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In this article, we propose a semiparametric smooth coef� cient model as a useful yet � exible speci� -
cation for studying a general regression relationship with varying coef� cients. The article proposes a
local least squares method with a kernel weight function to estimate the smooth coef� cient function.
The consistency of the estimator and its asymptotic normality are established. A simple statistic for
testing a parametric model versus the semiparametric smooth coef� cient model is proposed. An empir-
ical application of the proposed method is presented with an estimation of the production function of
the nonmetal mineral industry in China. The empirical � ndings show that the intermediate production
and management expense has played a vital role and is an unbalanced determinant of the labor and
capital elasticities of output in production.
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1. INTRODUCTION

Semiparametric and nonparametric estimation techniques
have attracted much attention among econometricians and
statisticians. One popular semiparametric speci� cation is a
partially linear model of the following form (e.g., Robinson
1988; Stock 1989):

yi
D �4zi5 C x0

i‚0
C …i1 (1)

where x0
i‚0 is the parametric component and �4zi5 is the non-

parametric part of the model [the functional form of �4¢5 is
not speci� ed].

In this article, we consider a more general semiparametric
regression model: a semiparametric smooth coef� cient model.
A semiparametric smooth coef� cient model nests a partially
linear model as a special case and it is given by

yi
D �4zi5 C x0

i‚4zi5 C …i1 (2)

where ‚4zi5 is a vector of unspeci� ed smooth functions of
zi . When ‚4zi5 D ‚0, model (2) reduces to (1). The smooth
coef� cient model is an appropriate setting, for example, in the
framework of a cross-sectional production function where the
right-hand-side variables are labor, capital, and � rm’s R&D
inputs. If we let xi

D 4labori1 capitali5 and zi
D R&Di, then

model (2) suggests that the labor and capital input coef� cients
may vary directly with the � rm’s R&D input. Thus, both the
marginal productivity of labor and the capital depend on the
� rm’s R&D values. As a result, the returns to scale may also
be a function of R&D. The partially linear model (1) assumes
the slope coef� cients ‚0 are invariant to R&D, and the R&D
variable can only shift the level of the production frontier. In
this case, the R&D variable is said to have “neutral” effects on
the production frontier. In contrast to model (1), our smooth
coef� cient model (2) allows R&D to affect the stochastic fron-

tier “nonneutrally.” Section 4 provides an empirical example
similar to this setting. There is a rich literature for using a
one-sided error term to describe production ef� ciency. Aigner,
Lovell, and Schmidt (1977) suggested using a one-sided nor-
mal error term to describe a � rm’s production inef� ciency,
which results in a parallel level shift of the � rm’s produc-
tion function from an ef� cient production function. For using
panel data to relax some of the restrictive assumptions made
in Aigner et al. (1977), see Kumbhakar (1990) and Park, Sick-
les, and Simar (1998). See Fan and Li (1996) for nonparamet-
ric estimation of a production frontier function with an error
structure as suggested by Aigner et al. (1977).

The time series smooth transition autoregressive (STAR)
model is another example of the smooth coef� cient model,
yt

D �4ytƒd5 C x0
t‚4ytƒd5 C …t , where �4ytƒd5 and ‚4ytƒd5 are

bounded. Other related models are considered in Chen and
Tsay (1993) and Hastie and Tibshirani (1993), who consid-
ered the autoregressive model of the form yt

D f14ytƒd5ytƒ1 C
f24ytƒd5ytƒ2 C ¢ ¢ ¢ C fp4ytƒd5ytƒp

C …t , where the functional
form of fj4¢5’s (j D 11 : : : 1 p) are not speci� ed. When d >
p1ytƒd and 4ytƒ11 : : : 1 ytƒp5 are nonnested, and their model is
similar to our model (2). However, when 1 µ d µ p, ytƒd is
contained in 4ytƒ11 : : : 1 ytƒp5. Model (2) does not cover this
case. Chen and Tsay (1993) and Hastie and Tibshirani (1993)
discussed the identi� cation of fj4¢5 for the general case and
suggested some recursive algorithms to estimate the unknown
fj4¢5 functions.

In this article, we only consider the case in which xi and zi

are nonnested so that we do not need recursive or back� tting
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algorithms as in Chen and Tsay (1993) or Hastie and Tib-
shirani (1993). As a result, the asymptotic distribution of our
semiparametric estimator can be easily established. Also, we
suggest a simple consistent test for testing a parametric model
versus the semiparametric model (2).

The semiparametric model (2) has the advantage that it
allows more � exibility in functional form than a parametric
linear model or a semiparametric partially linear speci� cation
of (1). Further, the sample size required to obtain a reliable
semiparametric estimation is not as large as that required for
estimating a nonparametric model. Hence, a semiparametric
smooth coef� cient model provides a � exible speci� cation and
should be useful for applied researchers. It should be noted
that when the dimension of zi is greater than 1, our model (2)
also suffers the curse of dimensionality problem, although to
a lesser extent than a purely nonparametric model where both
xi and zi enter the model nonparametrically.

The rest of the article is organized as follows. Section 2
presents a semiparametric smooth coef� cient model and estab-
lishes the asymptotic properties of our proposed semiparamet-
ric estimator. Section 3 proposes a test for a parametric model
against a semiparametric alternative. Section 4 uses the semi-
parametric smooth coef� cient model to study the production
function of the nonmetal mineral industry in China. Conclud-
ing remarks are given in Section 5.

