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Abstract

This paper considers the problem of consistent model speci cation tests using series estimation
methods. The null models we consider in this paper all contain some nonparametric components.
A leading case we consider is to test for an additive partially linear model. The null distribution
of the test statistic is derived using a central limit theorem for Hilbert-valued random arrays.
The test statistic is shown to be able to detect local alternatives that approach the null models
at the order of Op(n−1=2). We show that the wild bootstrap method can be used to approximate
the null distribution of the test statistic. A small Monte Carlo simulation is reported to examine
the  nite sample performance of the proposed test. We also show that the proposed test can
be easily modi ed to obtain series-based consistent tests for other semiparametric/nonparametric
models.
c© 2002 Elsevier Science B.V. All rights reserved.

JEL classi'cation: C12; C14

Keywords: Consistent tests; Semiparametric models; Series estimation; Wild bootstrap

1. Introduction

Semiparametric/nonparametric methods have become increasingly popular because
they avoid imposing many strong a priori assumptions associated with a paramet-
ric approach. Nevertheless, most applications of semiparametric/nonparametric methods

∗ Corresponding author. Tel.: + 1-979-845-9954; fax: +1-979-847-8757.
E-mail address: qi@econ.tamu.edu (Q. Li).

0304-4076/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -4076(02)00198 -7

mailto:qi@econ.tamu.edu


296 Q. Li et al. / Journal of Econometrics 112 (2003) 295–325

have been limited to cases involving only a small number of variables because of
the issue of “curse of dimensionality”. Stone (1985, 1986), Andrews (1991), Andrews
and Whang (1990), Tjostheim and Auestad (1994), Newey (1994, 1995), Linton and
Nielsen (1995), etc., have proposed estimating an additive model of the form, 1

Yi = m1(X1i) + m2(X2i) + · · ·+ mL(XLi) + Ui; (1.1)

to get around the issue of “curse of dimensionality”, where Xli’s are scalar variables,
l= 1; : : : ; L. Model (1.1) has the advantage that it only involves one-dimensional non-
parametric functions ml(·) and hence the “curse of dimensionality” is greatly reduced.
However, one restrictive assumption of model (1.1) is that it does not allow any in-
teraction terms among the Xli’s.
To maintain the simplicity of the additive model while allowing for the presence

of interaction terms and diFerent ml(·) functions to have some common overlapping
variables, the following more general model has been suggested:

Yi = z0(Xi)′�+ m1(X1i) + m2(X2i) + · · ·+ mL(XLi) + Ui; (1.2)

where Xli is now of dimension ql (ql¿ 1), � is an s×1 unknown parameter, z0(Xi) is
an s×1 known function of Xi, Xi is a q×1 nonoverlapping variables of X1i ; X2i ; : : : ; XLi.
Model (1.2) is an additive partially linear model and it allows interaction terms among
Xli to enter as the linear part of the model. For instance, consider the simple case of
L= 2, where X1i, X2i and z0(Xi) are all scalars, we can let z0(Xi) = X1iX2i.
Both kernel and series methods have been proposed to estimate models (1.2), e.g.,

Fan et al. (1998), Fan and Li (1996a), Li (2000), and Sperlich et al. (2002), 2 among
others. The kernel marginal integration method is to  rst estimate a nonparametric
model with high dimension (ignoring the additive structure) and then to use the method
of marginal averaging to obtain an estimator of a function with low dimension (uti-
lizing the additive structure). This approach may lead to some 'nite sample eJciency
loss due to the use of ineJcient estimation procedure in the  rst stage. This is be-
cause we estimate a high-dimensional model less accurately compared with estimating
a low-dimensional model. If the sample size is not suJciently large, this  rst step
eJciency loss may not be totally recovered by the second step marginal integration
computation in 'nite sample applications. The kernel marginal integration method is
also computationally costly. The computation time of estimating an additive partially
linear model is about n (n is the sample size) times that of estimating a nonadditive
partially linear model. Also, the asymptotic analysis (of estimating an additive partially
linear model) using kernel methods is quite complex as can be seen from the works of

1 For recent development on using back tting method to estimate an additive model, see Mammen et al.
(1999), Linton (2000), Nielsen and Linton (1998), and Opsomer and Ruppert (1997).

2 Although Sperlich et al. (2002) did not consider the parametric component z0(Xi), they allow the addi-
tive functions to contain second-order pairwise interactions, i.e., allowing Xli contain overlapping variables.
Sperlich et al. (2002) proposed several tests for testing zero interaction terms.
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Fan et al. (1998), and Fan and Li (1996a, b). 3 On the other hand, the series method is
less costly in computation because it only involves least squares. Furthermore, the series
method can estimate � eJciently in the sense that the asymptotic variance of a series
estimator of � attains the semiparametric eJciency bound, while the existing kernel
marginal integration-based method does not (e.g., Fan et al., 1998; Fan and Li, 1996a).
It is also fairly straightforward to impose restrictions such as additive separability or
shape preserving by using series method (e.g., Chen and Shen, 1998; Dechevsky and
Penez, 1997).
Because the relative ease of implementing series method in nonparametric estimation,

in this paper we consider constructing test statistics based on series estimation method,
in particular, the problem of testing the adequacy of Model (1.2) using the series
method as an alternative to the kernel method. We will also show that our testing
procedure can be easily generalized to testing other semiparametric econometric models.
There is an abundance of literature on constructing consistent model speci cation

tests using various estimation techniques, see Ait-Sahalia et al. (2001), Andrews (1997),
Bierens (1982, 1990), Bierens and Ploberger (1997), Chen and Fan (1999), De John
(1996), Delgado (1993), Delgado and Manteiga (2001), Delgado and Stengos (1994),
Donald (1997), Ellison and Ellison (2000), Eubank and Spiegelman (1990), Fan and
Li (1999), HMardle and Mammen (1993), Hong and White (1995), Horowitz and HMardle
(1994), Lavergne (2001), Lavergne and Vuong (1996), Lewbel (1995), Li and Wang
(1998), Robinson (1989, 1991), Stute (1997), Wooldridge (1992), Yatchew (1992),
and Zheng (1996), among others. Most authors consider the problem of testing a para-
metric null model. Ait-Sahalia et al. (2001), Delgado and Manteiga (2001) and Chen
and Fan (1999), have considered the case of testing nonparametric/semiparametric null
models. They use nonparametric kernel methods to estimate the null models. We use
nonparametric series methods to estimate the null model (1.2). Both their test statis-
tics and ours are nuisance parameter dependent. Some bootstrap methods are therefore
needed to compute the critical values of the test statistics. However, estimating the
additive model (1.2) by kernel methods in conjunction with the use of bootstrap meth-
ods to evaluate the critical values of the test statistics could be computationally more
burdensome than by the series method.
The test statistic considered in this paper has the properties that: (i) it avoids estimat-

ing the alternative model nonparametrically so as to partially circumvent the “curse of
dimensionality” problem, (ii) it can detect local alternatives of the order of Op(n−1=2),
and (iii) it is computational simple. We note that the test statistics of Delgado and
Manteiga (2001) and Chen and Fan (1999) also share properties (i) and (ii), but
as discussed above, kernel methods could be computationally costly when estimating
additive models.
In Section 2 we develop a consistent model speci cation test for additive partially

linear models based on series estimation method. Section 3 reports simulation results
to examine the  nite sample performance of the proposed test. Generalizations are

3 Note that Fan et al. (1998), and Fan and Li (1996a, b) did not consider the case of nonparametric additive
interaction terms. Allowing additive interaction terms will make the theoretical analysis more complex.
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discussed in Section 4. Conclusions are in Section 5. The proofs are given in Appen-
dices A and B.

