition that there 
exists a compact subset E (say) of R~ containing the origin such that the set 
{( E E :K(th)  = 0) has Lebesgue measure zero. This condition is satisfied by 
most of the commonly used kernel functions such as the uniform kernel, the 
standard normal kernel, the triangular kernel, the double exponential kernel, 
and the Epanechninov kernel. It is important to note that Lemma 2.1 only re-
lates the test in Hkdle and Mammen (1993) to a special class of the ICM tests. 
In general the weight function and the probability measure that characterize 
this special class may not be optimal. 

A similar relationship exists between the test based on p2, defined by adding 
the j = 1 terms to I, given in (6) and the ICM tests of Bierens (1982) and Bie-
rens and Ploberger (1997): 
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To see this, note that by inverse Fourier transform, we get 

K (y) Ld= ( 2 ~ ) - ~ / '  exp[- irl((Z, - ~, ) /h ) ]K( r )  dt. 

From (12) it follows that 

1 1 
--- 1 -xi,exp(irlzj) 2K(th) dt. 

(27r)d/2JR* n 

LEMMA 2.2. pz = [1/(2.ir)di2]SR* 1 (1/n) xjGj exp(it1zj) I2K(th) dt, where 
2, = @(Xj). 

Lemma 2.2 implies that for the test based on p2 with a fixed h to be consis- 
tent, the Fourier transform of K(.) must be such that there exists a compact 
subset E (say) of Rd containing the origin (ti = Rd is allowed) such that K(th) 
vanishes outside E and the set {t E 8 :K(th) 5 0) has Lebesgue measure zero. 
The standard normal kernel, the triangular kernel, and the double exponential 
kernel satisfy this condition, but the uniform kernel and the Epanechnikov ker- 
nel do not. By comparing Lemma 2.1, Lemma 2.2, (8), and (9), we arrive at the 
following two conclusions: (a) the tests in Hardle and Mammen (1993), Li and 
Wang (1998), and Zheng (1996) (after some modifications), in a certain sense, 
are the same tests; (b) both tests are related to the special class of the ICM tests 
of Bierens (1982) and Bierens and Ploberger (1997) with the complex-valued 
exponential weight function wj([) = w(t1Zj) = exp(it lZj)  except that the 
"smoothing parameter" h is treated differently (vanishing h versus fixed h). 

We recall that the weight function in the ICM tests can also take the form 
wj([) = w ( t  + 2,). As long as w(.)is proportional to the moment generating 
function or the characteristic function of an absolutely continuous distribution 
with density having bounded d-dimensional support, Theorem 2 in Bierens and 
Ploberger (1997) ensures that the corresponding ICM test is consistent. Inter- 
estingly, this class of ICM tests is also related to some kernel tests. For exam- 
ple, consider the case with d = 1. Let p(.)be the uniform probability measure 
on [- 1,1]. Then, one can see from (8), (9), and change of variables that 

Obviously one can interpret the preceding ICM test as a kernel test with a fixed 
smoothing parameter (h = 1) and a kernel function w(.) provided that w(.) 
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satisfies certain conditions. In fact, it is not difficult to see that p in (14) is a 
special case of Tnin (4). Alternatively, if we let p ( . )be the probability measure 
of the random variable (-Z) and replace the unknown p(.)with the empirical 
distribution function of {-ZJ}j"=, in p,  then we get the following ICM test: 

This can also be interpreted as a kernel test with a fixed smoothing parameter. 