2. SEMIPARAMETRIC SMOOTH
COEFFICIENT MODEL

Model (2) can be expressed more compactly as

yi
D �4zi5 C x0

i‚4zi5 C …i
D 411 x0

i5

³
�4zi5

‚4zi5

´
C …i

² X 0
i„4zi5 C …i1 (3)

where „4zi5 D 4�4zi51 4‚4zi55
050. „4zi5 is a vector of smooth,

but unknown functions of zi, xi is a p � 1 vector, and zi is of
dimension q. The model is, in fact, similar to the time-varying
coef� cient model considered by Robinson (1989):

yt
D x0

t‚4t5 C …t1 t D 11 : : : 1 n1 (4)

where ‚4t5 is a smooth, unknown function of time t. Model
(3) differs from model (4) in that the variable zi

2 Rq is
stochastic, whereas t 2 80111 : : : 1 n9 is nonstochastic. Robin-
son proposed a local least squares method to estimate ‚4t5

using kernel weight function.
Following Robinson, we propose the following local least

squares method to estimate „4z5:

O„4z5 D
µ

4nhq5ƒ1
nX

jD1

XjX
0
jK

³
zj

ƒ z

h

´¶ƒ1

� 4nhq5ƒ1
nX

jD1

XjyjK

³
zj

ƒ z

h

´

² 6Dn4z57ƒ1An4z51 (5)

where Dn4z5 D 4nhq5ƒ1
P

j Xj X
0
jK44zj

ƒ z5=h5, An4z5 D
4nhq 5ƒ1

P
j XjyjK44zj

ƒ z5=h5, K4¢5 is a kernel function, and
h D hn is a smoothing parameter.

The intuition behind the preceding local least squares esti-
mator is apparent. Let us assume that z is a scalar and K4¢5 is
a uniform kernel. In this case, (5) becomes

O„4z5 D
"

X

—zj ƒz—µh

Xj X
0
j

#ƒ1 X

—zj ƒz—µh

Xjyj 0 (6)

O„4z5 is simply a least squares estimator obtained by regress-
ing yj on Xj using the observations of 4Xj1 yj5 where the cor-
responding zj is close to z4—zj

ƒ z— µ h5. Because „4z5 is a
smooth function of z, —„4zj5 ƒ „4z5— is small when —zj

ƒ z— is
small. The condition that nh is large ensures that we have suf-
� cient observations within the interval —zj

ƒz— µ h when „4zj5

is close to „4z5. Therefore, under conditions such as h ! 0
and nh ! ˆ (nhq ! ˆ if zi

2 Rq ), one can show that the
local least squares estimator O„4z5 provides a consistent esti-
mate of „4z5.

The following theorem establishes the consistency and
asymptotic normality of O„4z5.

Theorem 2.1. Under conditions (A.1) and (A.2) given in
the Appendix, and for a � xed value of z with fz4z5 > 0
[fz4¢5 is the marginal density function of zi], we have (a)
O„4z5 ƒ „4z5 ! 0 in probability, and (b) if, in addition to
(A.1) and (A.2), we also have nhqC4 ! 0 as n ! ˆ, thenp

nhq4 O„4z5 ƒ „4z55 ! N401ìz5 in distribution, provided that

Mz

defD fz4z5E6X1X
0
1
—z1

D z7 is positive de� nite, where ìz
D

M ƒ1
z VzM

ƒ1
z , Vz

D fz4z5E6X1X
0
1‘

2
… 4x11 z15—z1 D z76

R
K24u5 du7,

and ‘ 2
… 4x11 z15 D E4…2

1
—x11 z15.

Moreover, ìz can be consistently estimated by bìz
D

bM ƒ1
z

bVz
bMƒ1

z , bMz
D 4nhq5ƒ1

P
i XiX

0
iKiz with Kiz ² K44zi

ƒ
z5=h5, bVz

D 4nhq5ƒ1
P

i XiX
0
i
O…2
i K

2
iz, and O…i

D yi
ƒ X 0

i
O„4zi5.

The proof of Theorem 2.1 is presented in the Appendix.

3. TESTING PARAMETRIC VERSUS
SEMIPARAMETRIC MODELS

Consider a parametric speci� cation of model (2):

yi
D X 0

i„04zi5 C …i1 (7)

where „04zi5 is a parametric function of zi . For example,
consider the simple case where zi is a scalar and „04zi5 D
4�0 C ziƒ01‚0

05
0. We have a standard linear regression model

yi
D �0

C ziƒ0
C x0

i‚0
C …i ² X 0

i„04zi5 C …i1 (8)

where „04zi5 D 4�0
C ziƒ01 ‚0

05
0.

Even though model (3) is more general than model (7),
one may want to estimate the parametric model (7) if it is,
in fact, the true model. It is usually more ef� cient (in � nite-
sample applications) to estimate a correctly speci� ed paramet-
ric model than to estimate a semiparametric model. However,
if the semiparametric model (3) is a correct speci� cation, but
model (7) is not, the estimation results based on the misspec-
i� ed parametric model (7) will usually lead to inconsistent
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estimation results. Therefore, in practice, it is of interest to
test whether the parametric model (7) is an adequate descrip-
tion of the data. In the following, we propose a simple statistic
for testing the parametric model (7) versus the semiparametric
smooth coef� cient model (3).

The null hypothesis that model (7) is a correct speci� cation
can be stated as follows: H0: „4z5ƒ „04z5 D 0 almost every-
where. The alternative hypothesis is that model (3) is the cor-
rect speci� cation, but not model (7): H1 2 „4z5ƒ „04z5 6D 0 on
a set with positive measure.

We will use integrated squared differences I
defD

R
6„4z5 ƒ

„04z5706„4z5ƒ„04z57 dz as the basis of our test. For using other
methods to construct consistent model speci� cation tests, see
Bierens (1982), Wooldridge (1992), and Bierens and Ploberger
(1997), among others. Notice that I D 0 under H0 and I > 0
under H1. Therefore, I serves as a proper measure for test-
ing H0 versus H1. A feasible test statistic can be obtained
by replacing „4z5 with the local least squares estimate O„4z5

given by (5) and by replacing „04z5 with its estimate O„04zi5.
In the case of a linear parametric function with a scalar
zi ,

O„04zi5 D 4 O�0 C z Oƒ01 zi
O‚05

0, where 4 O�01 Oƒ01
O‚05 is the least

squares estimate of 4�01 ƒ01 ‚05.
Because the random denominator Dn4z5 in (5) is not

bounded away from 0, it is dif� cult to derive the asymptotic
distribution of the test statistic based on the integrated squared
differences I . To avoid this random denominator problem, we
propose a test statistic based on a weighted version of I with
Dn4z5 as the weight function,