2. Consistent test for an additive partially linear model

In this section, we propose a consistent test for the additive partially linear model
(1.2). The null hypothesis is

H0 : E(Yi|Xi) = z0(Xi)′�+
L∑

l=1

ml(Xli) a:s: for some �∈B;
L∑

l=1

ml(·)∈G; (2.1)

where B is a compact subset of Rr and G is the class of additive functions de ned
below.

De�nition 1. We say that a function �(z) belongs to an additive class of function
G (�∈G) if (i) �(z) =

∑L
l=1 �l(zl), �l(zl) is continuous in its support Sl, where

Sl is a compact subset of Rql (l = 1; : : : ; L; L¿ 2 is a  nite positive integer); (ii)∑L
l=1 E[�l(Zl)]2 ¡∞ and (iii) �l(0) = 0 for l= 2; : : : ; L.
When �(z) is a vector-valued function, we say �∈G if each component of � belongs

to G.

The alternative hypothesis H1 is the negation of H0, i.e.

H1 : E(Yi|Xi) �= z0(Xi)′�+
L∑

l=1

ml(Xli) (2.2)

on a set with positive measure for any �∈B, and any
∑L

l=1 ml(·)∈G.
The null hypothesis H0 is equivalent to E(Ui|Xi) = 0 almost surely (a.s.), where Ui

is de ned in (1.2). Note that E(Ui|Xi) = 0 a.s. if and only if E[UiM (Xi)] = 0 for all
M (·)∈M, the class of bounded �(Xi)-measurable functions. Instead of considering the
conditional moment test of (2.1), following Bierens and Ploberger (1997), Stinchcombe
and White (1998), and Stute (1997), in this paper we consider the following uncondi-
tional moment test: 4

E[UiH(Xi; x)] = 0 for almost all x∈S ⊂ Rq; (2.3)

where H(·; ·) is a proper choice of a weight function so as to make (2.3) equivalent
to (2.1), see Assumption (A4)(i) and (ii) below on the speci c conditions on H.
We assume that the weight function H(·; ·) is bounded on S×S. Stinchcombe and

White (1998) have shown that there exists a wide class of weight functions H(·; ·)
that makes (2.3) equivalent to E(Ui|Xi)=0 a.s. Choices of weight functions include the
exponential function H(Xi; x)=exp(X ′

i x), the logistic function H(Xi; x)=1=[1+exp(c−
X ′
i x)] with c �= 0, and H(Xi; x) = cos(X ′

i x) + sin(X ′
i x), see Stinchcombe and White

(1998), and Bierens and Ploberger (1997) for more discussion on this. By switching

4 Similar approaches were used by Chen and Fan (1999), and Delgado and Manteiga (2001) to construct
kernel-based consistent model speci cation tests when the null models contain nonparametric components.
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a conditional moment test (2.1) to an unconditional moment test of (2.3), we avoid
having to estimate the alternative model nonparametrically, as in Chen and Fan (1999),
and Delgado and Manteiga (2001).
Multiplying by

√
n the sample analogue of E[UiH(Xi; x)], we have

J 0n (x) =
√
n

[
1
n

∑
i

UiH(Xi; x)

]
=

1√
n

∑
i

UiH(Xi; x): (2.4)

Stute (1997) uses H(Xi; x)=1(Xi6 x) and the Skorohod topology to study the weak
convergence of J 0n (·). Since J 0n is a random element in the Skorohod space D(S), Stute
shows that J 0n (·) converges to a Gaussian process in D(S). Central limit theorems for
goodness-of- t tests, like Stute (1997), are usually based on weak convergence of em-
pirical process interpreted as random elements taking values in the space of continuous
functions endowed with uniform topology or cadlag functions endowed with the Skoro-
hod topology. When a test statistic involves nonparametric estimations, establishing its
weak convergence with uniform topology can be quite challenging. However, there is a
natural way to study the asymptotic properties of statistics of Cramer–von Mises type.
J 0n can be viewed as a random element taking values in the separable space L2(S; �)
of all real, Borel measurable functions f on S such that

∫
S

f(x)2� (dx)¡∞, which is
endowed with the L2-norm ‖f‖2�=

∫
S

f(x)2� (dx). The theory of probability on Banach
(or Hilbert) spaces, developed in the 1960s and 1970s, turned the problem of studying
the asymptotic distribution of statistics like ‖J 0n ‖L2(�) to an easier task, because suJcient
conditions of central limit theorems for random elements taking values in L2(S; �)
are well established and are easy to check. For example, Araujo and Gine (1980,
p. 205), Ledoux and Talagrand (1991), Van der Vaart and Wellner (1996, p. 50),
Chen and White (1997) assert that for a sequence {Zn(·)}n of i.i.d. L2(S; �)-valued
elements that n−1=2 ∑n

i=1 Zi(·) converges to Z(·) in the topology of (L2(S; �);
‖ · ‖L2(�)) if and only if

∫
S
E[Z1(x)2]� (dx)¡∞, where Z is a Gaussian element

with the same covariance function as Z1, we will formally summarize this result in a
lemma below for ease of reference.
We assume �(S)¡∞. Since we will only consider the case that S is a bounded

subset of Rd, we will choose �(·) to be the Lebesgue measure on S. Then J 0n (·) is
a Hilbert-valued random element in L2(S; �). We present a H -valued central limit
theorem in a lemma below.

Lemma 2.1. Let Z1(·); : : : ; Zn(·) be H -valued, independent and identically distri-
buted zero mean random elements on L2(S; �) such that E[‖Zi(·)‖2�]¡∞. Then
n−1=2 ∑n

i=1 Zi(·) converges weakly 5 to a zero mean Gaussian process with the co-
variance (kernel) function given by �(x; x′) = E[Zi(x)Zi(x′)].

