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EFFICIENT ESTIMATION OF
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By Qi Li†1

Texas A&M University, U.S.A., and University of Guelph, Canada

I consider the problem of estimating an additive partially linear model using
general series estimation methods with polynomial and splines as two leading
cases. I show that the finite-dimensional parameter is identified under weak
conditions. I establish the root-n-normality result for the finite-dimensional
parameter in the linear part of the model and show that it is asymptoti-
cally more efficient than a semiparametric estimator that ignores the additive
structure. When the error is conditional homoskedastic, my finite-dimensional
parameter estimator reaches the semiparametric efficiency bound. Efficient
estimation when the error is conditional heteroskedastic is also discussed.

1. introduction

Series estimation methods are convenient for imposing certain type of restric-
tions, such as additive separability (e.g., Stone, 1985; Andrews and Whang 1990)
or shape-preserving estimations (e.g., Dechevsky and Penez, 1997). Also, it is compu-
tationally convenient because the data are summarized by a relatively few estimated
coefficients. For large sample properties of series estimators, see Stone (1985), Cox
(1988), Eubank (1988), Andrews and Whang (1990), Eastwood and Gallant (1991),
Gallant and Souza (1991), Eubank and Jayasuriya (1993), and Newey (1988, 1994a,
1994b,1995). For using series methods to estimate semiparametric regression mod-
els, see Ai and McFadden (1997), Andrews (1991), and Donald and Newey (1994),
among others. Newey (1997) established the

√
n-normality result for nonlinear func-

tionals of series estimators; Chen and Shen (1998) consider a more general class
of sieve extremum estimates and established the

√
n-normality result for smoothly

functional (possibly nonlinearly functional) sieve estimators.
In this article I will consider the problem of estimating an additive partially linear

model using series estimation methods. Recently, semiparametric estimation of addi-
tive models and additive partially linear models has attracted much attention among
econometricians and statisticians (see Linton and Nielsen, 1995; Newey, 1994c;
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Tojstheim and Auestad, 1994, to mention only a few). An additive model with two
regressors has the following form (e.g., Linton and Nielsen, 1995):

Yi = γ0 + g1�Z1i� + g2�Z2i� + ui i = 1� 	 	 	 � n(1)

where �Yi�Z1i� Z2i�n
i=1 are i.i.d. observations, E�ui	Z1i� Z2i� = 0, and g1�·� and g2�·�

are unknown univariate functions.
Stone (1985, 1986) has shown that the additive components of gl�·� �l = 1� 2� in (1)

can be consistently estimated at the same rate as a fully nonparametric regression
model with only one regressor. Hence additive regression models circumvent the
“curse of dimensionality” problem that affects the estimation of fully nonparametric
regression models.
Linton and Nielsen (1995) proposed to estimate gl�zl� �l = 1� 2� by marginally

integrating (averaging) a local linear estimator of g�z1� z2� = E�y	z1� z2�, and they
showed that their proposed estimator of gl�zl� has an asymptotic normal distribu-
tion and achieves the one-dimensional optimal convergence rate. Chen et al. (1996)
extended the result in Linton and Nielsen (1995) to additive regression models with
more than two regressors. Fan et al. (1998) studied more general additive models
including additive partially linear models. A typical additive partially linear model
has the following form:

Yi = X ′
iγ + g1�Z1i� + g2�Z2i� + · · · + gL�ZLi� + ui(2)

The additive partially linear model is particularly convenient when Xi is a vector
of discrete variables that takes a large number of different values, i.e., Xi consists of
categorical variables. Another interesting aspect of an additive partially linear model
is that it allows Xi to be a deterministic (nonadditive) function of �Z1i� 	 	 	 � ZLi�, thus
allowing high-dimension variables to enter the model parametrically; see Section 2
for more discussion on this. Fan and Li (1996) proposed some alternative estima-
tion methods of estimating additive partially linear models, and they showed that, via
Monte Carlo simulations, their proposed estimators compare favorably with the esti-
mators proposed by Fan et al. (1998). Both Fan et al. (1998), and Fan and Li (1996)
used kernel estimation methods.
In this article I propose to estimate an additive partially linear model using series

estimation method. There are at least four advantages to using series method to esti-
mate an additive partially linear model compared with the kernel estimation method.
First, the kernel estimation method is to initially estimate a nonparametric model

with high dimension (ignoring the additive structure) and then to use the method of
marginal average to obtain an estimator of a function with lower dimension (using
the additive structure). In applications, this may cause some finite sample efficiency
loss due to the fact that the additive structure is not used in the initial estimation
stage. In contrast, the series estimation method can easily impose additive structure
throughout the estimation procedure.
Second, the kernel marginal integration method can be computationally costly; the

computation time of estimating an additive partially linear model is about n (n is
the sample size) times the computation time of estimating a nonadditive partially
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linear model. Hence, for large samples sizes, the computation burden of estimating
an additive partially linear model using the kernel method could be very costly. Using
the series estimation method, the computation time of estimating an additive partially
linear model is generally less than that of estimating a nonadditive partially linear
model.
Third, the kernel estimation methods are two-step methods that either first esti-

mate the additive functions gl�zl� �l = 1� 	 	 	 � L�) and then estimate the parametric
parameter γ (e.g., Fan et al., 1998) or first estimate γ and then to estimate gl�zl�
(e.g., Fan and Li, 1996). The two-step methods do not lead to efficient estimation
of the finite-dimensional parameter γ. Using the series estimation method, one can
estimate

∑L
l=1 g�zl� and γ simultaneously; I show that my proposed estimator for γ

is semiparametric efficient when the error is conditional homoskedastic.2

Fourth, series estimators have well-defined meanings even when the model is mis-
specified; i.e., when the true function of E�Y 	X�Z� is not an additive partially linear
regression function, the series estimator will converge to an additive partially lin-
ear function that best approximates the unknown function E�Y 	X�Z� in the mean
square error sense, while the two-step kernel estimators do not have this property in
misspecified models.3

There are also some drawbacks to using the series estimation method compared
with the kernel method. For example, using general series estimation methods, it is
difficult to establish the asymptotic normality result for the nonparametric additive
component estimators under primitive conditions. Therefore, the series estimation
method should be viewed as a complement to the kernel method for estimating an
additive partially linear model.4

A related article is that of Chen and Shen (1998), who tried to estimate general
time-series regression models by the sieve method. One regression model considered
in Chen and Shen (1998) is a special type of additive partially linear model. Using the
notation of Equation (2), Chen and Shen (1998) considered the case that E�Xi	Zi� is
also additive separable in Zi1� 	 	 	 � ZLi, say, E�Xi	Zi� =

∑L
l=1 tl�Zli� for some (possibly

unknown) smooth functionals tl�·� (l = 1� 	 	 	 � L). In general, E�Xi	Zi� may not be
additive separable in Z1i� 	 	 	 � ZLi. It turns out that when E�Xi	Zi� is not additive
separable in Z1i� 	 	 	 � ZLi; I have the following interesting results: (1) the parametric
coefficient γ is identified even when E�Xi	Zi� = Xi, and (2) my proposed estimator
of γ is asymptotically more efficient than a semiparametric estimator of γ that ignores
the additive structure of g�z� = ∑L

l=1 gl�zl�.