3. FIXED h OR VANISHING h 

The results in Section 2 reveal that there exists a close relationship between the 
tests in Hkdle  and Marnmen (1993) (also in Li and Wang, 1998; Zheng, 1996) 
and a special class of the ICM tests in Bierens and Ploberger (1997). The dif- 
ference lies in the treatment of the "smoothing parameter" h. In the former, h 
plays the role of a smoothing parameter so that h + 0 as n + co,whereas in 
the latter h is fixed. Fixing h and choosing a vanishing h lead to completely 
different tests with different asymptotic distributions under H,, and with differ- 
ent power properties. The existing results in the literature suggest that fixing h 
improves the power of the tests because the ICM tests (fixed h) can detect Pit- 
man local alternatives that approach the null at the rate of 0(n-'/') as shown 
in Bierens and Ploberger (1997), whereas the tests in Hardle and Mammen 
(1993), Li and Wang (1998), and Zheng (1996) can only detect such local al- 
ternatives converging to the null at rate ~ ( ( n h ~ / ~ ) ~ ' / ~ ) ,  slower than n-1/2 be- 
cause h +0. However intuition suggests that if the alternative changes drastically 
or is of high frequency, then tests with a shrinking h may be more powerful 
than tests based on a fixed h (at least when sample size n is large), because the 
kernel estimate with a fixed h may oversmooth the true regression function and 
thus obscure the main feature of the alternative. Simulation results in Fan and 
Li (1992) show that this is indeed the case. This motivates us to study power 
properties of these tests for high frequency alternatives. 

To facilitate theoretical analysis, we consider a class of "singular" local al- 
ternatives that represent high frequency alternatives, and we investigate the power 
properties of the kernel-based tests and the ICM tests for the class of "singu- 
lar" local alternatives. These alternatives were first proposed by Rosenblatt 
(1975) and later used by Ghosh and Huang (1991) and Fan (1994) in the con- 
text of testing goodness of fit of a density function. In the context of a regres- 
sion model, they take the following form: 

L H s : Y , =g0(XJ,Po) + yn6,(XJ) + u J ,  (16) 

where yn is a deterministic sequence and a n  = S6:(x)dx -+ 0, as n + co. 
In view of the close relationship between Tn ( p , )  and In (p,) and the simple 

nature of In or p2, we will focus on the analysis of In or p, in the rest of this 



1026 YANQIN FAN AND 01 L1 

paper. Subsequently we provide a detailed analysis of the local power proper- 
ties of the tests based on I,, and p2. To unify the analysis of In and p2, we do 
not transform X,'s explicitly but rather allow for bounded Xi's. We adopt the 
following conditions. 

(i) Random variables (Y,,X,'), 	 j = 1,2,...,n are i.i.d. as (Y,X1), and X admits a 
bounded density function f (.) on S ( S  is the support off (-)), where S is a con- 
vex subset of Rd ( S  = Rd is included as a special case) and f (.) is continuous in 
the interior of S; 

(ii) Vgo(X,.) and V2go(x, .) are continuous in X and dominated by a function (say, 
M(X)) with finite second moments, where Vgo(X,.) and V2go(X,.) are p X 1 
vector of first order partial derivatives and p X p matrix of second order partial 
derivatives of go with respect to p ,  respectively; 

(iii) E [Vgo(X, P)V1g0(X, P)] is nonsingular for P in a neighborhood of plim p. 
(C2). Kernel K :  Rd-+ R is bounded and symmetric with SK(z )dz  = 1 and 

SK(z)ljzjldz = c, where 0 < c < co is a constant, and / I  . / I  denotes euclidean 
norm. 

(C3). As r~ -+ co, nhd -+ co, h d  = o(a,), S /6 , (x) ldx  = O(a,) ,  n h d ' 2 y ~ a n  
C,. -+ C, ,  [ Sf ( x ) S ; ( x )  d.x]/a, = C2, -+C2,where C ,  is a finite non-negative 
constant and C2 is a finite positive constant. 

(i) S,(x) 	 is uniformly bounded in both n and x and satisfies either 
EISn(X)Vgo(X,po)]= 0 or EIG,(X)Vgo(X,Po)] = a, with y,a, of magnitude 
O(n-'I2) or smaller; 

(ii) Let u2(x)  = E(U*IX = x) and p4(x) = E[U41X = x], where U = Y - go(X,Po). 
Then (fS,), (u2Sn),  ( f u 2 ) ,  ( fM) and p4 all satisfy some Lipschitz type 
conditions: 
(a) l(fsn)(x + 0) - (fSn)(x)I 5 a , " d ~ ( ~ ) I I ~ I I ,  
(b) I(u~S,)(X+ U)- ( u 2 S n ) ( ~ ) I5 Q;"~G(x)IIuII, 
(c) l(fu2)(x + u) - (fu2)(x)I 5 G(x)IIuII, 

(dl I(fM)(x + u) - (fM)(x)l 5 G(x)llull, 

(el I C L ~ ( X  + u) - P~(x) I5 G(x)IIu 11, 

where E[G2(X)] < w and the following condition holds for D(x) = G(x), G2(x), 
u2(x)G(x), and u 2 ( ~ ) :  
( f )  Sf(x)lD(x)&(x)ldx = O(an). 