In
D

Z ©
Dn4z56 O„4z5ƒ O„04z57

ª0©
Dn4z56 O„4z5ƒ O„04z57

ª
dz0 (9)

Using the identity that Dn4z5 O„4z5 D An4z5 [see (5)], we have

In
D

Z
6An4z5ƒ Dn4z5 O„04z5706An4z5ƒ Dn4z5 O„04z57 dz

D 4nhq5ƒ2
X

i

X

j

Z
X 0

i 6yi
ƒ X 0

i
O„04z57Xj6yj

ƒ X 0
j
O„04z57

� K
±zi

ƒ z

h

²
K

±zj
ƒ z

h

²
dz0 (10)

The test statistic In given in (10) involves a q-dimensional
(possibly numerical) integration and is not easy to compute in
practice. It can also be shown that In involves a “nonzero cen-
ter term” under H0, which can cause substantial � nite sample
bias in testing H0; see Li (1996) for some Monte Carlo evi-
dence on this issue. In the following equation, we use some
simple tricks to construct a new test statistic that does not
involve numerical integration or a “nonzero center term.”

Removing the i D j term from (10) and replacing O„04z5 in
the � rst set of brackets by O„04zi5 and O„04z5 in the second set
of brackets by O„04zj5, we have a new test statistic,

eIn
D 1

n2h2q

X

i

X

j 6Di

X 0
i yi

ƒ X 0
i
O„04zi5

¢
Xj yj

ƒ X 0
j
O„04zj5

¢

�
Z

K
±zi

ƒ z

h

²
K

±zj
ƒ z

h

²
dz

D 1
n2hq

X

i

X

j 6Di

X 0
i yi

ƒ X 0
i
O„04zi5

¢

� Xj yj
ƒ X 0

j
O„04zj5

¢SK
±zi

ƒ zj

h

²
1 (11)

where SK4v5
defD

R
K4u5K4u C v5du is the twofold convolution

kernel derived from K4¢5.
Dropping the i D j term in (10) removes a center term

in In, and replacing „4z5 by „4zi5 [or „4zj5] gets rid of the
integration in In. The reason that we can replace „4z5 by
„4zi5 [or „4zj5] is that only z close to both zi and zj are
important in the integration due to the kernel weight function
K44zi

ƒ z5=h5K44zj
ƒ z5=h5.

In practice, one can use the product kernel K4u5 DQq

lD1 k4ul5 for computation. In this case, the convolution ker-
nel is also a product kernel SK4u5 D Qq

lD1
Nk4ul5, where k4¢5 and

Nk4¢5 are univariate kernel functions. If k4¢5 is a standard nor-
mal kernel, that is, k4x5 D eƒx2=2=

p
2� , then the convolution

kernel is Nk4x5 D eƒx2=4=
p

4� [an N401 25 density function].
This is because Nk4¢5 is the density function obtained from the
sum of two independent N(0, 1) random variables. Thus, in
contrast to In in (10), the test statistic eIn does not involve any
integration.

In fact, one does not even have to use the convolution ker-
nels. Simply replacing SK44zi

ƒ zj5=h5 by K44zi
ƒ zj5=h5 in

(11) provides a simple consistent test. Therefore, our proposed
test statistic is

bIn
D 1

n2hq

X

i

X

j 6Di

X 0
i yi

ƒ X 0
i
O„04zi5

¢

� Xj yj
ƒ X 0

j
O„04zj5

¢
K

±zi
ƒ zj

h

²

D 1
n2hq

X
i

X

j 6Di

X 0
iXj

O…i
O…j K

±zi
ƒ zj

h

²
1 (12)

where K4¢5 is a second-order kernel function [see condition
(A.2) (i) in the Appendix]. K4¢5 could be the same kernel
function as used in (5). The residual O…i

D yi
ƒ Xi

O„04zi5 is
obtained from the parametric model (7). Besides the advan-
tages of not needing numerical integration or a nonzero center
term, another advantage of using the bIn test of (12) over the In

test of (10) is that the regularity conditions required for deriv-
ing the asymptotic normality of bIn (under H0) are weaker than
those required for In. As shown in the Appendix, for the con-
ditions on smoothing parameter h, h ! 0 and nhq ! ˆ (as
n ! ˆ) are suf� cient for nhq=2bIn to have an asymptotic normal
distribution with a simple asymptotic variance under H0, and
nhq=2bIn

! Cˆ under H1. However, it can be shown that the
asymptotic variance of In is different, depending on whether
the data are undersmoothed (nhqC4 ! 0), optimally smoothed
(nhqC4 ! a positive constant), or oversmoothed (nhqC4 ! ˆ);
see Hall (1984) and Fan (1994) for more details on how dif-
ferent amounts of smoothing can lead to different asymptotic
variances for some nonparametric kernel-based tests.

Theorem 3.1. Assume that conditions (A.1) and
(A.2) given in the Appendix hold. Then (a) under
H0, Jn

D nhq=2bIn= O‘ 0
! N401 15 in distribution, where
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O‘ 2
0

D 24n2hq5ƒ1
P

i

P
j 6Di

O…2
i

O…2
j 4X

0
iXj5

2K244zi
ƒ zj5=h5 is a con-

sistent estimator of

‘ 2
0

D 2fz4z5E
£
4X 0

1X25
2‘ 4

… 4x11 z15—z1 D z
¤hZ

K24v5dv
i
3

(b) under H1, Prob6Jn > Bn7 ! 1 as n ! ˆ, where Bn is any
nonstochastic sequence with Bn

D o4nhq=25.

The proof of Theorem 3.1 is also presented in the Appendix.
Theorem 3.1 states that the test statistic Jn

D nhq=2bIn= O‘ 0

is a consistent test for testing H0 versus H1. Note that, as
n ! ˆ, Jn

! Cˆ under H1. Therefore, it is a one-sided test.
In practice, H0 is rejected if Jn > c� at the signi� cant level �,
where c� is the upper � th percentile from a standard normal
distribution.