2 An estimator is said to be semiparametric efficient if the inverse of the asymptotic variance of the
estimator equals the semiparametric efficiency bound. The general framework of efficiency bounds is
provided by Begun et al. (1983). For applications of the general framework to different econometrics
models, see Chamberlain (1986), Cosslett (1987), Hansen et al. (1988), Newey (1990), and Ai (1994),
to mention only a few.

3 For additive specifications without a partially linear component, the kernel marginal integration
method can best approximate the unknown regression function (see Linton, 1997; Nielson and Linton,
1998).

4 A referee pointed out to me that by using the result of Newey (1997), one should be able to
establish the asymptotic normality result for the nonparametric (additive) component functions. This
subject is left for future research.
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2. the model and the main result

Consider the following additive partially linear regression model:

Yi = X ′
iγ + g1�Z1i� + g2�Z2i� + · · · + gL�ZLi� + ui(3)

where the prime denotes transpose, Xi is an r × 1 vector of random variables that
does not contain a constant term,5 γ = �γ1� 	 	 	 � γr�′ is an r × 1 vector of unknown
parameter, and Zli is of dimension ql (ql ≥ 1, l = 1� 	 	 	 � L). Denote by Zi the
nonoverlapping variables obtained from �Z1i� 	 	 	 � ZLi�. Zi is of dimension q with L ≤
q ≤ ∑L

l=1 ql. E�ui	Xi�Zi� = 0, and g1�·�� 	 	 	 � gL�·� are unknown smooth functions.
Obviously, the individual functions gl�·� �l = 1� 	 	 	 � L� are not identified without

some identification conditions. In the literature of the kernel estimation method, a
convenient identification condition is to impose E�gl�Zli�� = 0 for all l = 2� 	 	 	 � L.
However, such conditions are less straightforward to impose using the series estima-
tion method. In this article I will choose

gl�zl = 0� = gl�0� = 0 �l = 2� 		� L�(4)

as my identification condition. This condition is convenient to impose for series esti-
mators.
Next, I give the definition of the class of additive functions.

Definition 1. We say that a function ξ�z� belongs to an additive class of func-
tions � (ξ ∈ �) if (i) ξ�z� = ∑L

l=1 ξl�zl�, ξl�zl� is continuous in its support �l, where
�l is a compact subset of Rql (l = 1� 	 	 	 � L), (ii)

∑L
l=1 E�ξl�Zl��2 < ∞, and (iii)

ξl�0� = 0 for l = 2� 	 	 	 � L.

When ξ�z� is a vector-valued function, we say ξ ∈ � if each component of ξ

belongs to �.
In vector-matrix notation, I can write (3) as

� = �γ + g1 + g2 + · · · + gL +U ≡ �γ + g +U(5)

where � and U are both n × 1 vectors with ith components given by Yi and ui,
respectively; � is n× r with the ith row given by X ′

i ; g is n× 1 with the ith component
given by gi = g�Zi� ≡

∑L
l=1 gl�Zli�.

I use a linear combination of Kl functions, p
Kl
l �zl� = �pKl

l1 �zl�� 	 	 	 � pKl
lKl
�zl��′, to

approximate gl�zl� �l = 1� 	 	 	 � L�. Hence I use a linear combination of K = ∑L
l=1 Kl

functions �pK1
1 �z1�′� 	 	 	 � pKL

L �zL�′� ≡ pK�z�′ to approximate g�z� = g�z1� 	 	 	 � zL� =∑L
l=1 gl�zl�. The approximation function pK�z� has the following properties: (1)

pK�z� ∈ �, and (2) as Kl grows (for all l = 1� 	 	 	 � L), there is a linear combination
of pK�z� that can approximate any g ∈ � arbitrarily well in the mean square error
sense.

5 Note that this is not a restriction because the possibly nonzero intercept term will be incorporated
into g1�z1�.
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I introduce some notation. Define

pl = �pKl
l �Zl1�� 	 	 	 � pKl

l �Zln��′ �l = 1� 	 	 	 � L�
P = �p1� 	 	 	 � pL�

(6)

Note that pl is of dimension n×Kl and P is of dimension n×K.
Let M = P�P ′P�−P ′, where �·�− denotes any symmetric generalized inverse of �·�.

For an n × 1 or an n × r matrix A, Define Ã = MA. Then premultiplying (5) by M

leads to

�̃ = �̃γ + g̃ + Ũ(7)

Subtracting (7) from (5) gives

� − �̃ = �� − �̃�γ + g − g̃ +U − Ũ(8)

I estimate γ by least squares regression of � − �̃ on � − �̃ :

γ̂ = ��� − �̃�′�� − �̃��−�� − �̃�′�� − �̃�(9)

Then g�z� = ∑L
l=1 gl�zl� is estimated by ĝ�z� = pK�z�′β̂, where β̂ is given by

β̂ = �P ′P�−P ′�� − � γ̂�(10)

Under the conditions given below, both �P ′P� and �� − �̃�′�� − �̃� are asymp-
totically nonsingular. Hence, all the generalized inverses are in fact inverses when
we take the limit of min�K1� 	 	 	 �Kn� → ∞ (as n → ∞). Note that when both
�� − �̃�′�� − �̃� and �P ′P� are nonsingular, γ̂ and β̂ given in (9) and (10) are
numerically identical to the least squares estimator of regressing � on ��� P�.6
For any scalar or vector function � �z�, I use the notation of EA�� �z�� to denote

the projection of � �·� onto the additive functional space � (under the L2-norm).
That is, EA�� �z�� is an element that belongs to � (has an additive structure), and
it is the closest function to � �z� among all the functions in �. More specifically, I
have

E
({

� �Zi� − EA

[
� �Zi�

]}{
� �Zi� − EA

[
� �Zi�

]}′)

= inf
ξ=∑

l ξl∈�
E

{[
� �Zi� −

L∑
l=1

ξl�Zli�
][

� �Zi� −
L∑

l=1
ξl�Zli�

]′}(11)

where the infimum of (11) is in the sense that

E
({

� �Zi� − EA

[
� �Zi�

]}{
� �Zi� − EA

[
� �Zi�

]}′)

≤ E

{[
� �Zi� −

L∑
l=1

ξl�Zli�
][

� �Zi� −
L∑

l=1
ξl�Zli�

]′}(12)

6 In finite sample applications, it is possible that �� − �̃�′�� − �̃� and/or �P ′P� are singular.
However, one can drop the redundant regressors to make these matrices nonsingular.
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for all ξ�z� = ∑L
l=1 ξl�z� ∈ �, where for square matrices A and B, A ≤ B means that

A− B is negative semidefinite.
Define θ�z� = E�X	Z = z�, and I will use h�z� to denote the projection of θ�z�

onto �, i.e., h�z� = EA�θ�z��. By the definition of EA�·�, I know that h�·� is an
additive function, i.e., h�z� = ∑L

l=1 hl�zl� ∈ �, and h�·� is the solution of the following
minimization problem:

E
{[

θ�Zi� − h�Zi�
][

θ�Zi� − h�Zi�
]′}

= inf
ξ=∑

l ξl∈�
E

{[
θ�Zi� −

L∑
l=1

ξl�Zli���θ�Zi� −
L∑

l=1
ξl�Zli�

]′}(13)