Proof. See Theorem 2.1 of Politis and Romano (1994), or Van der Vaart and Wellner
(1996, ex. 1.8.5, p. 50). Note that E[‖Zi(·)‖2�]¡∞ is a suJcient condition that ensures
the process n−1=2 ∑n

i=1 Zi(·) is tight.
5 A sequence of H -valued random element Zn converges weakly to Z if E[h(Zn)] → E[h(Z)] for all

real-valued bounded continuous function h.
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It is straightforward to check that J 0n (·) is tight using Lemma 2.1. Letting Zi(·) =
UiH(Xi; ·), we have

E[‖Zi(·)‖2�] = E
{∫

U 2
i [H(Xi; x)]2� (dx)

}

=E
{
�2(Xi)

∫
[H(Xi; x)]2� (dx)

}
6E[�2(Xi)]

{
C
∫
S

� (dx)
}

¡∞;

where �2(Xi) = E(U 2
i |Xi).

Thus by Lemma 2.1, we know that

J 0n (·) converges weakly to J 0∞(·) in L2(S; �; ‖ · ‖�);
where J 0∞ is a Gaussian process centered at zero and with covariance function �
given by

�(x; x′) = E[Zi(x)Zi(x′)] = E[�2(Xi)H(Xi; x)H(Xi; x′)]; (2.5)

where x; x′ ∈S.

Since Ui is unobservable, we need to replace Ui by some estimate of it, say Û i, (the
de nition of Û i is given in (2.16) below) and construct a feasible version of (2.4) as

Ĵ n(x) =
1√
n

∑
i

Û iH(Xi; x): (2.6)

We will use series estimation method to construct a consistent test based on (2.6).
Obviously the individual functions ml(·) (l= 1; : : : ; L) are not identi ed without some
identi cation conditions. In the kernel estimation literature, a convenient identi ca-
tion condition is E[ml(Xli)] = 0 when Xli’s are all scalars (l = 2; : : : ; L). When the
arguments in the additive functions contain pairwise interaction terms of Xli, some ad-
ditional identi cation conditions are required, see Sperlich et al. (2002) for the detailed
marginal-integration-based identi cation conditions in this case. In practice the kernel
marginal integration method is to  rst estimate a high-dimensional nonparametric func-
tion: E(Yi|X1i ; : : : ; Xqi) (without imposing additive structure). In the second stage, the
marginal integration method is used to obtain estimated additive functions.
When using series estimation methods, the additive structure can be imposed on

the series approximating base functions. Therefore, one does not need to estimate
a high-dimensional nonparametric model. Only the one-step least squares estimation
method is needed to obtain all the estimated additive functions. The identi cation con-
ditions for series estimation methods can be obtained by choosing some normalization
rules that are easy to impose on series approximating base functions. For instance, in
the case of an additive model without interaction terms,

g(x1; : : : ; xq) = c + m1(x1) + · · ·+ mq(xq); (2.7)

where xj ∈R, we can use mj(xj = 0) ≡ mj(0) = 0 as the identi cation condition. This
is because for an arbitrary additive function g(x1; : : : ; xq) = c̃ + m̃1(x1) + · · ·+ m̃q(xq),
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we can always re-write it as

g(x1; : : : ; xq) =


c̃ + q∑

j=1

m̃j(0)


+ [m̃1(x1)− m̃1(0)] + · · ·+ [mq(xq)− mq(0)]

≡ c + m1(x1) + · · ·+ mq(xq); (2.8)

where c= c̃+
∑q

j=1 m̃j(0) and mj(xj)= m̃j(xj)− m̃j(0). Therefore, mj(0)=0 is satis ed
for all j = 1; : : : ; q.
Similarly, for the case of an additive model with second-order interactions, we have

g(x1; : : : ; xq) = c +
q∑

j=1

mj(xj) +
q−1∑
j=1

q∑
l¿j

mjl(xj; xl): (2.9)

The representation in (2.9) is not unique, but can be made so by imposing the
following identi cation conditions:

mj(xj = 0) ≡ mj(0) = 0; j = 1; : : : ; q

and

mjl(0; xl) = mjl(xj; 0) = 0 for all values of xj; xl (16 j¡ l6 q): (2.10)

To see these conditions indeed uniquely identify the mj(·) and mjl(·; ·) functions,
consider an arbitrary additive function with second-order interactions: g(x1; : : : ; xq) =
c̃+
∑q

j=1 m̃j(xj)+
∑q−1

j=1

∑q
l¿j m̃jl(xj; xl). Then mjl(xj; xl), mj(xj) and c can be obtained

by

mjl(xj; xl) = m̃jl(xj; xl)− m̃jl(0; xl)− m̃jl(xj; 0) + m̃jl(0; 0);

mj(xj) = Tmj(xj)− Tmj(0); where

Tmj(xj) = m̃j(xj) +
q∑

l=j+1

m̃jl(xj; 0) +
j−1∑
l=1

m̃lj(0; xj);

c = c̃ +
q∑

j=1

m̃j(0) +
q∑

l¿j

q−1∑
j=1

m̃jl(0; 0): (2.11)

Obviously, mjl(xj; xl) and mj(xj) de ned in (2.11) satisfy the identi cation condition
(2.10), and it is straightforward to check that c+

∑q
j=1 mj(xj)+

∑ ∑
q¿l¿j¿1 mjl(xj; xl)

=c̃+
∑q

j=1 m̃j(xj)+
∑ ∑

q¿l¿j¿1 m̃jl(xj; xl). Thus, (2.10) indeed provides unique con-
ditions for identifying the additive functions mj(·) and mjl(·; ·).
In principle one can always impose the identi cation conditions on the approximating

base functions. Let N1={1; 2; : : :} denote the set of positive integers. If one uses a  nite
linear combination of {%t(xj)}t∈N1 , j=1; : : : ; q, as the base function to approximate the
additive function mj(xj), the above identi cation condition implies that one should use a
 nite linear combination of {%t(xj)}t∈N1 to approximate mj(xj) with %t(xj=0)=%t(0)=
0 for all t ∈N1. Then one can use a  nite linear combination of {%t(xj)%s(xl)}s¿t∈N1
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to approximate mjl(xj; xl). For example, consider the case of polynomial (power) series
with %t(xj)=xtj. The approximation function for mj(xj) is a  nite linear combination of
{xtj}t∈N1 ={xj; x2j ; x3j ; : : :} (without the constant term) so that %t(0)=0t =0 is satis ed.
And the base function for approximating mjl(xj; xl) is a  nite linear combination of
{xtjxsl}s¿t∈N1={xjxl; x2j xl; xjx2l ; x2j x2l ; : : :}. The approximating functions have the property
that %t(xj =0)%s(xl)=%t(xj)%s(xl =0)=0 as imposed by (2.10). It is straightforward
to generalize the above identi cation conditions to additive models with higher-order
interaction terms.
Obviously, the above identi cation conditions rule out an intercept term in the addi-

tive functions. Therefore, an intercept term should be included in the parametric part
of the model. We can assume the  rst element of z0(Xi) to be one, then the  rst ele-
ment of � is the intercept term. Note that using series estimation method, the additive
structure is automatically imposed in the one-step least squares estimation procedure.
While the kernel marginal integration method ignores the additive structure in the initial
estimation stage. Therefore, a second stage of marginal integration method is needed
to obtain additive function estimations. We also need an identi cation condition for
the other components of �. For example, we cannot allow z0(Xi) to have an additive
structure like z0(Xi) =