Some discussions on the assumptions are in order. Condition (Cl) is a stan- 
dard condition used in the literature on the parametric model specified under 
the null hypothesis. It implies that under Ho, fi(p - Po)  = 0,(1).Condition 
(C2) imposes some basic assumptions on the kernel function K(.) .  The first 
condition in (C3) is a standard assumption on the smoothing parameter h. The 
second one, h" = o(a,,), can be better understood via the example S,,(x) = 

L ( ( x- xo)/Ln),where L ( . ) is a bounded function, xo is a fixed point in R ~ ,and 
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(,, + 0 as n + co. For this example, a, = O(5,d). Hence, this condition is 
equivalent to h = o(5,). If we take L(.) to be the uniform density over [0,1], 
then the support of S,(x) is [xo,[, + xo]. The second condition in (C3) just 
states that the smoothing parameter h must be smaller (in order) than the length 
of the support of a,(.). The third condition in (C3) is satisfied by the preceding 
example. The fourth and fifth conditions in (C3) ensure that the test based on 
I, has nontrivial power against alternatives in LH, (C, > 0). The third con- 
dition is satisfied by choosing h, y,, and a, appropriately, and the fourth 
condition is satisfied by the preceding example as long as f (x) is continuous at 
x = xo and f (x,) f 0, because it can be shown that Sf 2 ( ~ ) ~ 2 ( ( ~xo)/~,,)dx/-
a, +f '(x,). Condition (C4) involves some assumptions on the local alterna- 
tives. The first one along with (C3) ensures that under the sequence of "singular" 
local alternatives specified in (16), the NLS /?still converges to Poat rate n-'I2. 
To see this, note that under condition (Cl), one can easily show that 

where A (Po) =p limn,, n- 'xjVgo(X,, P,)Vfg0 (X,, Po). It is a simple exercise 
to show that the first term on the right hand side of (17) is OP(1). Under (C4)(i), 
the second term has a mean given by either zero or A(P,)-10(n1'2y,a,) 
that approaches a finite constant, and it has a variance that is of the same 
order as y ~ S S ~ ( ~ ) V ' ~ , ( x , P ~ ) V g ~ ( x , P ~ ) f ( x ) d x  Condition (C3), = ~ ( y i a ; / ~ ) .  
in particular nhd'2y;an = O(1) and nhd + co,implies y;a, = Hence,~ ( h ~ / ~ ) .  
y:a,!'2 = ~ ( h ~ / ~ a ; ' / ~ )  = o(a,)  assumed in (C3). Conse- = o(1) given hd  
quently, the second term on the right hand side of (17) is either op(l) or OP(1). 
The second condition in (C4) is employed to simplify the proof. Loosely speak- 
ing, it ensures that the second term of the Taylor series expansion of the various 
terms in the decomposition of I, that involve 6,(x) is of smaller order than the 
first. It is easy to verify that this condition is satisfied by the preceding example 
of "singular" local alternatives. With a more involved proof, (C4) can be 
weakened. 

The following theorem gives the asymptotic distributions of I, and p2 under 
LH,. 

THEOREM 3.1. Under conditions (C1)-(C4) and LH,, we have 

(i) nhd"l, -+ N ( C , C,, u:) in distribution, 

where C1 and C2 are the finite constants defined in (C3) and go2 = 

2[SK2(.)d.lECf (X)a4(X)1. 
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(ii) If, in addition, y,o, = - f ( x )dx]+o(hd12),then nhd'2[P2 (nhd ) - 'K (0 )$r2 (x )  
N(C,C,, a:) in distribution. 