Under the L2-norm, � is an infinite-dimensional Hilbert space. Therefore, the
space � is not compact, and it is well known that minimization (optimization) over
a noncompact set may not have a solution. In the Appendix I prove the existence
of the function h�z� = EA�θ�z�� ∈ � that satisfies (13); i.e., EA�� �z�� and EA�θ�z��
in (11) and (13) are well-defined functions [the infimum bounds in (11) or (13) are
attainable by some function in �].
Note that h�·� is of dimension r × 1. I will use h�s��·� to denote its sth component

(s = 1� 	 	 	 � r), i.e., h�z� = �h�1��z�� h�2��z�� 	 	 	 � h�r��z��′.
From (13) and using Xi = θ�Zi� + vi and E�vi	Zi� = 0, I immediately get the

following equivalent expression of (13) in terms of Xi:

inf
ξ∈�

E��Xi − ξ�Zi���Xi − ξ�Zi��′� = inf
ξ∈�

E��θ�Zi� − ξ�Zi���θ�Zi� − ξ�Zi��′�

+ E�viv
′
i� = E��θ�Zi� − h�Zi���θ�Zi� − h�Zi��′�(14)

+ E�viv
′
i� = E��Xi − h�Zi���Xi − h�Zi��′�

i.e., h�Zi� is also the projection of Xi onto � �h�Z� = EA�X�� because vi ⊥ �.
The following assumptions are needed to establish the asymptotic distribution of

γ̂ as well as the convergence rates of ĝ�z� = pK�z�′β̂ to g�z�.

Assumption 1. (i) �Y1�X1� Z1�� 	 	 	 � �Yn�Xn�Zn� are independent and identi-
cally distributed as �Y�X�Z�; the support of �X�Z� is a compact subset of Rr+q;
(ii) define θ�z� = E�X	Z = z�. Both θ�z� and var�Y 	X = x�Z = z� are bounded
functions on the support of �X�Z�.

Assumption 2. (i) For every K there is a nonsingular matrix B such that for
PK�z� = BpK�z�; the smallest eigenvalue of E�PK�Zi�PK�Zi�′� is bounded away
from zero uniformly in K; (ii) there is a sequence of constants ζ0�K� satisfying
supz∈� �PK�z�� ≤ ζ0�K� and K = Kn such that �ζ0�K��2K/n → 0 as n → ∞, where
� is the support of Z.

Assumption 3. (i) For f = g or f = h�s� �s = 1� 	 	 	 � r�, there exist some
δl �> 0� �l = 1� 	 	 	 � L�, βf = βfK = �β′

fK1
� 	 	 	 � β′

fKL
�′, supz∈� 	f �z� − PK�z�′βf 	 =

O�∑L
l=1 K

−δl
l � as min�K1� 	 	 	 �KL� → ∞; (ii)

√
n�∑L

l=1 K
−δl
l � → 0 as n → ∞.



ESTIMATING ADDITIVE MODELS 1079

Assumption 1 is quite standard in the literature of estimating additive models.
Assumption 2 ensures that �P ′P� is asymptotically nonsingular. Note that both g

and h�s� are additive functions, i.e., g�z� = ∑L
l=1 gl�zl� and h�s��z� = ∑L

l=1 h�s��l�zl�
(s = 1� 	 	 	 � r). Hence Assumption 3 is implied by the following: for all l = 1� 	 	 	 � L
and for fl = gl or fl = h�s��l (s = 1� 	 	 	 � r), there exists some δl > 0, βfl = βfl�Kl

, such
that supzl∈�l

	fl�zl� − p
Kl
l �zl�′βfl	 = O�K−δl

l � as Kl → ∞, where �l is the support of
zl. While Assumptions 2 and 3 are not primitive conditions, it is known that many
series functions satisfy these conditions. Newey (1997) gives primitive conditions for
power series and splines such that Assumptions 2 and 3 hold (see Assumptions 4
and 5 below).
The following theorem gives the asymptotic distribution of γ̂.

Theorem 1. Define εi = Xi −h�Zi� ≡ Xi −EA�Xi�, where h�·� is defined by (13),
and assume that *

def= E�εiε
′
i� is positive definite, then under Assumptions 1 to 3, we have

(i)
√

n�γ̂ − γ� → N�0� .� in distribution, where . = *−1/*−1, / =
E�σ2

u�Xi�Zi�εiε
′
i� and σ2

u�x� z� = E�u2
i 	Xi = x�Zi = z�.

(ii) A consistent estimator of . is given by .̂ = *̂−1/̂*̂−1, where *̂ = n−1 ∑
i�Xi −

X̃i��Xi − X̃i�′, /̂ = n−1 ∑
i û

2
i �Xi − X̃i��Xi − X̃i�′, X̃ ′

i is the ith row of �̃ and
ûi = yi −X ′

i γ̂ − ĝ�Zi�.

The proof of Theorem 1 is given in the Appendix.
The requirement that * = E�εiε

′
i� is positive definite is an identification condition

for γ. Below I show that this condition is weaker than the condition needed to
identify γ when one ignores the additive structure of

∑L
l=1 gl�zl�, recall that vi = Xi −

E�Xi	Zi�, and define ηi = E�Xi	Zi� − h�Zi�. Then εi = vi + ηi. Using E�vi	Zi� = 0,
I get

* = E��vi + ηi��vi + ηi�′� = E�viv
′
i� + E�ηiη

′
i�(15)

Hence, either E�viv
′
i� is positive definite or E�ηiη

′
i� is positive definite will imply

that * is positive definite. Note that E�viv
′
i� being a positive definite matrix would

be the required identification condition (for γ) if one ignores the additive structure
of

∑L
l=1 gl�zl� when estimating γ (e.g., Robinson, 1988; and Stock, 1989). Thus, by

using the information that the model is additive partially linear, one can weaken the
identification condition for γ as * being a positive definite matrix.
It is interesting to observe that when E�X	Z = z� �= h�z�, γ is identified even if

X is a deterministic function of Z [i.e., E�X	Z� = X]. By the definition of h�z� =∑L
l=1 hl�zl�, I know that h�z� is additive separable in z1� 	 	 	 � zl. Hence, if θ�z� =

E�Xi	Zi = z� is not additive separable in z1� 	 	 	 � zL, I will have θ�z� �= h�z� [hence
η�z� �= 0], and consequently, γ is identified even when E�X	Z� = X (v ≡ 0). I will
discuss more about this point below.
Next I show that when the error is conditional homoskedastic, i.e., E�u2

i 	Xi�Zi� =
E�u2

i � = σ2
u , my estimator γ̂ is semiparametric efficient in the sense that the inverse

of the asymptotic variance of
√

n�γ̂ − γ� equals the semiparametric efficiency bound.
From the result of Chamberlain (1992:579), I know that the semiparametric efficiency
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bound for the inverse of the asymptotic variance of an estimator of γ is

J0 = inf
ξ=∑

l ξl∈�
E

{[
Xi −

L∑
l=1

ξl�zl�
][
var�ui	Xi�Zi��−1�Xi −

L∑
l=1

ξl�zl�
]}

(16)

Under the conditional homoskedastic error assumption, I have . = σ2
u*

−1,
and (16) becomes

J0 = 1
σ2

u

inf
ξ=∑

l ξl∈�
E

{[
Xi −

L∑
l=1

ξl�zl�
][

Xi −
L∑

l=1
ξl�zl�

]′}

≡ 1
σ2

u

(
E

{[
Xi −

L∑
l=1

h�Zli�
][

Xi −
L∑

l=1
hl�Zli�

]′}′)
= 1

σ2
u

* = .−1
(17)