Here we would like to make some comments on the differ-
ences and similarities of the testing problem compared with
those of Fan and Li (1996, 1999) and Zheng (1996) (here-
after FLZ). FLZ considered a conditional moment test of the
form E4…—z5 D 0 almost surely, where … is the error term
from a regression model. They constructed their tests based
on E6…E4…—z5f4z57. After replacing E4…—z5f 4z5 by a kernel
estimator and replacing E4¢5 by the sample mean of (¢), their
test statistic had a simple form containing a double summa-
tion. The testing problem we consider here cannot be written
as a conditional zero mean of the error term …. Therefore, we
choose to use integrated squared differences as the starting
point for construction of our test. Unfortunately, the integrated
squared differences–based test In involves numerical integra-
tion and is not convenient to compute. Its asymptotic distri-
butions are complicated and depend on whether the data are
undersmoothed, optimally smoothed, or oversmoothed. After
using some simple manipulations, we are able to obtain a
much simpler test that does not involve numerical integration.
The � nal version of our test, the bIn test, only has a double
summation, which is very similar to the tests considered in
FLZ. Consequently, the asymptotic distribution of bIn is rela-
tively simple and is similar to the asymptotic analysis of FLZ.

Finally, we would like to make some comments on how
to choose the smoothing parameters. Both Theorem 2.1 and
Theorem 3.1 require the smoothing parameter h to satisfy
the usual conditions that h ! 0 and nhq ! ˆ as n ! ˆ.
In practice, one can use some rule-of-thumb formula like
hl

D zl1 sdn
ƒ1=44Cq5, where zl1 sd is the sample standard devia-

tion of 8zl1i9
n
iD1, l D 11 : : : 1 q. When q D 1, zi is normally dis-

tributed, and K4¢5 is a Gaussian kernel function, the so-called
normal-reference rule is to choose h D 1006 zsdn

ƒ1=5; see Sil-
verman (1986) for a more detailed discussion of this (we thank
a referee for pointing out the normal-reference rule to us).
Alternatively, one may use some data-driven method such as
the least squares cross-validation method to select h. Although
we did consider this case in Theorems 2.1 and 3.1, it is natural
to conjecture that the results of Theorems 2.1 and 3.1 remain
valid with the least squares cross-validation selection of h.

4. PRODUCTION FUNCTION OF THE NONMETAL
MINERAL MANUFACTURING INDUSTRY IN CHINA

In this section, we consider estimation of a production func-
tion in China’s nonmetal mineral manufacturing industry to
illustrate the application of the semiparametric smooth coef� -

cient model. The data used in this article are drawn from the
Third Industrial Census of China conducted by the National
Statistical Bureau of China in 1995. The Third Industrial Cen-
sus of China is currently the most comprehensive industrial
survey in China. We use the data on all the � rms in the non-
metal mineral manufacturing industry (code 31 in the sur-
vey) in this article. There are several reasons for choosing
the nonmetal mineral manufacturing industry in our article:
(1) To avoid heterogeneity across different industries, we have
to include only those � rms in the same industry. At the same
time, we want to have a suf� ciently large sample size to carry
out the semiparametric estimation. This leaves us with seven
industries from which to choose. (2) Due to the effort of the
government since the early 1980s, there was signi� cant for-
eign investment in most Chinese industries in 1995. It has been
found that production performance is quite different across dif-
ferent ownership types (see, e.g., Murakami, Liu, and Otsuka
1994), which leads to different production functions across
different ownership types, even within the same industry. For
this reason, we want to study an industry in which there were
very few � rms owned or operated by foreign entities. The non-
metal mineral manufacturing industry is a suitable candidate
according to this criterion. There were only 67 � rms (wholly
or partly) owned by foreign investors out of 1,473 � rms in
the nonmetal mineral industry in 1995. We removed the � rms
(wholly or partly) owned by foreign investors from our sam-
ple. This leaves 1,406 observations in the sample. The non-
metal mineral manufacturing industry includes cement man-
ufacturing, asbestos manufacturing, glass manufacturing, and
so forth.

Value added in thousand renminbi (hereafter RMB) (Y ),
value of capital assets in thousand RMB (K), average num-
ber of employees (L), and intermediate production and man-
agement expense in thousand RMB (Z) are the main vari-
ables used in the estimation of the production function. There
were usually small � uctuations in the number of employ-
ees throughout the year. The reported number (L) is the
average within the year reported. The yearly average num-
ber of employees of each � rm includes all permanent, con-
tracted, and temporary workers. The intermediate production
and management expense includes those production expenses
and management expenses that are not directly related to the
production of output. For example, it includes research and
development (R&D), upgrading of the existing equipment, and
employee training. Note that R&D is part of the intermedi-
ate production and management expense, but R&D itself is
not available in this dataset. It is hypothesized that � rms with
more intermediate production and management expense tend
to produce more output (holding other inputs equal), and this
may alter the marginal product of labor and capital.

In the production function, output is the value added (Y ).
The two inputs are the value of capital assets (K) and the
average number of employees (L). Intermediate production
and management expense (Z) is included in the production
estimation as an argument of the unknown smooth coef� cient
function in the semiparametric frontier to examine the possi-
ble nonneutral ef� ciency effect in production. Table 1 shows
the summary statistics for the logged variables in the dataset.
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Table 1. Summary Statistics

Variable Mean Standard deviation Minimum Maximum

ln Y 9028 1019 1039 13015
ln K 11011 079 8076 14039
ln L 6081 073 2083 9093
ln Z 6056 1053 2089 9081

The semiparametric model we use allows the coef� cients
of ln K and ln L to vary with the variable z D ln Z without
specifying the functional form:

ln Y D �4z5C ‚K4z5 ln K C ‚L4z5 ln L C …0 (13)

To estimate the semiparametric model (13), a standard normal
kernel function K4u5 D eƒu2=2=

p
2� is used to estimate „4z5 D

4�4z51‚K4z51‚L4z55. The smoothing parameter is chosen via
h D zsdn

ƒ1=5, where n is the sample size and zsd is the sample
standard deviation of z.