(iii) Let I,, = nhd/21,,/boand p2 = nhd /2[P2- ( n 2 h d ) - ' K ( o ) ~ ~  =i i f] /bo,  where bi 
[2/n(n - Then in-+ N((C1C2/uo) , l )  p2 -+l ) h d ] z , ~ , + , i : ~ K ~ .  and 
N( (CI  C2/uo), I )  in distribution. 

First we note that under Ho, C2 = 0 .  Theorem 3.1 (iii) implies that in-+ N(0,l) 
in distribution, which provides the following one-sided asymptotic test for H, 
versus H1 at significance level a: reject H,, if I, > z,, where z ,  is the upper 
a-percentile of the standard normal distribution. Second, we note from the def- 
initions of I,, in,p2, and p2 that f, = P 2 .  Hence, the two measures I, and p2 
result in the same asymptotic test. This will be referred to as the I, test, which 
is the test in Li and Wang (1998) and Zheng (1996). 

The most important implication of Theorem 3.1 is that under the conditions 
of Theorem 3.1, the I, test can detect "singular" local alternatives in LH, as 
long as C 1 f 0 .  Thus, as long as the smoothing parameter h of the I, test and 
the parameters y ,  and a, of the "singular" local alternative are such that C ,  = 
lim,,,,(nhd/2y~a,) + 0 ,  the corresponding test has nontrivial power against 
such an alternative; otherwise, if C ,  = 0 ,  then the corresponding test has only 
trivial power. 

Subsequently we demonstrate that under the conditions of Theorem 3.1, if 
C 1i0 ,  then the I, test can detect certain "singular" local alternatives that ap- 
proach the null model in probability at a rate (y,a,,) arbitrarily close to np3 /4  
and the ICM tests can only detect "singular" local alternatives with rate y,a,, = 

~ ( n - ' I 2 ) .Hence the kernel-based tests are more powerful than the ICM tests 
for such cases.2 

Consider the class of "singular" local alternatives that was used in 
Rosenblatt (1975),Ghosh and Huang (1991),and Fan (1994) in the context of 
testing goodness of fit of a density function. It is represented by 6, (x)  = 

x,4= [ ( x  - l ,)/[, ,],  where q is a positive integer, l l , ...,1, are constant vec- 
tors in R ~ ,and W l(.), .. . ,W,(.) are bounded functions with uniformly bounded 
first order derivatives and satisfy SI W,(x)ldx < co, and [, -+ 0 as n -+ a. 
Obviously a, = 0(l,d)and 1S,(x + v )  - 6 , ( x ) (  5 ~a,"~l lv l l ,  where C is a 
finite constant. It is easy to see that (C4)  holds if f ( x ) ,  a 2 ( x ) ,  ,u4(x), and 
M ( x )  satisfy some Lipschitz conditions. Let h = n-'7' and [, = n-7, where 
l l ( d  + E )  < v < 77' < l l d  for some small positive constant E .  Then a, = 

n-d'7. Thus n h d  + ce and h d  = o ( a , )  are both satisfied. Let y ,  = where 
A is a constant. From nhd /*any ;  = C, ,  = 1, say, we get n1-(d'7 ') /2pdv2A= 

no  = 1, which leads to 

Hence the rate at which the local alternative approaches the null model is a, y, = 

n-d'7n-['-(d'7')/2-d01/2, because d v  +which can be arbitrarily close to 
(1 - ( d v 1 ) / 2- d v ) / 2  = (i)+ ( d / 2 ) [ v- (v1 /2)12 (4) + ( d / 2 ) [ l l ( d+ E )  -
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1/(2d)] = (i)+ (1 - ~) /{4[1+ (dd)]}  can be arbitrarily close to (4) + (i)= 