Hence the inverse of the asymptotic variance of
√

n�γ̂ − γ� reaches the semipara-
metric efficiency bound when the error is conditional homoskedastic.
I emphasize here that the Chamberlain’s efficiency bound of (16) does not impose

conditional homoskedasticity.7 If one were to impose the condition of conditional
homoskedasticity, one would get a different (sharper) efficient bound that makes use
of the second moment restriction. Therefore, the preceding discussion that my esti-
mator reaches the semiparametric efficiency bound under homoskedasticity should be
interpreted as “local” efficiency. A local efficiency semiparametric estimator is one
that is efficiency in some semiparametric model when some restrictions are satisfied.
By comparison, a globally efficient semiparametric estimator is one that is efficient
whether or not those restrictions are satisfied. Obviously, my semiparametric esti-
mator γ̂ is not efficient when the error is conditional heteroskedastic. Nevertheless,
some simple modifications to my estimation procedure can lead to an efficient esti-
mator of γ under the general conditional heteroskedastic errors; see Section 3 for a
discussion on this possible extension.
If one is mainly interested in estimating γ [treating g�z� = ∑L

l=1 gl�zl� as nuisance
parameter], one can ignore the additive structure of g�z� = ∑L

l=1 gl�zl� and estimate
γ

√
n-consistently by using, say, p̄K�z� = �p̄K

1 �z�� 	 	 	 � p̄K
K�z�� as the approximating

function, K → ∞ as n → ∞, where p̄K�z� is the first K terms of some series function
that does not impose additive separable restriction in z1� 	 	 	 � zL. However, there are
at least three drawbacks to using this approach.
First, the unknown function is treated as a function of dimension q with q >

max�q1� 	 	 	 � qL�. Hence it will suffer the “curse of dimensionality” problem.
Second, let γ̃ denote the semiparametric estimator of γ without impos-

ing the additive structure on p̄K�z� [i.e., ignoring that additive structure of
g�z� = ∑L

l=1 gl�zl�], then under the conditional homoskedastic error assump-
tion, i.e., E�u2

i 	Xi�Zi� = E�u2
i � = σ2

u , the asymptotic variance of
√

n�γ̃ − γ� is
σ2

u�E��Xi − E�Xi	Zi���Xi − E�Xi	Zi��′��−1 (e.g., Robinson, 1988; Newey, 1997:
Theorem 2), while from Theorem 1, I know that the asymptotic variance of√

n�γ̂ − γ� is σ2
u�E��Xi − h�Zi���Xi − h�Zi��′��−1. Hence, when E�X	Z = z� is not

7 I owe this observation and the discussions of this paragraph to a referee.
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additive separable in �z1� 	 	 	 � zL�, I will have E�X	Z = z� �= h�z� ≡ ∑L
l=1 hl�z�.

Consequently, γ̃ will be asymptotically less efficient than γ̂.
Third, one needs a stronger condition that E�viv

′
i� is positive definite in order

for γ̃ to be well defined (for γ to be identified). This rules out the case that Xi is a
deterministic function of Zi. The identification condition of Theorem 1 is weaker than
the preceding, and it allows Xi to be a deterministic function of Zi, say, Xi = m�Zi�,
as long as this function is not additive separable in �Z1i� 	 	 	 � ZLi�. Consider a simple
case of L = 2 and Z1i and Z2i are scalars. Let Xi = Z1iZ2i; then model (3) becomes

Yi = �Z1iZ2i�γ + g1�Z1i� + g2�Z2i� + ui(18)

γ in (18) is identified because Xi = Z1iZ2i is not an additive separable function
in Z1i and Z2i. Model (18) has the advantage that it only involves one-dimensional
nonparametric regression functions; hence it does not suffer the “curse of dimension-
ality” problem. Also, it allows an interaction term (enters the model parametrically)
so that it is more general than an additive model that does not allow any interaction
terms. In practice, one can replace the interaction term Xi = Z1iZ2i by any other
known (nonadditive) function of �Z1i� Z2i�. Clearly, γ in (18) is not identified if one
ignores the additive structure of g�z� = g1�z1� + g2�z2�.
The next theorem gives the convergence rates of ĝ�z� = pK�z�′β̂ to g�z� =∑L
l=1 gl�zl�.

Theorem 2. Under Assumptions 1 to 3, denote by � the support of z; then we
have

(i) supz∈� 	ĝ�z� − g�z�	 = Op�ζ0�K���√K/
√

n+∑L
l=1 K

−δl
l �.

(ii) n−1 ∑n
i=1�ĝ�Zi� − g�Zi��2 = Op�K/n +∑L

l=1 K
−2δl
l �.

(iii)
∫ �ĝ�z� − g�z��2dF�z� = Op�K/n +∑L

l=1 K
−2δl
l �, where F�·� is the cumula-

tive distribution function of Z.

The proof of Theorem 2 follows similar arguments as in the proofs of Theorem 1
of Newey (1997) and Theorem 4.1 of Newey (1995) (also use the result of Theorem 1
above); see Appendix for details.
Theorem 2 basically says that the convergence rates for ĝ�z� to g�z� are the same

whether γ is known or one uses estimated γ̂ in constructing ĝ�z�. This is to be
expected because γ̂ − γ = Op�n−1/2�, which is faster than the convergence rate of
nonparametric (series) estimators such as ĝ�z�.
I also can estimate gl�zl� by ĝl�zl� = p

Kl
l �zl�′β̂l, where β̂l is a Kl × 1 vector obtained

from β̂ = �β̂′
1� 	 	 	 � β̂

′
L�′. I have the following results:

Theorem 3. Under Assumptions 1 to 3, denote by �l the support of Zl; then we
have, for l = 1� 	 	 	 � L,

(i) supzl∈�l
	ĝl�zl� − gl�zl�	 = Op�ζ0�K���√K/

√
n+K

−δl
l �.

(ii) n−1 ∑n
i=1�ĝl�Zli� − gl�Zli��2 = Op�K/n +K

−2δl
l �.

(iii)
∫ �ĝl�z� − gl�z��2dFl�zl� = Op�K/n + K

−2δl
l �, where Fl�·� is the cumulative

distribution function of Zl.
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The proof of Theorem 3 is basically the same as that of Theorem 2 and is omitted
here.
Newey (1997) gives primitive conditions for power series and regression spline (B-

splines) such that my Assumptions 1 to 3 hold. For your convenience, I restate these
primitive conditions below. For the construction of B-spline functions, see Schumaker
(1981).

Assumption 4. (i) The support of Z is a Cartesian product of compact con-
nected intervals on which Z has an absolutely continuous probability density func-
tion that is bounded above by a positive constant and bounded away from zero; (ii)
for l = 1� 	 	 	 � L, fl�zl� is continuously differentiable of order cl on the the support
of Zl, where fl�·� = gl�·� or fl�·� = h�s��l�·� (s = 1� 	 	 	 � r).

Assumption 5. The support of Z is �−1� 1�q.