We will compare our semiparametric estimation results with
two parametric models. The � rst one is a Cobb–Douglas pro-
duction function:

ln Y D �0 C �1zC �2z
2 C ‚K ln K C ‚L ln LC …0 (14)

In model (14), the intermediate production and management
expense z is assumed to neutrally shift the production func-
tion, that is, �04z5 D �0

C�1zC�2z
2, and all other coef� cients

are constant, ‚j4z5 D ‚j1 j D K1L.
The second parametric model is a translog model that

allows interaction terms:

ln Y D �0
C �1z C �2z

2 C ‚1K ln K C ‚2K ln2 K C ‚1L ln L

C‚2L ln2 LC ‚Kz z ln K C ‚Lz z ln L

C‚KL ln K ln LC …0 (15)

The results of the two parametric models (14) and (15) are
given as follows:

ln Y D ƒ0016
40035

C 0027z
40235

C 0011 z2

410235
C 0573 ln K

4140855
C 0332 ln L

480595

R2 D 04251 Adjusted R2 D 0423 (16)

and

ln Y D 30721
410085

C 0197z
40715

C 0017 z2

410535
ƒ 0313 ln K

40485
C 0010 ln2 K

40265

C0525 ln L
410085

C 0002 ln2 L
40065

C 0051z ln K
410685

ƒ00120z ln L
440105

C 0049 ln K ln L
40845

R2 D 04331 Adjusted R2 D 04301 (17)

where the t statistics are given in parentheses.
In the simple production function model (16), the coef-

� cients on both capital and labor are positive and signi� -
cant. Even though the coef� cients on z and z2 are not sig-
ni� cant, a joint test of these two coef� cients yields a test

statistic F421114015 D 42096, which is highly signi� cant [the
1% F421114015 critical value is 4.61]. We choose a quadratic
functional form for z in model (14) to allow for possible non-
linearity in z. We also estimated a simple model by removing
the z2 term from (14). The t statistic for the coef� cient on z

becomes 9.19. Therefore, the z variable has a signi� cant pos-
itive effect on output. In fact, we also estimated a partially
linear model where z enters the model nonparametrically. The
estimation result is similar to that of the Cobb–Douglas model
and is not reported here to save space.

From the translog model output [Eq. (17)], we observe that
there are many insigni� cant coef� cients. Our semiparamet-
ric model (13) does not nest model (15). However, if ‚2K

D
‚2L

D ‚KL
D 0, then model (15) becomes nested in model (13).

A joint F test for testing ‚2K
D ‚2L

D ‚KL
D 0 gives a value

of F 431 113965 D 066 with Prob > F D 058. Therefore, we do
not reject the null hypothesis that ‚2K

D ‚2L
D ‚KL

D 0. The
estimation results after removing ln2 K1 ln2 L, and ln K ln L

are as follows:

ln Y D 0200
40135

ƒ 0024 z
4ƒ0115

C 0013 z2

410215
C 0158 ln K

40935
C 0992 ln L

460155

C0065z ln K
420605

ƒ 0103 z ln L
4ƒ40225

R2 D 04331 Adjusted R2 D 04300 (18)

Note that model (18) has the same R2 value (up to the third
decimal) as that of the more general model (15). This gives
further evidence that ln2 K, ln2 L, and ln K ln L are irrelevant
regressors.

Table 2 tabulates the mean values and the 10th, 50th
(median), and 90th percentiles of the estimates based on
the semiparametric smoothing coef� cient model. Because the
semiparametric estimators of the smooth coef� cients are func-
tions of z, we plot the coef� cients and their pointwise 90% and
95% bounds in Figures 1 and 2, respectively. For comparison,
we also plot their counterparts from the Cobb–Douglas model
(16). The coef� cients O‚j4z5 and O‚j1 j D K1 L, are plotted
against the intermediate production and management expense
variable z. We also plot the intercept term and the returns to
scale ‚K4z5C‚L4z5. Except for the intercept, which is �04z5 D
�0

C �1zC�2z
2, all other coef� cient estimates in the paramet-

ric model (16) are constant over z. Comparing the intercept
[Fig. 1(a)] in the parametric model with that in the semipara-
metric model, we see that the intercept in the semiparametric
model is relatively � at, whereas it is increasing in z in the
parametric model. The reason is that, in the Cobb–Douglas
model, the coef� cients on capital and labor are restricted to
be constant and thus any (positive) effect of intermediate pro-
duction and management expense on output is only re� ected

Table 2. Semiparametric Estimation

Coef’ cient Mean 10th percentile Median 90th percentile

‚K (z ) 0645 0615 0661 0701
‚L(z ) 0336 0275 0336 0378
�(z ) ƒ0176 ƒ0319 ƒ0241 ƒ0122
R2 D 0452
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Figure 1. Cobb–Douglas Versus Semiparametric Production (90% bounds).

in the intercept term. Once we allow the coef� cients on cap-
ital and labor to change with z, the “direct” (intercept) effect
of the intermediate production and management expense on
output is much smaller. If we look at the coef� cient on cap-
ital and labor in the semiparametric model, we can see that
the coef� cient on capital is increasing in z [Fig. 1(b)], and the
coef� cient on labor is decreasing in z [Fig. 1(c)]. The coef� -
cients from the benchmark parametric model are outside the
90% con� dence bounds of the semiparametric model for a
large proportion of z. Because our semiparametric model nests
the parametric model, this may be viewed as an indication of
misspeci� cation of the parametric model. The fact that ‚L4z5

is a decreasing function of z may look puzzling, because one
may expect a higher value of intermediate expense to lead to
increased labor elasticity of output. However, almost all the
� rms in our sample are state owned or quasi state owned. It
is widely accepted that one common problem with these � rms
is that there is more labor in these � rms than the ef� cient
level. This is the so-called “concealed unemployment.” The
government did not allow these � rms to lay off extra employ-
ees to avoid social unrest. There was a scarcity of capital and
a surplus of labor in these � rms. See Jefferson, Singh, Xing,
and Zhang (1999) for a detailed discussion of this issue. The
decreasing ‚L4z5 partly re� ects this fact about the particu-
lar dataset used in this article. Here we would like to men-
tion that, in another study, we applied our smooth coef� cient
model to estimate the production function of Taiwan’s elec-
tronic industry, where we found both of the coef� cients ‚K4z5

and ‚L4z5 are increasing functions of z, where z is the � rm’s
R&D expenditure. Taiwan’s electronic industry is composed
of private � rms. R&D tends to increase both the capital elas-
ticity and the labor elasticity.