($) if E is much smaller than d. 
It is interesting to examine further the "singular" local alternatives for which 

the kernel-based tests have nontrivial power. These alternatives converge to the 
null model at rate any,.  To see the role played by either y, or a,, note the 
following. (i) If y ,  = 0(n-I/'), then C1 = 0. Hence, the tests have only trivial 
power. (ii) If a, = ~ ( n - I / ' ) ,  then C1 f 0 for A = (1 - dqf) /4  > 0. In this 
case, y,a, = o(n-I/'). (iii) If an= O(K1+') ,  where E is a small positive num- 
ber, and y, = ~ ( n ' / ~ )+ m, then a n y n  can be made arbitrarily close to n-3/4. 
(iv) If A r 0, then a n y n  can be made arbitrarily close to n-2'3. Conditions (i) 
and (ii) show clearly that the power advantage of the kernel-based tests stems 
from the highly changing feature of a,(.) or a,. It follows from (iii) and (iv) 
that the existence of a shrinking y, does not help to improve the power of 
these tests. As a matter of fact, if we let y, approach infinity, then the power of 
the tests against "singular" local alternatives can be made arbitrarily close to 
0 ( n P 3 / 9 ;  otherwise the power can only be made arbitrarily close to ~ ( n - " ~ ) .  

We now study the power properties of ICM tests for the class of "singular" 
local alternatives in (16). It follows from Bierens and Ploberger (1997) that 
under their Assumption A.5, the ICM tests have nontrivial power if and only if 
there exists a continuous function ~ ( 5 )  on E such that 

and 

-Y n  
~3,(X,)+~(5)-+ q ( 5 )  in probability uniformly on E ,

6 

where 

and b(Po,[) is the uniform probability limit of n-' 2,V1go(XJ,Po)wj([) on 
B X E (see Bierens and Ploberger, 1997, Assumption A.5). For the preceding 
class of "singular" local alternatives, one can easily show that under general con- 
ditions, ( y n / 6 ) C j  s , ( ~ ~ ) + , ( [ )  = 0 , ( 6 y , a n )  = o,(l) if a n y n  = o(nP'/*). 
Thus, condition (19) is violated if y,a, = o(n-'I2). Therefore, the ICM tests 
have only trivial power against "singular" local alternatives that approach the 
null model in probability at a rate of smaller order than n-'l2. 

We note that the previously demonstrated power advantage of the kernel- 
based test over the ICM test depends on the condition that C1 f 0. If C1 = 0, 
then the kernel-based test has only trivial power against "singular" local alter- 
natives LH,, whereas the ICM test can still have nontrivial power against such 
alternatives for which y,a, = 0(n-'/'). 
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To summarize the results of this section, we have shown that (against "sin- 
gular" local alternatives) (i) when C1 # 0 and y,a, = o(n-'"), the kernel test 
has nontrivial power, whereas the ICM test has only trivial power; (ii) when 
C, = 0 and y,a, = ~ ( n - ' I 2 ) ,  the kernel test has only trivial power, whereas 
the ICM test can have nontrivial power. Our simulations results reported in the 
next section illustrate that the previous asymptotic results have finite sample 
implications. 

4.MONTE CARL0 RESULTS 

In this section we report results from a simulation study carried out to compare 
the finite sample performances of the kernel-based test I,, and the ICM tests. 
We first compare the power performances of these tests based on (size ad- 
justed) empirical critical values. The empirical critical values are generated via 
5,000 replications of the null model. Because in practice, empirical critical val- 
ues are not available, we also report results obtained by using a "wild boot- 
strap" procedure to approximate the asymptotic null distributions of these test 
statistics. For the detailed steps of the wild bootstrap procedure for the I, test, 
and also a proof that the wild bootstrap works, see Li and Wang (1998). 