∑L
l=1 z0; l(Xli), because then ml(xl) and z0; l(xl) cannot be iden-

ti ed separately since the functional form of ml(xl) is not speci ed. In order for the
parameter � to be identi ed, we need to assume that z0(·) does not belong to the class
of additive functions G as de ned in Assumption (A1)(iii) below using the de nition
of projection matrix.
For any random variable (vector) Ai, let EG(Ai) denote the projection of Ai onto the

linear additive functional space G. Then EG(Ai) is the closest function to (in the mean
square error sense) Ai among all functions in the class of additive functions G, i.e.,

E{[Ai − EG(Ai)]2}= inf∑L
l=1 �l(·)∈G

E



[
Ai −

L∑
l=1

�(Xli)

]2
 : (2.12)

Remark 2.1. Let Vi =Ai − EG(Ai), then EG(Vi) = 0. That is, for any random vari-
able (vector) Ai, we have the orthogonal decomposition of Ai = EG(Ai) +Vi with
EG(Ai)∈G and Vi ⊥ G. When Vi ⊥ G, we also write Vi ∈G⊥.
We use a linear combination of Kl functions: pKl

l (xl) = (pKl
l1 (xl); : : : ; p

Kl
lKl
(xl))′ to

approximate ml(xl) (l=1; : : : ; L). That is, we use a linear combination of K=
∑L

l=1 Kl

functions (pK1
1 (x1)′; : : : ; pKL

L (xL)′) ≡ pK (x)′ to approximate an additive function∑L
l=1 ml(xl).
We will use ‖ · ‖ to denote the usual Euclidean norm (‖ · ‖� denotes the L2 norm).

We assume that:
(A1). (i) (Y1; X1); : : : ; (Yn; Xn) are independent and identically distributed as (Y1; X1),

S, the support of X , is a compact subset of Rd; F(·), the distribution function of X1,
is absolutely continuous with respect to the Lebesgue measure. 6

6 F is said to be absolutely continuous with respect to a measure � if for any set A,
∫

1(x∈A)� (dx) = 0
implies that

∫
1(x∈A)F (dx) = 0, 1(x∈A) = 1 if x∈A, 0 otherwise.
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(ii) var(Yi|Xi) is a bounded function on the support of Xi; (iii) z0(Xi) �∈ G in the
sense that E(-i-′i) is positive de nite, where -i = z0(Xi)− EG[z0(Xi)].
(A2). (i) For every K there is a nonsingular matrix B such that for PK (Xi)=BpK (Xi):

the smallest eigenvalue of E[PK (Xi)PK (Xi)′] is bounded away from zero uniformly in
K ∈N;
(ii) there is a sequence of constants 00(K) satisfying supz∈S‖PK (z)‖6 00(K) and

K = Kn such that (00(K))2(K=n) → 0 as n → ∞, where S is the support of X .
(A3). (i) For any f∈G, there exist some positive 1l (¿ 1) (l=1; : : : ; L), 2f=2fK=

(2′
fK1

; : : : ; 2′
fKL

)′, supx∈S |f(x)−PK (x)′2f|=O(
∑L

l=1 K−1l
l ) as min{K1; : : : ; KL} → ∞;

(ii)
√
n(K=n+

∑L
l=1 K−1l

l ) → 0 as n → ∞.
(A4). (i) The weight function H(Xi; x) = w(X ′

i x) with w(·) being an analytic, non-
polynomial function. 7 (ii) H(·; ·) is bounded on S×S and satis es a Lipschitz condi-
tion, for all x1; x2 ∈S, |H(Xi; x1)−H(Xi; x2)|6G(Xi)‖x1− x2‖ with E[G2(Xi)]¡∞;
(iii) �(·) is the Lebesgue measure.

Remark 2.2. We give some remarks on the above regularity conditions.

Conditions (A1)(i) and (ii) are standard in the literature of estimating additive mod-
els. Condition (A1)(i) rules out discrete random variables. 8 The bounded conditional
variance assumption (A1)(ii) is restrictive, however, it still allows a wide range of
conditional heteroskedasticity of the form: Ui =Uih(Xi), where Ui is i.i.d. with mean
zero and has a  nite second moment (say �2), Ui and Xi are independent for all i
and j, h(x) is a continuous (or bounded) function on S, then var(Ui|Xi) = �2[h(Xi)]2

is a bounded function in (the compact set) S. Condition (A1)(iii) is an identi cation
condition for �, requiring that z0(·) should not lie in G because otherwise z0(·) and∑

l ml(·) cannot be identi ed separately.
Condition (A2)(i) ensures that (P′P) is asymptotically nonsingular. Note that in

(A2)(i) we do not assume that pK (x) is an orthogonal base function since the density
function of Xi is unknown, therefore it is not feasible to orthogonalize the base function
in practice. Condition (A2)(ii) is a standard condition for the consistency of the series
estimator.
We can write f(x) =

∑L
l=1 fl(xl) for any f∈G. Hence, (A3)(i) is implied by

the following: for all l = 1; : : : ; L, there exists some 1l ¿ 0, 2fl = 2fl;Kl (2fl is the
lth component of 2f), such that supxl∈Sl

|fl(xl) − pKl
l (xl)

′2fl| = O(K−1l
l ), as Kl →

∞, where Sl is the support of xl. It is possible to weaken (A3)(i) to
∫
S
[f(x) −

PK (x)′2f]2� (dx) = O(
∑L

l=1 K−21l
l ) since we only work with the L2-norm (the ‖ · ‖�

norm), but this will require many more new notations and a much longer proof with
little practical implications. Therefore, we will not pursue this generality.
Condition (A4) implies that P[E(Ui|Xi) = 0]¡ 1 if and only if P[E(UiH(Xi; x))

= 0]¡ 1 (or
∫ {E[UiH(Xi; x)]}2F (dx)¿ 0). Thus, testing E(Ui|Xi) = 0 almost

7 An analytic function is one locally equal to its Taylor expansion at each point of its point of its domain,
such as exp(·), the logistic, the hyperbolic tangent, the sine and cosine, etc.