When the support of Z is known and Assumption 4(i) is satisfied, Z can always be
rescaled so that Assumption 5 holds.
Newey (1997:167) showed that for power series, Assumption 4(i) implies the small-

est eigenvalue of E�PK�Zi�PK�Zi�′� is bounded for all K [PK�z� = BpK�z�; see
Assumption 2] and that ζ0�K� = O�K�. Also, it follows from Assumption 4(ii) and
Lorentz (1966) that Assumption 3 holds with δl = cl/rl, l = 1� 	 	 	 � L. Thus Assump-
tion 4 gives primitive conditions for Assumptions 2 and 3 for power series. Also,
Newey (1997) showed that Assumptions 4 and 5 imply that Assumptions 2 and 3
hold for B-splines with ζ0�K� = O�√K�. I summarize the preceding results in two
corollaries below:

Corollary 1. For power series, if Assumption 1 and Assumption 4 are satisfied
and K3/n → 0 as n → ∞, then

(i) The conclusion of Theorem 1 holds true.
(ii) The conclusions of Theorems 2 and 3 hold true with ζ0�K� replaced by K.

Corollary 2. For B-splines, if Assumptions 1, 4, and 5 are satisfied and K2/n →
0 as n → ∞, then

(i) The conclusion of Theorem 1 holds true.
(ii) The conclusions of Theorems 2 and 3 hold true with ζ0�K� replaced by

√
K.

Corollaries 1 and 2 show that the conclusions of Theorems 1 through 3 hold under
primitive conditions for power series and splines.
When all the zl’s are all scalars and all the unknown functions [gl�·� and h�s��l�·�]

are c-order differentiable, then I can choose all the Kl to have the same order, say,
Kl = K/L for all l = 1� 	 	 	 � L, and the condition on K becomes K3/n → 0 and
nK−2c → 0 for power series [need c > �3/2�]; and K2/n → 0 and nK−2c → 0 for
splines, requiring c > 1. I see that the condition on K is weaker for splines than for
power series. Also, splines are piecewise polynomials of low order; hence they are
less sensitive to outlier observations compared with power series.
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3. possible extensions

In this section I discuss three possible extensions without providing any technical
details. First, I propose a more efficient estimation procedure when the error is
conditional heteroskedastic. Second, I claim that when the model is misspecified,
my series estimator x′γ̂ + ĝ�z� estimates an additive partially linear function that
best approximates the unknown regression (in the class of additive partially linear
functions) in the mean square sense. Third, I discuss the case of data-driven choice
of K.
Theorem 1 holds true even when the error is conditional heteroskedastic, say,

E�u2
i 	Xi�Zi� = σ2�Xi�Zi�. However, γ̂ is not semiparametric efficient in this case.

Assume for the moment that σ2�x� z� is known. Let σi =
√

σ2�Xi�Zi�, and further
assume that σ2�x� z� is bounded away from zero. Then one just needs to use least-
squares regression of regressing Yi/σi on �Xi/σi� p

K�Zi�′/σi�. Intuitively, one would
expect that the resulting estimator of γ is semiparametric efficient because ui/σi is
conditional homoskedastic. This is indeed the case. Let γ̂GLS denote the correspond-
ing estimator of γ; then following the similar proof of Theorem 1, one can show that
the asymptotic variance of

√
n�γ̂GLS − γ� is J−1

0 A0J
−1
0 = J−1

0 , where

J0 = inf
ξ∈�

E��Xi − ξ�Zi���Xi − ξ�Zi��′/σ2�Xi�Zi��(19)

A0 = inf
ξ∈�

E��Xi − ξ�Zi���Xi − ξ�Zi��′u2
i /σ

4�Xi�Zi��

= inf
ξ∈�

E��Xi − ξ�Zi���Xi − ξ�Zi��′/σ2�Xi�Zi�� = J0(20)

J0 given in (19) is the same as (16), the semiparametric efficiency bound derived
by Chamberlain (1992) when the error is conditional heteroskedastic. Note that if I
let a�z� ∈ � denote the solution of the minimization problem of (19), a�z� is usually
different from h�z� defined in (13) due to the weighting function 1/σ2�x� z�.
In practice, σ2�x� z� is unknown. One can use the (ordinary) least-squares method

to first estimate γ and g�z� by γ̂ and ĝ�z� as given in (9) and (10) and estimate ui

by ûi = Yi − X ′
i γ̂ − ĝ�Zi�. Then, based on �û2

i � Xi� Zi�n
i=1, one can obtain a con-

sistent estimator of σ2�x� z�, say, σ̂2�x� z�, using some nonparametric estimation
methods (series, kernel, etc.). Denote σ̂i =

√
σ̂2�Xi�Zi�; then regressing Yi/σ̂i on

�X ′
i /σ̂i� p

K�Zi�′/σ̂i� will result in a semiparametric efficient estimator of γ provided
σ̂2�x� z� converges to σ2�x� z� uniformly for all �x� z� in the (compact) support of
�X�Z� with certain rates and perhaps with some other (extra) regularity conditions.
Next, I discuss the case that model (3) is misspecified in the sense that E�Y 	X�Z� is

not an additive partially linear regression function. In this case, one can still estimate
(3), but now E�Ui	Xi�Zi� �= 0. In general, Ui will be a (unknown) function of �Xi�Zi�.
Thus, estimating (3) by series methods is asymptotically equivalent to finding β0 ∈ Rr

and g0�z� ∈ � such that x′β0 + g0�z� best approximates D�x� z� ≡ E�Y 	X = x�Z =
z� in the mean-square sense, i.e.,

E��Y −X ′γ0 − g0�Z��2� = inf
γ∈Rr �ξ∈�

E��Y −X ′γ − ξ�Z��2�

with E�Y 	X = x�Z = z� �= x′γ0 + g0�z�
(21)
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In fact, in the proof of Theorem 1, I have also shown that pK�z�′�P ′P�−P ′X best
approximates θ�z� = E�X	Z = z� in the mean-square error sense; see the proof of
SX−X̃ = * + op�1� in the Appendix. Denote �P ′P�−P ′X = β̂x and ĥ�z� = pK�z�′β̂x.
I have shown that the series estimator ĥ�z� consistently estimates an unknown func-
tion h�z� ∈ �, where h�z� ∈ � that best approximates θ�z� = E�X	Z = z� [θ�z�
does not belong to �] in the mean-square-error sense; i.e., h�z� is the solution of the
following minimization problem:

E��X − h�Z���X − h�Z��′� = inf
ξ∈�

E��X − ξ�Z���X − ξ�Z��′�

with E�X	Z = z� �= h�z�
(22)

Following the same arguments as in the proof of Theorem 1, one can easily show
that γ̂ and ĝ�z� given by (9) and (10) consistently estimate γ0 and g0�z� that satisfy
(21) even when model (3) is misspecified.
Finally, I mention that the results of this article can be generalized to the case of

data-driven choice of K. For nonparametric estimation of regression functions using
series methods, Craven and Wahba (1979), Li (1987), and Eubank and Jayasuriya
(1993) showed that various cross-validation and generalized cross-validation methods
are optimal for selecting the number of terms K. Andrews and Whang (1990) and
Newey (1995) established similar results for additive regression models (without lin-
ear components). These data-driven methods of choosing K optimally can be directly
applied to my case. The reason is that γ̂ converges to γ at the rate of Op�n−1/2�, which
is faster than the convergence rate of the nonparametric series estimator ĝ�z� − g�z�.
Hence the additional linear component x′γ will not affect various data-driven optimal
choices of K based on an additive regression model without a linear component.