The returns to scale (the summation of the coef� cients on
capital and labor) are plotted in Figure 1(d). Unlike other
coef� cients, the returns to scale are relatively � at in the
semiparametric model and the returns to scale in the Cobb–
Douglas model are within the 90% bounds for most z. The
average return to scale, nƒ1

Pn
iD16

O‚L4zi5 C O‚K4zi57, is equal
to .981 for the semiparametric model, which is larger than
O‚L

C O‚K
D 0906, the return to scale obtained from the para-

metric model estimation. The returns to scale are close to con-
stant returns to scale in the semiparametric model, whereas
returns are somewhat decreasing in the parametric model. The
Cobb–Douglas model restricts the labor and capital elastic-
ities of output to be constant, which leads to an increasing
effect of z on the intercept term. The intermediate expense
shifts the production function without any effect on the labor
and capital elasticities of output. However, once we relax
the restriction of constant coef� cients, we can clearly see
two very different effects, which would not be discovered
under the Cobb–Douglas model. The semiparametric model
reveals some important features of the production process
in the dataset. The intermediate production and management
expense tends to increase the capital elasticity of output and
decrease the labor elasticity of output. Without more detailed
accounting data, we cannot give a clear explanation of this
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Figure 2. Cobb–Douglas Versus Semiparametric Production (95% bounds).

phenomenon. We speculate that most of the intermediate
expense was spent on R&D and upgrading the existing equip-
ment, which subsequently improves the capital elasticity of
output.

From Figures 1 and 2, we observe some signi� cant differ-
ences between the semiparametric and the parametric (Cobb–
Douglas) estimation results. For testing the constant coef� -
cient hypothesis of model (14), we use a standard normal
kernel function and the smoothing parameter is chosen as
h D zsdn

ƒ1=5. The test statistic Jn
D nh1=2bIn= O‘ 0 is given in The-

orem 3.1. We have done some simulations to examine the
� nite-sample performance of the Jn test, and � nd that it is sig-
ni� cantly undersized for n D 11000 if we use the asymptotic
normal critical values. However, the wild bootstrap method
gives very accurate estimated sizes. This is consistent with
Li and Wang (1998), who found that their nonparametric test
was signi� cantly undersized and that the wild bootstrap test
gave much better estimated sizes. Therefore, we will use the
bootstrap critical value in testing the null hypothesis of a cor-
rectly speci� ed Cobb–Douglas model. The computed Jn statis-
tic yields a value of .464, with a p value of .032 (the 1,000
bootstrap statistics have mean ƒ0829 and standard deviation
.592). Therefore, we reject the Cobb–Douglas model at the
5% level based on the bootstrap critical value. This outcome
con� rms the observations from Figures 1 and 2 that the pro-
duction frontier of the nonmetal mineral industry in China is
of the variable coef� cient type. The impact of the intermediate
expense on output is nonneutral and is input speci� c.

The comparisons between the semiparametric estimation
results and those from the simpli� ed translog model (18) are
given in Figures 3 and 4 with the 90% and 95% bounds for
the semiparametric estimates. From Figure 3, we see that,
compared with the semiparametric model (13), the paramet-
ric model (18) overestimates the intercept and underestimates
the returns to scale. For the capital and labor coef� cient esti-
mates [‚K4z5 and ‚L4K5], the parametric estimates lie inside
the 90% bounds for about 2/3 of the range of z. Compared
with the Cobb–Douglas model, the simpli� ed translog model
gives much closer estimation results than those of the semi-
parametric model. Figure 4 reports the same information as
Figure 3 except that the 90% bounds are replaced by the 95%
bounds. As the bounds become wider, we observe that the
parametric estimates of ‚K 4z5 and ‚L4z5 now lie inside the
95% bounds for most values of z. For the intercept and return
to scale estimates, there are still some signi� cant portions of z
in which the parametric estimation differs from the semipara-
metric results. We also apply the Jn test for the correctness of
model (18), and obtain a value of Jn

D 0439, with a p value
of .043 (the 1,000 bootstrap statistics have mean ƒ0830 and
standard deviation .588). Therefore, we reject the simpli� ed
translog model (18) at the 5% level based on the bootstrap
critical value.

Summarizing the preceding empirical results, we observe
that the Cobb–Douglas model, as well as a partially linear
model, does not provide an adequate description of the rela-
tionship between output and explanatory variables. This is due
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Figure 3. Translog Versus Semiparametric Production (90% bounds).

to the restriction that both models only allow the interme-
diate production and management expense variable to affect
output neutrally. Our semiparametric model and a simpli-
� ed translog model give much better estimation results. A
model speci� cation test and the goodness-of-� t R2 suggest that
our semiparametric model dominates the simpli� ed translog
model (18).

5. CONCLUSION

In this article, we propose that a semiparametric smooth
coef� cient model is a useful yet � exible speci� cation for
studying a general regression relationship with varying coef-
� cients. Because the smooth coef� cient functions are unspec-
i� ed, the semiparametric model provides an alternative to a
parametric model. Furthermore, the sample size required to
obtain reliable semiparametric estimation is not as large as
that required for estimating a purely nonparametric model.
We suggest a local least squares method with a kernel weight
function to estimate the smooth coef� cient functions. The
consistency of the estimator and its asymptotic normality are
established. A simple test statistic for testing a parametric
model versus the semiparametric smooth coef� cient model is
proposed based on the principle of integrated squared differ-
ences between the semiparametric and the parametric estima-
tions of the „4z5 6„04z57 coef� cients. The proposed semipara-
metric estimator and the test statistic are simple to compute
and should be useful to the applied researcher.