8 If a discrete variable X takes only  nitely many diFerent values, it becomes a parametric model since
only  nitely many series-based functions are needed to estimate an unknown function 5(·).
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everywhere is equivalent to test E[UiH(Xi; x)]=0 for almost all x∈S, see Stinchcombe
and White (1998) for a detailed discussion on this equivalence.
We require the approximation function pK (x) to have the properties that: (a) pK (x)∈G

and (b) as Kl grows (for all l= 1; : : : ; L), there is a linear combination of pK (x) that
can approximate any f∈G arbitrarily well in the mean square error sense. While (A2)
and (A3) are not primitive conditions, it is known that many series functions satisfy
these conditions. Newey (1997) gives primitive conditions for power series and splines
such that (A2) and (A3) hold (see assumptions (A5) and (A6) below).
(A4)(i) is similar to the assumption of Chen and Fan (1999), it allows H(X; x) =

exp(X ′
i x) (Bierens, 1990), or H(Xi; x)=1=[1+exp(c−X ′

i x)] with c �= 0, or H(Xi; x)=
cos(X ′

i x)+sin(X ′
i x), (Stichcombe and White, 1997). (A4)(i)–(iii) are very mild condi-

tions on the weight function H(·; ·). They imply that ∫
S
H(y; x)� (dx)6C

∫
S

� (dx)=
C�(S)¡∞.
Let

pl = (pKl
l (Xl1); : : : ; p

Kl
l (Xln))′ (l= 1; : : : ; L); and

P = (p1; : : : ; pL): (2.13)

Note that pl is of dimension n × Kl and P is of dimension n × K . Let Z0 be the
n× r matrix with the ith row given by z0(Xi)′. Then in vector–matrix notation, we can
write (1.2) as

Y = Z0�+ m1 + m2 + · · ·+ mL + U ≡ Z0�+ m+ U

= Z0�+ P2 + (m− P2) + U = (Z0; P)

(
�

2

)
+ (m− P2) + U

=X7+ (m− P2) + U; (2.14)

where X=(Z0; P), 7=(�′; 2′)′, Y and U are both n×1 vectors with the ith component
given by Yi and Ui, respectively, m is n × 1 with the ith component given by mi =∑L

l=1 ml(Xli). P is of dimension n × K and 2 = 2m is a K × 1 vector that satis es
assumption (A3) (with f = m).
We estimate 7= (�′; 2′)′ by the least squares method of regressing Y on X:

7̂=

(
�̂

2̂

)
= (X′X)−X′Y; (2.15)

where (X′X)− is a generalized inverse of (X′X). Li (2000) showed that �̂ − � =
Op(n−1=2). Also m̂(x)− m(x) = Op((K=n)1=2 +

∑L
l=1 K−1l

l ) by the results of Andrews
and Whang (1990) and Newey (1995,1997), where m̂(x)=pK (x)′2̂. Hence, we estimate
Ui by

Û i = Yi − z0(Xi)′�̂− pK (Xi)′2̂: (2.16)

Our test statistic for H0 is based on

Ĵ n(x) =
1√
n

∑
i

H(Xi; x)Û i; (2.17)
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where Û i is given in (2.16). With Ĵ n(x) we can construct a Cramer–von Mises
(CM)-type statistic for testing H0.

CMn =
∫

[Ĵ n(x)]2Fn (dx) =
1
n

∑
i

[Ĵ n(Xi)]2;

where Fn(·) is the empirical distribution of X1; : : : ; Xn.
The next theorem establishes the weak convergence of Ĵ n(·) and CMn under H0.

Theorem 2.2. Suppose that assumptions (A1)–(A4) hold, then under H0,

(i) Ĵ n(·) converges weakly to J∞(·) in L2(S; �; ‖ · ‖�);
where J∞ is a Gaussian process with zero mean and covariance function given by

81(x; x′) = E[�2(Xi)9i(x)9i(x′)];

where 9i(x)=H(Xi; x)−%i(x)− i(x), with %i(x)=EG[H(Xi; x)],  i(x)=E[H(Xi; x)-i]
{E[-i-′i]}−1-i and -i = z0(Xi)− EG(z0(Xi)).

(ii) CMn converges to
∫

[J∞(x)]2F (dx) in distribution;

where F(·) is the distribution function of Xi.

Proof of Theorem 2.2(i) is given in the Appendix A. Theorem 2.2(ii) follows from
Theorem 2.2(i), the continuous mapping theorem, and the fact that Fn(·) is close to
F(·) (Fn(·) is the empirical distribution of {Xi}ni=1). The idea underlying the proof of
Theorem 2.2(i) is very simple. First we write Ĵ n(·) = Jn(·) + [Ĵ n(·) − Jn(·)], where
Jn(x)= n−1=2 ∑

i Ui[H(Xi; x)−%i(x)−  i(x)]. Jn(·) converges weakly to the Gaussian
process J∞(·) by Lemma 2.1 (because E[‖Jn(·)‖2�]¡∞). Next, we show that ‖Ĵ n(·)−
Jn(·)‖� = op(1). This implies that Ĵ n(·) and Jn(·) have the same limiting distribution.
Therefore, Ĵ n(·) converges weakly to J∞(·) in L2(S; �; ‖ · ‖�).
Next we study the asymptotic distribution of Ĵ n and CMn under the Pitman local

alternative and the  xed alternative. The Pitman local alternative is given by

HL: E(Yi|Xi) = z0(Xi)′�+ m(Xi) +
g(Xi)√

n
a:s:; (2.18)

where g(·)∈G⊥ and 0¡E{[g(Xi)]2}¡∞. Note that since m(x)=
∑

l ml(xl)∈G and
the functional forms of ml(·)’s are not speci ed, only g(·)∈G⊥ should be considered
in the local alternative HL.
For any (vector) random variable Ai, we use EG+(Ai) to denote the projection

of Ai onto the space G+ = {f(Xi) = z′0(Xi)�+ g(Xi) : �∈B; g∈G}. More speci cally
EG+(Ai) is the optimal predictor of Ai (in the mean square sense) in the class of
functions G+, i.e.,

E{[Ai − EG+(Ai)]2}

= inf
�∈B and

∑L
l=1 �l(·)∈G

E



[
Ai − z0(Xi)′�−

L∑
l=1

�(Xli)

]2
 : (2.19)
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Let Yi = 5(Xi) + Ui under H1, then 5(·) does not belong to G+. Using similar
arguments as in the proof of Theorem 2.2(i), one can show that, under H1, z0(Xi)′�̂+
pK (Xi)′2̂ is a consistent estimator of EG+(Yi)=EG+(5(Xi)) because EG+(Ui)=0. Hence,
Û i = 5(Xi)+Ui − z0(Xi)′�̂−pK (Xi)′2̂= 5(Xi)−EG+(5(Xi))+Ui +op(1) under H1. The
following theorem gives the asymptotic distribution of Ĵ n(·) under the local alternative
HL and the  xed alternative H1.

Theorem 2.3. Suppose that (A1)–(A4) hold,
(i) Under the local alternative HL de'ned in (2.18), Ĵ n(·) converges weakly to

J∞(·) + ?0(·) ≡ JL;∞(·) in L2(S; �; ‖ · ‖�),
where ?0(x) = E[g(Xi)H(Xi; x)].
(ii) Under the 'xed alternative H1 de'ned in (2.2),
n−1=2Ĵ n(x) converges to ?1(·) in probability in L2(S; �; ‖ · ‖�),
where ?1(x) = E{[5(Xi)− EG+(5(Xi))]H(Xi; x)}.