4. conclusion

In this article I propose to use general series methods to estimate an additive par-
tially linear model. I show that γ is identified under weak conditions, and I establish
the

√
n-normality result of the finite-dimensional parameter γ. I also show that γ̂

is asymptotically more efficient than an estimator that ignores the additive structure
of the model. When the error is conditional homoskedastic, my proposed estima-
tor γ̂ obtains the semiparametric efficiency bound of additive partially linear models.
I also suggest an efficient estimator when the error is conditional heteroskedastic
and show that the proposed estimators have optimal approximation properties in
misspecified models. Linton and Härdle (1996) consider the problem of estimating
an additive model with known links (with the kernel estimation method). It is possi-
ble to generalize the result of this article to the case that E�Yi	Xi�Zi� is an additive
partially linear function through a known link function using the series estimation
method; however, the technical details will be more demanding. Recently, Horowitz
(2000) considered a model suggesting that E�Yi	Zi� is an additive function through
an unknown link function (using the kernel method). It would be interesting to know
whether the result of this article (using the series method) can be generalized to the
case that E�Yi	Xi�Zi� has an additive partially linear form through an unknown link
function.
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appendix

Throughout this Appendix, I use C1, C to denote generic constants.
∑

i =
∑n

i=1.
The norm � · � for a matrix A is defined by �A� = �tr�A′A��1/2.
Proof of the Existence of h�z� that Satisfies (13). I will first consider

the case that Xi is a scalar. Let f �z� and m�z� be functions � ∈ Rq → R, and define
the inner product �f�m� by E�fm� [E�f 2� and E�m2� are both finite]. Obviously, the
class of function � defined in Definition 1 is a Hilbert space (a linear space with
inner product). Below I show that there exists h�z� = ∑L

l=1 hl�zl� ∈ � that attains the
following infimum bound:

E

{
�θ�Zi� −

L∑
l=1

hl�Zli��2
}
= inf

ξ=∑
l ξl∈�

E

{
�θ�Zi� −

L∑
l=1

ξ�Zli��2
}

(A.1)

where θ�Z� = E�X	Z�. When θ�z� ∈ �, I have the simple solution of h�z� = θ�z�.
Hence I only need to consider the case that θ�z� does not belong to �.
For expositional simplicity, I consider the case of L = 2 below; the proof of L > 2

follows the same argument. Let �aj�z1��∞j=1 be a complete base function that can
expand any g1�z1� and �bj�z2��∞j=1 and be a complete base function that can expand
g2�z2�, where g1�z1� and g2�z2� are arbitrary functions with g1�z1� + g2�z2� ∈ �. Then,
obviously, �φj�∞j=1 is a complete base function that can expand any function g�z� =
g1�z2� + g2�z2� ∈ �, where the ordering of φj�z� is given by picking up the base
functions from �aj�z1��∞j=1 and �bj�z2��∞j=1 alternatively, i.e.,

�φ1� φ2� φ3� φ4� φ5� φ6� 	 	 	�
= �a1�z1�� b1�z2�� a2�z1�� b2�z2�� a3�z1�� b3�z2�� 	 	 	�

(A.2)

Without loss of generality, I assume the base function �φj�z��∞j=1 is orthonormal-
ized. This can always be done using Gram-Schmidt orthonormalization procedure,
since � is a Hilbert space (with inner product defined above).
Define h�z� = h1�z1� + h2�z2� by

h�z� =
∞∑
j=0

φj�z�β�j�(A.3)

where β�j� = E�θ�Zi�φj�Zi��. Define η�z� = θ�z� − h�z�. Then using (A.3), I get

θ�z� =
∞∑
j=0

φj�z�β�j� + η�z�(A.4)

Multiply both side of (A.4) by φ�j��z� and take expectations; also using the orthonor-
mal property of φj�·� and the fact that E�θ�Z�φj�Z�� = β�j�, I obtain

E�φj�Z�η�Z�� = 0 �j = 1� 2� 3� 	 	 	�(A.5)
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(A.5) shows that η is orthogonal to the base function of �φj�∞j=1. Consequently, η�·�
is orthogonal to any f ∈ �, i.e.,

E�η�Z�f �Z�� = 0 ∀f ∈ �(A.6)

Using the orthonormal property of φj�·� and the fact that η ⊥ φj , I immediately
have

E��θ�Z��2� =
∞∑
j=0

β2
�j� + E��η�Z��2�(A.7)

∑∞
j=0 β

2
�j� < ∞ follows from E��θ�Z��2�<∞. Hence (A.7) implies that

∑∞
j=0 φj�z�β�j�

will converge to a well-defined function in �.
The facts that θ�·� = h�·� + η�·�, h ∈ �, and η ⊥ � imply that h�z� reaches the

infimum of (A.1).
Next I discuss the case that θ�z� is an r × 1 vector (r > 1). I use θ�s��z� to denote the

sth component of θ�z�, i.e., θ�z� = �θ�1��z�� 	 	 	 � θ�r��z��′. For s ∈ �1� 	 	 	 � r�, I define
h�s��z� as in (A.3) with β�j� replaced by β�s��j = E�θ�s��Z�φj�Z��. Also define h�z� =
�h�1��z�� 	 	 	 � h�r��z��′ and η�z� = θ�z� − h�z�. Then following the same arguments as
above, one can easily show that η ⊥ � (since η�s� ⊥ � for all s = 1� 	 	 	 � r). Using
η = θ − h and suppressing the argument �Z�, I get for any ξ ∈ �:

E��θ − ξ��θ − ξ�′� = E��θ − h+ h− ξ��θ − h+ h− ξ��′�

= E��θ − h��θ − h�′� + E��h− ξ��h− ξ�′� + 0(A.8)

= E��θ − h��θ − h�′� + a positive definite matrix

where the 0 comes from the facts that η = θ − h ⊥ � and h − ξ ∈ �. (A.8) and
h ∈ � gives the desired result:

E��θ − h��θ − h�′� = inf
ξ∈�

E��θ − ξ��θ − ξ�′� �(A.9)

Proof of Theorem 1. Recall that θ�Zi� = E�Xi	Zi�, vi = Xi − θ�Zi�, εi =
Xi − h�Zi�, and ηi = θ�Zi� − h�Zi� [h�·� is defined in (13)]. I will use the following
short-hand notations: θi = θ�Zi�, gi = g�Zi�, and hi = h�Zi�. Hence vi = Xi − θi,
εi = θi + vi − hi, and ηi = θi − hi.
To avoid introducing too many notations for vector-matrix variables, I will, in the

remaining part of this Appendix, use the same notation without subscript to denote
a vector or a matrix. For example, θ is the n × r matrix with the ith row given by
θ�Zi�′. This convention applies to h, g, η, ε, v, u, etc.
Recall that I define Ã by Ã = �P ′P�−P ′A; this definition applies to any n × 1 or

n× r matrices considered in this article. For example, θ̃ = �P ′P�−P ′θ. h̃, η̃, ũ, and ṽ

are similarly defined.
From Xi = θi + vi and θi = hi + ηi, I get Xi = ηi + vi + hi and X̃i = η̃i + ṽi + h̃i.