The results of an empirical application of a semiparametric
smooth coef� cient model to the nonmetal mineral industry in
China are encouraging. The empirical � ndings show that the
intermediate production and management expenditures have
played a vital role and are unbalanced determinants of the
labor and capital elasticities of output in production.

Although we only consider independent data in this article,
all the results (Theorems 2.1 and 3.1) are still valid for time
series data, provided xt and zt are nonnested (they can both
contain lagged values of yt) and the data are ‚-mixing with
certain decay rates. For the estimation part (Theorem 2.1), the
required conditions will be very similar to that of Robinson
(1989), whereas for a consistent test (Theorem 3.1) with time
series data, the regularity conditions are given in Fan and Li
(1999).
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Figure 4. Translog Versus Semiparametric Production (95% bounds).
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APPENDIX: PROOFS OF THEOREMS 2.1 AND 3.1

In this appendix, we provide proofs of Theorems 2.1 and
3.1. We shall use ˜ ¢˜ to denote the Euclidean norm. First, we
present some regularity conditions.

(A.1) (i) 4yi1 xi1 zi5 is independent and identically dis-
tributed as 4¹1 ¸1 º5. E6¹ —¸ D x1 º D z7 D �4z5 C x0‚4z5

almost everywhere, and ˜ D ¹ ƒ ¸ 0„4º5 has � nite
fourth moments. (ii) Let f 4x1 z5 denote the joint den-
sity function of 4¸ 1º5 and let fz4z5 be the marginal
density function of º. �4z5, ‚4z5, fz4z5, f 4x1 z5,
and ‘ 2

… 4x1 z5 D E6˜2—¸ D x1º D z7 all satisfy some
Lipschitz-type conditions (in z). —m4u C v5 ƒ m4u5— µ
D4u5˜v˜, where D4¢5 has � nite fourth moments; m4¢5 is
�4¢51 ‚4¢51 fz4¢51 f 4x1 ¢5, or ‘ 2

… 4x1 ¢5. (iii) f4x1 z5 and fz4z5 are
bounded, and �4º5, ‚4º5, and 4¸1 º5 all have � nite fourth
moments.

(A.2) (i) K4¢5 is a bounded symmetric function withR
K4u5 du D 1, and

R
K4u5uu0 du D cIq , where c > 0 is a pos-

itive constant and Iq is the identity matrix of dimension q. (ii)
As n ! ˆ, h ! 0 and nhq ! ˆ.

Note that (A.1) (i) implies that E4…i
—xi1 zi5 D 0, and in (A.1)

(ii) we allow conditional heteroscedastic error of unknown

form. (A.2) (i) says that K4¢5 is a standard second-order ker-
nel function. (A.2) (ii) are the usual conditions that ensure the
bias and variance terms in the nonparametric estimation go to
0 as the sample size becomes large.

Throughout this appendix, we use
P

i to denote
Pn

iD1 andP
i

P
j 6Di to denote

Pn
iD1

Pn
jD11j 6Di .

Proof of Theorem 2.1(a).

O„4z5 D
µX

j

XjX
0
jKjz

¶ƒ1 X
j

XjyjKjz

D
µX

j

XjX
0
jKjz

¶ƒ1 X

j

Xj X 0
j„4zj5 C …j

¢
Kjz

D
µX

j

XjX
0
jKjz

¶ƒ1

�
X

j

Xj

£
X 0

j„4z5C X 0
j4„4zj5 ƒ „4z55C …j

¤
Kjz

D „4z5C
µX

j

Xj X
0
jKjz

¶ƒ1

�
X

j

Xj

£
X 0

j4„4zj5 ƒ „4z55C …j

¤
Kjz

D „4z5C 6Dn4z57ƒ18A1n4z5C A2n4z591
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where

Dn4z5 D 4nhq 5ƒ1
X

j

XjX
0
jKjz1

A1n4z5 D 4nhq5ƒ1
X

j

XjX
0
j „4zj5 ƒ „4z5

¢
Kjz1

A2n4z5 D 4nhq 5ƒ1
X

j

Xj…jKjz0

Obviously, O„4z5ƒ „4z5
p! 0 will be proved if we can show

the following:

1. Dn4z5 D 4nhq 5ƒ1
P

Oj XjX
0
jKjz

p! Mz 4Mz is positive de� -
nite).

2. A1n4z5 D op415.
3. A2n4z5 D op415.

These are proven next.
Case 1:

E4Dn4z55 D hƒqE6X1X
0
1K1z7

D hƒq
Z Z

X1X
0
1K 4z1

ƒ z5=h
¢
f4x11 z15 dx1 dz1

D
Z Z

X1X
0
1K4v5f4x11 z C hv5dv dx1

D
hZ

X1X1f4x11 z5dx1

ihZ
K4v5dv C O4h5

i

D fz4z5
hZ

X1X1f 4x1
—z1

D z5dx1

i
61 C O4h57

D fz4z5E6X1X
0
1
—z1

D z7C o415 D Mz
C o4150

Similarly, one can easily show that var4Dn4z55 D
O44nhq5ƒ15 D o415. Therefore, Dn4z5

p! Mz.
Case 2:

E6——A1n4z5——27

D E
©£

A1n4z570A1n4z5
ª

D 4n2h2q5ƒ1
X

i

X
j

E64„4zi5 ƒ „4z550KizXiX
0
iXjX

0
j

� 4„4zj5 ƒ „4z55Kjz7

D 4n2h2q5ƒ1
X

i

E64„4zi5 ƒ „4z550KizXiX
0
iXiX

0
i

� 4„4zi5 ƒ „4z55Kiz7

C4n2h2q5ƒ1
X

i

X

j 6Di

E64„4zi5 ƒ „4z550KizXiX
0
i

� XjX
0
j4„4zj 5 ƒ „4z55Kjz7

D 4nh2q5ƒ1E64„4z15 ƒ „4z550K1zX1X
0
1X1X

0
1

� 4„4z15 ƒ „4z55K1z7

C4h2q5ƒ1E64„4z15 ƒ „4z550K1zX1X
0
1

� X2X
0
24„4z25 ƒ „4z55K2z7

D O4h24nhq5ƒ15 C O4h450

Therefore, A1n4z5 D Op4h4nhq5ƒ1=2 C h25 D op415.