Proof of Theorem 2.3 is given in Appendix A.
A consequence of Theorem 2.3 is that our statistic CMn can detect local alternatives

that reach the null model at rate n1=2 and that CMn is a consistent test. This is because
by the continuous mapping theorem and the arguments similar to the proof of Theorem
2.2, we know that CMn converges to

∫
[J∞(x) + ?0(x)]2F (dx) under HL, and CMn =

n
∫
[?1(x)]2F (dx)+op(n) under H1, which diverges to +∞ at the rate of n under H1.
Similar to Bierens and Ploberger (1997), and Chen and Fan (1999), one can show

that
∫
[J∞(x)]2F (dx) can be written as an in nite sum of weighted (independent)

@21 random variables with weights depending on the unknown distribution of (Xi; Yi).
Therefore, it is diJcult to obtain critical values. We suggest using a residual-based wild
bootstrap method to approximate the critical values for the null limiting distribution of
CMn. The wild bootstrap error U ∗

i is generated via a two point distribution: U ∗
i =[(1−√

5)=2]Û i with probability (1 +
√
5)=[2

√
5] and U ∗

i = [(
√
5+ 1)=2]Û i with probability

(
√
5− 1)=[2

√
5]. Note that U ∗

i satis es

E∗(U ∗
i ) = 0; E∗(U ∗2

i ) = Û 2
i ; and E∗(U ∗3

i ) = Û 3
i ;

where E∗(·)=E(·|Wn) and Wn={Yi; Xi}ni=1. From {U ∗
i }ni=1, we generate Y ∗

i according
to the null model

Y ∗
i = z0(Xi)′�̂+ pK (Xi)′2̂ + U ∗

i ; i = 1; : : : ; n: (2.20)

Then using the bootstrap sample {(Y ∗
i ; Xi)}ni=1, we obtain(

�̂∗

2̂∗

)
= (X′X)−X′Y∗;

where X = (Z0; P) and Y∗ is an n × 1 vector with jth element given by Y ∗
i . The

bootstrap residual is given by Û ∗
i = Y ∗

i − z0(Xi)′�̂∗ − pK (Xi)′2̂∗ and the bootstrap
statistic Ĵ ∗

n(x) is obtained by replacing Û i in Ĵ n(x) by Û ∗
i , that is

Ĵ ∗
n(x) =

1√
n

∑
i

Û ∗
i H(Xi; x):
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Using Ĵ ∗
n(·) we can compute a bootstrap version of the CMn statistic, i.e.,

CM∗
n =

1
n

∑
i

[Ĵ ∗
n(Xi)]2:

To show that the bootstrap statistic CM∗
n can be used to approximate the null distri-

bution of CMn, we  rst give a de nition of convergence in distribution in probability.

De�nition 2. Let �n denote a statistic that depends on the random sample {Zi}ni=1, we
say that (�n|Z1; Z2; : : :) converges to (� |Z1; Z2; : : :) in distribution in probability if for
any subsequence �n′ , there exists a further subsequence �n′′ such that (�n′′ |Z1; Z2; : : :)
converges to (�|Z1; Z2; : : :) for almost every sequence (Z1; Z2; : : :).

Many authors show that some bootstrap method works using the concept of
(�n|Z1; Z2; : : :) converges to (�|Z1; Z2; : : :) in distribution with probability one (e.g., Stute
et al., 1998). The ‘with probability one’ result is diJcult to establish with the series
nonparametric estimation method we adopted here. We choose to work with the con-
cept of convergence in distribution in probability in this paper. Equivalently, one can
also describe the weak convergence in probability of the bootstrap statistic using the
dual bounded Lipschitz metric on probability measures as in Gine and Zinn (1990,
p. 861). But the concept of convergence in distribution in probability as de ned above
may be easier to understand, see Gine and Zinn (1990) on more detailed discussions
of these concepts.
The next theorem shows that the wild bootstrap works.

Theorem 2.4. Under the same conditions as in Theorem 2.3, we have under H0,

CM∗
n converges to

∫
[J ∗

∞(x)]2F (dx) in distribution in probability;

where J ∗
∞(·) has the same distribution as J∞(·).

Theorem 2.4 is proved in Appendix A.
Assumptions (A2) and (A3) used in Theorems 2.2–2.4 are not primitive condi-

tions. Newey (1997) gives primitive conditions for power series and regression spline
(B-splines) such that the above Assumptions (A2) and (A3) hold. For readers’ conve-
nience we re-state these primitive conditions below. For the construction of B-spline
functions, see Schumakers (1980).
(A5). (i) The support of Xi is a Cartesian product of compact connected intervals

on which Xi has an absolutely continuous probability density function that is bounded
above by a positive constant and bounded away from zero; (ii) for l=1; : : : ; L, fl(xl)
is continuously diFerentiable of order cl on the support of Xil, where fl(·) =ml(·) or
fl(·) = hl(·)(l = 1; : : : ; L), where hl(·) is de ned from EG[z0(Xi)] =

∑L
l=1 hl(xl); (iii)√

n
∑L

l=1 K−cl=rl = o(1), where rl is the dimension of xl (i.e., xl ∈Rrl).
(A6). The support of Xi is [− 1; 1]q.
When the support of Xi is known and assumption (A5)(i) is satis ed, Xi can always

be rescaled so that assumption (A6) holds.
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Condition (A5) is restrictive because it rules out random regressors with unbounded
support (e.g., Gaussian Xi) or discrete regressors. It may be possible to relax the
bounded support assumption in (A5)(i) by introducing some bounded transformation
of the regressors (e.g., Bierens, 1982; Newey, 1994) provided some additional regularity
conditions hold. Newey (1997, p. 167) has shown that for power series, Assumption
(A5)(i) implies that the smallest eigenvalue of E[PK (Zi)PK (Zi)′] is bounded for all K
(PK (z) = BpK (z)), see assumption (A2) and that 00(K) = O(K). Also it follows from
assumption (A5)(ii) and Lorentz (1966) that Assumption (A3)(i) holds with 1l=cl=rl,
l= 1; : : : ; L. Thus, Assumption (A5) gives primitive conditions for Assumptions (A2)
and (A3) for power series. Newey (1997) has also shown that Assumptions (A5) and
(A6) imply that Assumptions (A2) and (A3) hold for B-splines with 00(K)=O(

√
K).

We summarize the above results in the two corollaries below.

Corollary 2.5. For power series, if Assumptions (A1) and (A5) are satis'ed and
K3=n → 0, then Theorems 2.2–2.4 hold.

Corollary 2.6. For B-splines, if Assumptions (A1), (A5) and (A6) are satis'ed and
K2=n → 0, then Theorems 2.2–2.4 hold.