We compare the I,, test with four ICM tests: two with the complex-valued 
exponential weight function and two with the real-valued exponential weight 
function. Given the equivalency between ICM tests with the complex-valued 
exponential weight function and the I,, test with a fixed value of h, we use the 
I,, test given in (6) with a fixed value of h to represent a special class of the 
ICM tests. In our simulation experiments, we choose two values for h and de- 
note the resulting tests by J, and Jn,respectively. The ICM test with the real- 
valued exponential weight function and probability measure p ( . )  is given by 

where we use two different measures for p( . ) :  (i) a product uniform [-b, b] 
distribution and (ii) a product normal N(0,a2) distribution. The resulting two 
tests are 

and 

where Zsj = tan- '((X,. -X,)/X,,,~) (s  = 1, . . . ,d )  and Xs and Xs,sd are the mean 
value and standard deviation of {X,.)j"=, with Xsj the sth component of X,. We 
note that p ( i i )is invariant to different values of a. 
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We take as the null model a linear regression model with two regressors (see 
DGP1, which follows). For j = 1,. . .,n, let V,, Vlj, and V2j be independent ran- 
dom drawings from the uniform [-n-, n-] distribution and cj be independent ran- 
dom drawings from a standard normal distribution. The regressors are given by 
Xlj = V, + Vlj and X2j = V, + V2j for j = 1,. .. , n. The following data generating 
processes (DGP) are used in our simulation experiments: 

DGPl  :I; = a, + a , X l j  + a2Xv + ej, 

+ 10n-~in(X?i/i;l)sin(X2j/5n)I(IX,jl 5 f ; , )  + ej,5 5,)I(IX2,1 

DGPS : I; = a, + a,XI, + a2X2, + 2 sin(mXlj)sin(mXzj) + ej, 

where DGPl is the null model; DGP2 corresponds to a fixed alternative; DGP3 
is a Pitman local alternative that approaches the null at rate ~ , ( n - ' / ~ ) ;  DGP4 is 
a singular local alternative with 5, = nn-'/'O and h satisfying (18) (h - n-'I6): 
h = [I - (drli/2) - dq]/2 = [ l  - (i)- (4)]/2 = g ;  and DGPS is a fixed al- 
ternative that represents high (low) frequency alternative for small (large) val- 
ues of m. Both DGPl and DGP2 are taken from Bierens (1990). 

In the simulation experiments, we chose (ao,  a l ,  a,) = (1,1,1). The sample 
sizes are n = 50,100,200 (n = 400 is used for DGP3). We used a product (stan- 
dard) normal kernel with h, = c ~ x ~ , ~ ~ ~ - ~ / ~= 1,2) for the I, test and h, (S = 
Xs,sd (S = 1,2) for the Jntest. The J, test is the same as the Intest except that 
h, = Xs,sd, which does not go to zero as n -+ co. We also computed another 
fixed h test Jn, where is obtained from (6) with h = 1 and K((Xj -Xl)/h) in 
(6) is replaced by K(Zj - Zl) (because h = 1) with Z,. = tanP1((X,. - z,)/ 
Xs,sd). For the p( i , test, we used b = 0.5,1,2 and found that the results for dif- 
ferent values of b are almost identical. Hence we only report the case of b = 1. 

TABLE1. Estimated power (DGP2) 

n = 50 n = 100 n = 200 

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 



TABLE2. Estimated power (DGP3) 

'rests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%1-. 
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TABLE3. Estimated power (DGP4) 

n = 50 n = 100 n = 200 

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 

Because p( i i jis invariant to different values of a, we chose a = 1 for the p( j i j  
test. The empirical 1%, 5%, and 10% critical values are obtained from 5,000 
random samples of size n from the null model (DGP1). Using these empirical 
critical values, we estimate the power of different tests for DGP2-DGPS via 
2,000 replications. The estimated powers based on empirical critical values are 
given in Tables 1-5. 

Table 1 reports the power performances of different tests for DGP2. In gen- 
eral all the tests have similar power against DGP2, with p( i jbeing slightly more 
powerful than the other tests in most cases. It should be emphasized that we 
have only used the exponential weight function for ICM tests in Bierens and 
Ploberger (1997) in our simulations. The optimal choice for the weight func- 
tion in the ICM tests does not seem available in the literature. 

Table 2 gives the estimated power for a Pitman local alternative (DGP3) that 
departs from the null at a rate of n-''2. We observe that the rejection rate for 
the I,, test decreases slightly as n increases, which is consistent with the theo- 
retical result because I, has only trivial power asymptotically against DGP3. In 
contrast to the I, test, the other four tests, J,,, L,p(;,, and p(i i ) ,have moderate 
power, and the power improves slightly as n increases. For DGP3, the p(;;)test 
is the most powerful test. 