Case 3:

E
£
——A2n4z5——2

¤
D 4nhq5ƒ2

X

i

E
£
X 0

iXi…
2
i K2

iz

¤

D 4nh2q5ƒ1E
£
X 0

1X1‘
2
… 4x11 z15K

2
1z

¤

D 4nh2q5ƒ1O4hq5 D O44nhq5ƒ15 D o4150

Therefore, A2n4z5 D Op44nhq5ƒ1=25 D op415.

Proof of Theorem 2.1(b). By the proof of cases 1 and
3, we know that Dn4z5 D Mz

C op415 and A1n4z5 D Op4h2 C
h4nh5ƒ1=25. Also note that nhqC4 D o415. We have

p
nhq O„4z5ƒ „4z5

¢

D
£
Dn4z5

¤ƒ1
p

nhq
©
A1n4z5C A2n4z5

ª

D
£
Dn4z5

¤ƒ1
p

nhq
©
O h2 C h4nhq5ƒ1=2

¢
C A2n4z5

ª

D
£
Dn4z5

¤ƒ1©p
nhqA2n4z5

ª
C op4150

The term
p

nhqA2n4z5 has mean 0 and its variance is

nhq
n

4nhq5ƒ2
X

i

E
£
XiX

0
i…

2
i K

2
iz

¤o

D hƒq
Z

f4x11 z15‘
2
… 4x11 z15X1X

0
1K

2
1z dx1 dz1

D
hZ

X1X
0
1‘

2
… 4x11 z5f 4x11 z5dx1

ihZ
K24v5dv

i
C O4h5

D fz4z5E
£
X1X

0
1‘

2
… 4x11 z15—z1 D z

¤hZ
K24v5dv

i
C o415

D Vz
C o4150

It is straightforward to check that the conditions for a
triangular-array central limit theorem hold (e.g., Ser� ing 1980,
p. 32). Thus,

p
nhqA2n4z5

p! N 401 Vz5.
Therefore,

p
nhq4 O„4z5ƒ„4z55

p! Mƒ1
z N 401 Vz5 D N 401ìz5.

Proof of Theorem 3.1. The proof of Theorem 3.1 is sim-
ilar to the proof of proposition 1 of Li and Wang (1998) and
theorem 3.1 of Zheng (1996). We provide only a sketch proof
for Theorem 3.1.

Proof of Theorem 3.1(a). Using the identity that, under
H0, O…i

D yi
ƒ X 0

i
O„4zi5 D …i

C X 0
i4„04zi5 ƒ O„04zi55 and the short-

hand notation Kij
D K44zi

ƒ zj5=h5, we have

bIn
D 1

n2h2q

X

i

X

j 6Di

O…i
O…jX

0
iXjKij

D 1
n2hq

X
i

X

j 6Di

…i…jX
0
iXj Kij

C 2
n2h2q

X

i

X

j

X 0
iXj…iX

0
j „04zj5 ƒ O„04zj5

¢
Kij

C 1
n2h2q

X
i

X

j 6Di

X 0
iXjX

0
i „04zi5 ƒ O„04zi5

¢

� X 0
j4„04zj5 ƒ O„04zj55Xj Kij

D bI1n
C 2bI2n

CbI3n0
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The term nhq=2bI1n
D nhq=284n2hq5ƒ1

P
i

P
j 6Di …i…jX

0
iXjKij9

d!
N 401‘ 2

0 5 follows a similar proof as in the proof of lemma 1
of Li and Wang (1998) or Theorem 3.1 of Zheng (1996). We
will not repeat their proof here. Instead, we will only provide
some intuitive arguments.

bI1n can be written as a U statistic bI1n
D

24n2hq5ƒ1
Pn

iD1

Pn
j>i

� Hn4wi1wj5, where wi
D 4…i1 xi1 zi5 and

Hn4wi1wj5 D …i…jX
0
iXjKij . Note that E6Hn4wi1wj5—wi7 D 0.

Therefore, bI1n is a second-order degenerate U statistic.
Obviously, E4nhq=2bI1n5 D 0 and it is easy to show that
var4nhq=2bI1n5 D ‘ 2

0
C o415. Therefore, one would expect

nhq=2bI1n

d! N401‘ 2
0 5. This is indeed true by Hall’s (1984)

central limit theorem for degenerate U statistics.
Using the facts that 4 O�0 ƒ �05 D Op4nƒ1=25, 4 Oƒ0 ƒ ƒ05 D

Op4nƒ1=25, and 4 O‚0 ƒ ‚05 D Op4nƒ15 and using similar argu-
ments as in Li and Wang (1998) and Zheng (1996), one can
easily show that bI2n

D Op4nƒ15, bI3n
D Op4nƒ15, and O‘ 2

0
D‘ 2

0
C

op415. Therefore, nhq=2bIn= O‘ 0
D nhq=2bI1n=‘ 0

Cop415
d! N401 15

under H0.

Proof of Theorem 3.1(b). Again the detailed proof is very
similar to that of Li and Wang (1998) and Zheng (1996).
We give only the main steps here. Parallel to the proof of
Theorem 3.1, it is easy to show that bIn

p! I
defD

R ©
Mz6„4z5 ƒ

„04z57
ª0

8Mz6„4z5ƒ „04z579 dz4>05 under H1. It is straightfor-
ward to show that O‘ 0 D C Cop415 under H1, where C is a pos-
itive constant. Therefore, Jn

D nhq=2bIn= O‘ 0
D nhq=2I=C Cop415,

which leads to Theorem 3.1(b).

[Received July 1999. Revised February 2001.]
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