3. Monte Carlo experiments

In this section, we report a small Monte Carlo experiment to examine the  nite sam-
ple performance of the proposed test. We consider the following null data generating
process (DGP):

DGP0: Yi = X1iX2i�+ m1(X1i) + m2(X2i) + Ui; (3.1)

where (�1; �2)=(1; 1), m1(x1)=x1+x21−0:5x3, m2(x2)=x2+sin(x2A), Xli=V1i+0:5V2i

Xli = V1i + 0:5V3i, V1i, V2i and V3i are independent and uniformly distributed on the
interval [0; 2], Ui is i.i.d. N(0; �2) with � = 0:5.
The alternative DGP is

DGP1: Yi = �1 + X 2
1iX2i�2 + m1(X1i) + m2(X2i) + Ui: (3.2)

�1; �2, m1(x1) and m2(x2) are de ned the same as in DGP0. We use piece-wise
cubic splines as base functions to estimate the additive functions m1(·) and m2(·). Both
exponential and logistic weight functions have been used. The results are similar, so we
only report the results based on an exponential weight function: H(Xi; x) = exp(X ′

i x).
The number of replications is 2000, and within each replication 1000 bootstrap test
statistics (CM∗

n ) are computed to yield the bootstrap critical values for the CMn test.
The sample sizes are n = 100, 200, 500 for size estimation, and n = 100 and 200
for power estimation. We choose K1 = K2 and use K = K1 + K2 spline functions to
approximate the additive function m1(·) + m2(·).
We choose some add hoc values of K in the simulations and allow three diFerent

values of K for each sample size. We can also justify these choices of K by the
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Table 1
Estimated sizes

K = 8 K = 10 K = 12

1% 5% 10% 1% 5% 10% 1% 5% 10%
n = 100 0.011 0.067 0.147 0.011 0.066 0.143 0.014 0.072 0.150

K = 10 K = 12 K = 14
1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 200 0.008 0.056 0.121 0.009 0.059 0.122 0.008 0.061 0.130

K = 12 K = 14 K = 16
1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 500 0.010 0.054 0.103 0.008 0.052 0.108 0.012 0.057 0.107

Table 2
Estimated powers

K = 8 K = 10 K = 12

1% 5% 10% 1% 5% 10% 1% 5% 10%
n = 100 0.326 0.726 0.846 0.362 0.742 0.858 0.376 0.7502 0.875

K = 10 K = 12 K = 14
1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 200 0.752 0.948 0.976 0.784 0.965 0.990 0.779 0.956 0.985

formula K =C[n7], where [ · ] denotes the integer part of ·, C and 7 are some positive
constants. If we choose C=3 and 7= 1

4 , we will get 3[n
1=4]=9, 11, and 14 for n=100,

200 and 500, respectively. Obviously other choices of C and 7 can also lead to the K
values we used in Table 1.
The estimated sizes and powers are reported in Table 1 and Table 2, respectively.
From Table 1 we can see that for n=100, the test is somewhat over sized. However,

we observe that the estimated sizes improve as sample size increases, the estimated
sizes seem to be satisfactory for n=200, and for n=500, the estimated sizes are quite
close to their nominal sizes.
Table 2 shows that our test is quite powerful in detecting the derivation from the

null additive partially linear model as given in DGP1. This is expected since our
test is consistent against all deviations from the null model. Also the power increases
drastically as the sample size increases from n = 100 to 200. For n = 500, the power
of our test equal to one for all cases.
Further eForts are needed to investigate the sensitivity of our test to diFerent choices

of base functions such as piece-wise higher-order polynomial splines, the choice of
diFerent weight functions, and the possibilities of using diFerent bootstrap methods to
approximate the null distribution of the test statistic, and using data-driven method to
choose series expansion term K . We leave all these to future research.
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4. Some generalizations

In this section, we show that the result of Section 2 can be easily generalized to pro-
vide series-based consistent model speci cation tests for other types of semiparametric
models.

4.1. Consistent test for an additive model

When �=0 model (1.2) reduces to an additive model without the linear component:

Yi = m1(X1i) + · · ·+ mL(XLi) + Ui: (4.1)

The null hypothesis for testing an additive model is

Hb
0 : E(Yi|Xi) = m1(X1i) + · · ·+ mL(XLi) a:s:

and the alternative hypothesis Hb
1 is the negation of Hb

0. From Theorem 2.2 we imme-
diately have the following corollary.

Corollary 4.1. Under the same conditions as in Theorem 2.2 but with � = 0, de'ne
Ĵ b
n(x)=

1√
n

∑
i Û b; iH(Xi; x) and CMb

n =n−1 ∑
i [Ĵ

b
n(Xi)]2, where Û b; i=Yi−pK (Xi)′2̂b

and 2̂b = (P′P)−P′Y . Then

(i) Ĵ b
n(·) converges weakly to J b

∞(·), and
(ii) CMb

n converges to
∫
[Ĵ b

∞(x)]2F (dx) in distribution,

where J b
∞ is a Gaussian process with zero mean and the covariance function given by

8x;x′ =E[�2(Xi)9b; i(x)9b; i(x′)] with 9b; i(x) =H(Xi; x)−%i(x) (%i(x) is the same as
de'ned in Theorem 2.2).

Proof. (i) is the same as the proof of Theorem 2.2(i) except that one needs to use �=0
and remove the part related to �̂, this amounts to remove the  (·) term in Theorem
2.2(i). (ii) follows from (i), the continuous mapping theorem, and similar arguments
as in Proof of Theorem 2.2(ii).
Similar to the bootstrap statistic Ĵ ∗

n(·), one can de ne a bootstrap statistic Ĵ ∗b
n (·):

Ĵ ∗b
n (x) = (1=

√
n)
∑

i Û
∗
b; iH(Xi; x), where Û ∗

b; i = Y ∗
b; i − pK (Xi)′2̂∗

b , 2̂∗
b = (P′P)−P′Y ∗

b ,

Y ∗
b; i=pK (Xi)′2̂b+U ∗

b; i, 2̂b=(P′P)−P′Y and U ∗
b; i is the two point wild bootstrap error ob-

tained from Û b; i. Similar to Proof of Theorem 2.4, one can show that Ĵ ∗b
n (·) converges

weakly to J b∗
∞ (·) (J b∗

∞ (·) has the same distribution as J b
∞(·)). With Ĵ b∗

n (·) one gets the
bootstrap version of the CM-type statistic: CM∗b

n = n−1∑
i [Ĵ

∗b
n (Xi)]2] which can be

used to approximate the  nite sample null distribution of CMb
n = n−1∑

i [Ĵ
b
n(Xi)]2.