TABLE4. Estimated power (DGPS: m = $) 

Tests 1% 5% 10% 

In 0.391 0.604 0.697 
Jn 0.570 0.757 0.842 
jn 0.689 0.851 0.913 
p 0.798 0.926 0.962 
p(ii, 0.719 0.871 0.933 
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TABLE5. Estimated power (DGP5: m = 1) 

n = 50 n = 100 n = 200 

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 

Table 3 summarizes the results for DGP4, a "singular" local alternative. The 
results are in agreement with our theoretical local power analysis: the Intest 
has nontrivial power against DGP4, whereas the powers of the remaining four 
tests decrease as the size of n increases. For example, at the 5% significance 
level and n = 200, the rejection rate of the In test is 51.5%, whereas the largest 
rejection rate of the remaining four tests is 11.2%. 

Tables 4 and 5 present rejection rates for DGP5, a fixed low (high) fre- 
quency alternative. As expected, for the low frequency ( m = +) alternative, In 
is the least powerful test, whereas for the high frequency ( m = 1) alternative, In 
is the most powerful test. 

Summarizing Tables 2-5, we conclude that our Monte Carlo results are in 
agreement with theoretical findings on local power properties of kernel-based 
tests versus ICM tests provided in previous work and also in this paper: For 
Pitman local alternatives, the ICM tests tend to be more powerful than the ker- 
nel tests, whereas for "singular" local alternatives, the kernel tests are more 
powerful. More important, these results carry over to the fixed alternatives con- 
sidered in this section. 

TABLE6. Estimated size (DGPI) 

n = 50 n = 100 n = 200 

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 
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TABLE7. Estimated power (DGP2) 

n = 50 n = 100 n = 200 

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 

Finally, we repeated the preceding experiments by replacing the empirical 
critical values with the wild bootstrap critical values. We computed the size 
and power for all five tests for DGPl and DGP2. The number of replications is 
1,000,and with each replication, 1,000wild bootstrap statistics were generated 
to produce bootstrap critical values. The estimated sizes based on wild boot- 
strap are given in Table 6, and the estimated powers for DGP2 using wild boot- 
strap critical values are reported in Table 7. We observe from Table 6 that the 
estimated sizes (for all the tests) are quite close to the corresponding nominal 
sizes, indicating that the wild bootstrap procedure approximates the null distri- 
bution of the test statistics quite well. Also as expected, the results in Table 7 
are quite similar to those of Table 2. 

NOTES 

1. Throughout this paper, the rate of convergence of a "singular" local alternative to the null 
model always refers to the rate of convergence in probability. Or alternatively, one can interpret 
this as using the L ,  norm to measure the difference between the "singular" local alternative and the 
null model. For discussion about using other norms to measure the difference, see note 2. 

2. We emphasize again that the rate of convergence of a "singular" local alternative to the null 
model refers to the rate of convergence in probability. This is given by yam,. Or alternatively one 
can interpret this as using the L1 norm to measure the difference between the "singular" alternative 
and the null model. The preceding claimed rates will be different if one uses a different norm such 
as the L2 norm to measure the difference. However, it does not matter which norm one uses; this 
section shows that as long as y,a, = o(n-'I2), the ICM tests have only trivial power and the 
kernel test I,,can have nontrivial power even for y,a, arbitrarily close to n-3'4. 
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APPENDIX: PROOF OF THEOREM 3.1 

We will only provide the proof for Theorem 3.l(i); (ii) follows immediately from (i), 
= u: + o,(l) (e.g., Ahmad, 1982). 

From (6), 17, = 5 - g(X,), and (16), it follows that 
&: (ii), and the fact that (i),and (iii) follows from 

We will prove Theorem 3.1 by evaluating the order of Aj for j = 1,...,6. 
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(i) Proof of A, = 0,(n-I). From (A.l) and the Taylor series expansion, we get 

= ( P  - PO)'BI(P - P o ) ,  

where p, is on the line segment between f i  and Po.It is easy to show that given 
(Cl), E J B I J  = O(1). Hence Al = O,(nP1) because ( p  - Po) = ~ ~ ( n - " ~ ) .  