Or in vector-matrix notation, � = η+ v + h and �̃ = η̃+ ṽ + h̃. Thus I have

� − �̃ = η+ v + �h− h̃� − ṽ − η̃(A.10)

Equation (A.10) will be used frequently in the proofs below.
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For scalars or column vectors Ai and Bi, I define SA�B = n−1 ∑
i AiB

′
i. Also, SA�A =

SA. Note that if S−1
X−X̃

exists, then from (8) and (9), I immediately get

√
n�γ̂ − γ� = S−1

X−X̃

√
nSX−X̃�g−g̃+u−ũ(A.11)

Obviously, Theorem 1 will be proved if I can show the following: (1) SX−X̃ =
* + op�1� (hence SX−X̃ is asymptotically nonsingular), (2) SX−X̃�g−g̃ = op�n−1/2�, (3)
SX−X̃�ũ = op�n−1/2�, and (4)

√
nSX−X̃�u → N�0�/� in distribution. These are proved

below.

(1) Proof of SX−X̃ = *+ op�1�. Using Equation (A.10), I have

SX−X̃ = Sη+v+�h−h̃�−ṽ−η̃ = Sη+v + S�h−h̃�−ṽ−η̃ + 2Sη+v��h−h̃�−ṽ−η̃	

First, Sη+v = n−1 ∑
i�ηi + vi��ηi + vi�′ ≡ n−1 ∑

i εiε
′
i = * + op�1� by virtue of a law

of large numbers. Next, S�h−h̃�−ṽ−η̃ ≤ 3�Sh−h̃ + Sṽ + Sη̃� = op�1� by Lemma A.4,
Lemma A.5(i), and Lemma A.5(iii). Finally, Sη+v�h−h̃−ṽ−η̃ ≤ �Sη+vSh−h̃−ṽ−η̃�1/2 =
�Op�1�op�1��1/2 = op�1� by the preceding results.
(2) Proof of SX−X̃�g−g̃ = Op�

∑L
l=1 K

−δl
l � = op�n−1/2�. Using (A.10), SX−X̃�g−g̃ =

Sη+v+�h−h̃�−ṽ−η̃�g−g̃ = Sη+v�g−g̃ + Sh−h̃�g−g̃ − Sṽ�g−g̃ − Sη̃�g−g̃. I consider these four terms
separately.

1. Sη+v�g−g̃ ≤ �Sη+vSg−g̃�1/2 = Op�
∑L

l=1 K
−δ
l � by Lemma A.4 and Sη+v = Op�1�.

2. Sh−h̃�g−g̃ ≤ �Sh−h̃Sg−g̃�1/2 = Op�
∑L

l=1 K
−2δl
l � by Lemma A.4.

3. Sṽ�g−g̃ ≤ �SṽSg−g̃�1/2 = op�1�Op�
∑L

l=1 K
−δl
l � by Lemma A.4 and

Lemma A.5(i).
4. Sη̃�g−g̃ ≤ �Sη̃Sg−g̃�1/2 = op�1�Op�

∑L
l=1 K

−δl
l � by Lemma A.4 and

Lemma A.5(iii).

(3) Proof of SX−X̃�ũ = op�n−1/2�. Using (A.10), SX−X̃�ũ = Sη+v+�h−h̃�−ṽ−η̃�u =
Sη�ũ + Sv�ũ + Sh−h̃�ũ − Sṽ�ũ − Sη̃�ũ. I consider these five terms separately.

1. E��Sη�ũ�2	��=n−2tr�P�P ′P�−P ′ηη′P�P ′P�−P ′E�uu′	��� ≤ Cn−2tr�η̃η̃′� =
Cn−1tr�Sη̃� = op�n−1� by Lemma A.5(iii). Hence Sη�ũ = op�n−1/2�.

2. E��Sv�ũ�2	���� = n−2tr�P�P ′P�−P ′vv′P�P ′P�−P ′E�uu′	����� ≤ Cn−2tr
×�P�P ′P�−1P ′vv′P�P ′P�−1P ′�� = Cn−2tr�ṽṽ′�� = Cn−1tr�Sṽ� = O�K/n2�
by Lemma A.5(i). Hence Sv�ũ = Op�

√
K/n�.

3. Sh−h̃�ũ ≤ �Sh−h̃Sũ�1/2 = Op�
∑L

l=1 K
−δl
l �Op�

√
K/

√
n� by Lemma A.4 and

Lemma A.5(ii).
4. Sṽ�ũ ≤ �SṽSũ�1/2 = Op�K/n� by Lemma A.5(i) and Lemma A.5(ii).
5. By the same argument as in the proof of (1) above, I have E��Sη̃�ũ�2	�� =

n−2tr�P�P ′P�−P ′η′ηP�P ′P�−P ′E�uu′	��� ≤ Cn−2tr�η̃′η̃� = Cn−1tr�Sη̃� =
Cn−1op�1� = op�n−1� by Lemma A.5(iii). Hence Sη̃�ũ = op�n−1/2�.
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(4) Proof of
√

nSX−X̃�u →N�0�/� in Distribution. SX−X̃�u = Sη+v+�h−h̃�+v−ṽ−η̃�u

= Sη+v�u + Sh−h̃�u − Sṽ�u − Sη̃�u. I consider these four terms separately.

1.
√

nSη+v�u = n−1/2 ∑
i�ηi + vi�ui → N�0�/� in distribution by Levi-Lindberg

central limit theorem.
2. E��Sh−h̃�u�2	�� = n−2tr��h − h̃��h − h̃�′E�uu′	��� ≤ Cn−1tr��h − h̃�′�h −

h̃�/n� = Cn−1tr�Sh−h̃� = op�n−1� by Lemma A.4. Hence Sh−h̃�u = op�n−1/2�.
3. By exactly the same arguments as in (2) above, I have E��Sṽ�u�2	�� ≤

Cn−1tr�Sṽ� = op�n−1� by Lemma A.5(i). Thus Sṽ�u = op�n−1/2�.
4. E��Sη̃�u�2	�� ≤ Cn−1tr�Sη̃� = op�n−1� by Lemmas A.5(iii). Thus Sη̃�u =

op�n−1/2�. (1) to (4) above imply that
√

n�γ̂ − γ� = *−1N�0�/� + op�1� →
N�0�*−1/*−1� in distribution.