(ii) Proof of nhdI2A2 = C1C2+ o p ( l )  We first evaluate E(A2): From (A.l) and 
(C4) (ii) (a) and (f), we have 

r,' c c ~ [ ~ ~ ~ s . . ( x , ) s , i x , ) ~~ ( ' 4 , )= = 5E [ K 1 2 ~ . ( X ) ~ . i X 2 ~ ~
nin - l )hd 1 J # ,  

Thus, E ( A 2 )= y,'a,{C, + o(l)}. Next, 

because A,,,,;, = 0 if the four indices I , j, It,j' are all different from each other 
andA12,32= E { [ K I ~ S ~ ( X I ) ~ ~ ( X ~ )E(K12Sn(X1)SniX2))I[K328n(X3)6n(X2) 
E(K32S, (X3) 6,(X2))]} has the same order as 
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= h2d[[[f(x)8:(x)8,(x+ hu)S.(x+ hv)f(x+ hu) 

X f (x + hv) K(u) K(v) dudvdx 

Similarly one can easily show that AI2,,2 = O(hda,). Hence A2 = y;a,{C2 + 
o,(l)} and n h d / 2 ~ 2  = + op(l)) = C1C2+ o,(l). 

(iii) Proof of n h d / 2 ~ 3  +N(O,u: )  in distribution. When S R ~ ,= this was proved in 
Corollary 3 of Li (1994) and Lemma 3.3 of Zheng (1996). When Sis a compact, 
convex subset of Rd, this was proved by Li and Wang (1998). 

(iv) Proof of n h d / 2 ~ 4  = nhd/2~p(n-1'2yna,)= o,(l). From (A.l) and the Taylor 
series expansion, we obtain 

Yn 22 K,,Vg,(X,, P*)8,(Xj) 

= (B -PO)'B4. 

By (Cl), lVg(X,,P,)I 6 Mixj),  one can show that 

Hence A4 = ~ ~ ( n - ~ / ~ ~ , a , )  Pobecause B - = ~ ~ ( n ' / ~ ) .  
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(v) Proof of As = O,(n-I). Again, applying Taylor series expansion to the fifth term 
on the right hand side of (A.1) yields 

= ( P - Po)'Bs + ( P - PO)'D,(P - Po) .  

We now show that Bs = Op(n-1 /2)and D5 = 0,(1).First, note that E(B5)= 0 
and 

Hence B5 = Obviously given ( C l ) ,El D S  = O(1).Thus A5 = Op(n- l )~ , ( n - l / ~ ) .  

because p - Po = ~ , ( n - ' / ~ ) .  


(vi) proof of n h d ' 2 ~ 6= nhd/'O (n-'I2a,,' I 2 y,) = o,(l). Note that from (A.1),it fol-
lows that E ( A 6 )= 0 and 

E [ ( A 6 ) 2 1  = n 2 ( n  -

r,' 
1)2h2d C 2 2 E { K ! , K / c l S n ( X l ) S n ( X 1 8 ) u ~ }  

1 ] # I  / '#I 

-- r; 
n 2 ( n- 1 )

2h 2 ,  { n ( n- 1)E[K:2S;(Xl)u2(X2)I 

+ n(n - l ) ( n- 2)E[Kl,K,,~,(X,)6n(X,)~2(X2)1) 

--

n2(n-
yn2 

1 )
,
h
,, {O(n2hda,)+ O(n3hzda , ) }  

= O ( n ' r ; a , )  = o ( ( n 2 h d ) - I ) ,  

because 

E [ K : 2 s ; ( X l ) ~ 2 ( X , ) 1  


= h d J J f ( x ) a ; ( x ) f ( x  + ~ u ) u ~ ( x 
+ hu)K2(u)dudx 
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and 

E[K12K32Sn(X1)Sn(X3)f12(X2)I 
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