Proof of .̂ = . + op�1�. .̂ = *̂−1/̂*̂−1. *̂ ≡ SX−X̃ = * + op�1� is proved in
the proof of Theorem 1. Below I provide a sketch proof of /̂ = / + op�1� since the
detailed proof is very similar to the proof of *̂ = *+ op�1�.
Using γ̂ − γ = Op�n−1/2� and ĝ�Zi� − g�Zi� = op�1�, it is easy to see that ûi =

ui + op�1�. Also, by Lemma A.4, Lemma A.5(i), and Lemma A.5(iii), I know that
hi − h̃i = op�1�, ṽi = op�1�, and η̃i = op�1�. Hence from (A.10) I know that Xi −
X̃i = ηi + vi + �hi − h̃i� − ṽi − ηi = ηi + vi + op�1� ≡ εi + op�1�. These results lead
to /̂ = n−1 ∑

i û
2
i �Xi − X̃i��Xi − X̃i�′ = n−1 ∑n

i=1 u
2
i εiε

′
i + op�1� = /+ op�1� by virtue

of a law of large numbers. �

Proof of Theorem 2. Basically, Theorem 2 is the same as Theorem 1 of
Newey (1997) and Theorem 4.1 of Newey (1995) except that my estimator ĝ�z� has
an extra term of x′�γ̂ − γ�. Hence it suffices to show that the contribution of this
extra term is asymptotically negligible. Intuitively, one expects that this is true because
�γ̂− γ� = Op�n−1/2�, which has an order smaller than nonparametric series estimation
convergence rate.
Let βg satisfy Assumption 3 (with f = g). I consider �β̂− βg� below:

β̂ = �P ′P�−P ′�� − � γ̂�
= �P ′P�−P ′��� − �γ� − ��γ̂ − γ��
= βg + �P ′P�−P ′��g − Pβg� + U� − �P ′P�−P ′��γ̂ − γ�
≡ βg +D1n −D2n�γ̂ − γ��

(A.12)

where D1n = �P ′P�−P ′��g − Pβg� + U� and D2n = �P ′P�−P ′� . �D1n� =
Op�

∑L
l=1 K

−δl
l � + √

K/
√

n� was proved by Theorem 4.1 of Newey (1995).
Note that � = θ + v = h+ η+ v [see Equation (A.10)]; also note that h ∈ � and

η ⊥ � [see Equation (A.6)]; thus I have

�D2n�2 = ��P ′P�−P ′�h+ η+ v��2 = �β̃h + β̃η + β̃v�2

≤ C��β̃h�2 + �β̃η�2 + �β̃v�2� = n−1Op��h̃�2 + �η̃�2 + �ṽ�2�

= n−1�Op��h�2� + op�1�� = Op�1�
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by Lemma A.4, Lemma A.5(i) and Lemma A.5(iii). Hence D2n�γ̂ − γ� = Op�1/
√

n�.
Thus I see the contribution from the term associated with �γ̂ − γ� has an order
smaller than Op�

√
K/

√
n�. Thus �β̂ − βg� = Op�

√
K/

√
n + ∑L

l=1 K
−δl
l �, as in

Newey (1995).
The rest of the proofs [to prove the conclusions (i) to (iii) of my Theorem 2]

follows from the same arguments as in the proofs of Theorem 4.1 of Newey (1995)
[for (ii) and (iii)] and Theorem 1 of Newey (1997) [for (i)].
In the remaining part of this Appendix, I give some lemmas that are used in the

proof of Theorem 1. Following the same arguments as in Newey (1997), in the proof
below I will assume that B = I [hence pK�z� = PK�z�; see Assumption 2]. This is so
because ĝ, g̃, ũ, etc. are all invariant to nonsingular transformations of pK�z�. Also,
I will assume Q = E�pK�Zi�pK�Zi�′� = I. This is so because, for a symmetric square
root Q−1/2 of Q−1, Q−1/2pK�z� is a nonsingular transformation of pK�z� satisfying

η̃0�K� = sup
z∈�

�Q−1/2pK�z�� ≤ Cζ0�K�

Hence this transformation will not change the order of the bound ζ0�K�, see Newey
(1997:161) for more discussion on this. Also, if I change pK�z� to p̄K�z� ≡ Q1/2pK�z�
and define β̄ = Q−1/2β, Assumption 3 is satisfied because 	g�z� −pK�z�′β	 = 	g�z� −
p̄K�z�′β̄	. Thus all the assumptions still hold when pK�·� is changed to Q−1/2pK�·�.
I use 1n to denote an indicator function that takes value one if �P ′P� is invertible

and zero otherwise. I will only explicitly use the indicator function 1n in the proof
of Lemma A.2 and omit it in the proofs of Lemmas A.3 to A.5(iii) to simplify the
notation. Whenever I have �P ′P�−1, it should be understood as 1n�P ′P�−1, and since
Prob�1n = 1� → 1 almost surely, I will often omit the indicator function 1n.

Lemma A.1. Q̂ − I = Op�ζ0�K�√K/
√

n�, where Q̂ = �P ′P/n�.

Proof. See the proof of Theorem 1 of Newey (1997:161–162). �

Lemma A.2. �β̃f − βf� = Op�
∑L

l=1 K
−δl
l �, where β̃f = �P ′P�−P ′f , βf satisfies

Assumption 3, f = g or f = h�s�, s = 1� 	 	 	 � r.

Proof.

1n�β̃f − βf� = 1n��P ′P�−1P ′�f − Pβf ��

= 1n��f − Pβf �′P�P ′P�−1�P ′P/n�−1P ′�f − Pβf �/n�1/2

= 1nOp�1���f − Pβf �′P�P ′P�−1P ′�f − Pβf �/n�1/2

≤ Op�1���f − Pβf �′�f − Pβf �/n�1/2 = Op�
L∑

l=1
K

−δl
l �

by Lemma A.1, Assumption 3, and the fact that P�P ′P�−1P ′ is idempotent. Finally,
�β̃f − βf� = Op�

∑L
l=1 K

−δl
l � since Prob�1n = 1� → 1. �



1090 LI

Lemma A.3. �P ′η/n� = Op�ζ0�K�/√n� = op�1�.

Proof. Note that E�Piηi� = 0 because pK�·� ∈ � and η�·� ⊥ �; thus I have

E�P ′η/n�2 = n−2
{∑

i

∑
j

E�P ′
iPjηiηj�

}

= n−2
{∑

i

E�PiP
′
iη

2
i � +

∑
i

∑
j �=i

E�P ′
iηi�E�Pjηj�

}

= n−2 ∑
i

E�P ′
iPiη

2
i � ≤ Cn−1E�P ′

iPi� = O��ζ0�K��2/n�

Hence �P ′η/n� = Op

[
ζ0�K�/√n

]
. �

Lemma A.4. Sf−f̃ = Op�
∑L

l=1 K
−2δl
l � = op�n−1/2�, where f = g or f = h.

Proof. Note that f̃ ≡ Pβ̃f ; thus I have

Sf−f̃ = 2n−1�f − f̃�2 ≤ n−1��f − Pβf�2 + �P�βf − β̃f ��2�

= O

( L∑
l=1

K
−2δl
l

)
+ �βf − β̃f �′�P ′P/n��βf − β̃f �

= O

( L∑
l=1

K
−2δl
l

)
+Op�1��βf − β̃f�2 = Op

( L∑
l=1

K
−2δl
l

)

by Assumption 3, Lemma A.1, and Lemma A.2. �

Lemma A.5. (i) Sṽ = Op�K/n�, (ii) Sũ = Op�K/n�, (iii) Sη̃ = op�1�.

Proof. (i) Similar to the proof of Theorem 1 of Newey (1997), I have

E�Sṽ	�� = n−1E�v′P�P ′P�−1P ′v	�� = n−1tr�P�P ′P�−1P ′E�vv′	���

≤ Cn−1tr�P�P ′P�−1P ′� = O�K/n�

which implies Sṽ = Op�K/n�.

(ii) Follow the same proof as in the proof of Lemma A.5(i).

(iii) Sη̃ = n−1η̃′η̃ = �η′P/n��P ′P/n�−1�P ′η/n� = Op�ζ2
0 �K�/n� = op�1� by

Lemma A.1 and Lemma A.3. �
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