Gozalo and Linton (2001) propose a consistent test for an additive model in which
they estimate both the null and the alternative models nonparametrically by the kernel
method. In contrast our Ĵ b

n statistic only estimates the null model nonparametrically,
hence, it partially circumvents the “curse of dimensionality” problem. Also our test can
detect Pitman local alternatives that approach the null at a rate of Op(n−1=2), while
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the test in Gozalo and Linton (2001) can only detect such local alternatives that are
Op((n1=2hq=4)−1) apart from the null model, where h is the smoothing parameter, h → 0
as n → ∞. Thus, our test is asymptotically more powerful than that of Gozalo and
Linton (2001) against Pitman local alternatives. One advantage of Gozalo and Linton’s
(2001) test is that it has a simple asymptotic limiting distribution (standard normal),
while in our case, the test statistic has a complicated asymptotic distribution (an in nite
sum of weighted @21 random variables), therefore some bootstrap methods are required
to approximate the  nite sample critical values of the null distribution. On the other
hand, bootstrap tests usually give better estimated sizes than the asymptotic tests. The
bootstrap method can also be used to approximate the  nite sample null distribution
of Gozalo and Linton’s (2001) test. However, using bootstrap method combined with
the kernel marginal integration method to estimate and test for an additive model is
computationally costly. In this respect, series-based testing is computationally much
less costly.

4.2. Test for partially linear models

The result of Section 2 can be used to obtain a consistent test for a partially linear
model (without imposing additive structure). Consider the following partially linear
model (e.g., Robinson, 1988; Stock, 1989).

Yi = Z ′
i �+ g(Wi) + Ui; (4.2)

where Wi ∈Rp, Zi ∈Rq−p (16p6 q − 1), and the functional form of g(·) is not
speci ed. Note that since g(·) may not have an additive structure, we cannot allow Zi

to be a deterministic function of Xi. De ne Vi =Xi −E(Xi|Zi), we need to assume that
E(ViV ′

i ) is positive de nite. The null hypothesis is

Hc
0: E(Yi|Xi) = Z ′

i �+ g(Wi) a:s;

and the alternative Hc
1 is the negation of Hc

0.
Estimating partially linear model by series methods are discussed in Donald and

Newey (1994), and Newey (1997) among others. Let pK
c (w) denote a K × 1 se-

ries approximating functions. Note that pK
c (w) does not have an additive structure

since g(w) may not be an additive separable function. De ne an n × K matrix Pc =
(pK

c (W1); : : : ; pK
c (Wn))′. Also let Z be the n × r matrix with its ith row given by Z ′

i .
Finally de ne an n× (r + K) matrix Xc by Xc = (Z; Pc). Then we estimate Ui by

Û c; i = Yi − Z ′
i �̂c − pK

c (Xi)′2̂c; (4.3)

where �̂c and 2̂c are given by
(

�̂c
2̂c

)
=(X′

cXc)−X′
cY; Y is an n×1 vector with a typical

element given by Yi.
From Theorem 2.2 we immediately have the following Theorem.

Theorem 4.2. Assume that g(·) satis'es the same conditions as m1(·). Let Xi =
(Z ′

i ; W
′
i )

′ and x = (z′; w′)′ and H(Xi; x) =H(Zi; z)H(Wi; w). De'ne Ĵ c
n(x) = (1=

√
n)∑

i Û c; iH(Xi; x).
Then Ĵ c

n(·) converges weakly to J c
∞(·) under Hc

0,
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where Ĵ c
∞ is a Gaussian process with zero mean and the covariance function given by

8c
x;x′ = cov(J c

∞(x); J c
∞(x′)) = E[�2(Xi)9c;x(Xi)9c;x′(Xi)];

with 9c;x(Xi)=H(Xi; x)−%c;x(Xi)− c;x(Xi), where %c;x(Xi)=E[H(Xi; x)|Wi],  c;x(Xi)=
E[H(Xi; x)-c; i]{E[-c; i-′c; i]}−1-c; i and -c; i = Zi − E(Zi|Wi).

Proof. The proof is the same as that of Theorem 2.2(i) except that one needs to
replace z0(Xi) and EG(Xi) by Zi and E(Xi|Wi), respectively, whenever they occur.

A test statistic for Hc
0 can be based on CMc

n = n−1∑
i [Ĵ

c
n(Xi)]2 and the boot-

strap critical values can be obtained from CM∗c
n = n−1 ∑

i [Ĵ
∗c
n (Xi)]2, where J ∗c

n (x) =

n−1=2 ∑
i Û

∗
c; iH(Xi; x), Û ∗

c; i=Y ∗
c; i −Z ′

i �̂
∗
c −pK

c (Xi)′2̂∗
c , �̂

∗
c and 2̂∗

c are given by
(

�̂∗c
2̂
∗
c

)
=

(X ′
cXc)−1X ′

cY
∗
c , Y ∗

c;i = Z ′
i �̂ + pK

c (Xi)′2̂ + U ∗
c;i, and U ∗

c;i is the two point wild bootstrap
error obtained from {Û c; i}ni=1 (Uc; i is given in (4.3)).

5. Conclusion

In this paper, we propose to use a series method to construct consistent model spec-
i cation tests when null models have nonparametric components. The series method is
convenient in imposing restrictions such as additive separability. The series method is
also convenient to test such restrictions. A leading case we consider is to test for an ad-
ditive partially linear model. The asymptotic distribution of the test statistic is obtained
using a central limit theorem for Hilbert-valued random arrays. We suggest using wild
bootstrap methods to approximate the  nite sample null distribution of the test statistic.
A small Monte Carlo simulation is reported to examine the  nite sample performances
of the proposed test. We also show that the proposed test can be easily modi ed to
obtain series-based consistent tests for other semiparametric/nonparametric models.
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Appendix A. proofs of the main results

In Appendices A and B, we use (usually capital) letters without subscript i to denote
vectors or matrices. For example, H(X; x), U , Û , m and %(x) are n× 1 vectors with
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the ith element given by H(Xi; x), Ui, Û i, m(Xi) and %i(x), respectively. Also for an
n× 1 (or d× 1) vector A, we use ‖A‖ to denote its Euclidean norm.

Proof of Theorem 2.2. (i) Note that Û i=Yi−z0(Xi)′�̂−pK (Xi)2̂=Ui−z0(Xi)′(�̂−�)+
m(Xi)− m̂(Xi) and m̂(Xi) ≡ pK (Xi)′2̂=pK (Xi)′(P′P)−P′(Y −Z0�̂). Hence, we have, in
vector–matrix notation, m̂=P(P′P)−P′(Y −Z0�̂)=Mn(Y −Z0�̂)=Mn[U−Z0(�̂−�)+m]
and

Û = U −MnU − (In −Mn)Z0(�̂− �) + (In −Mn)m: (A.1)

Using equation (A.1), we get

Ĵ n(x) = n−1=2
∑

i

H(Xi; x)Û i = n−1=2(H(X; x))′Û

= n−1=2(H(X; x))′U − n−1=2(H(X; x))′MnU

− n−1=2(H(X; x))′(In −Mn)Z0(�̂− �) + n−1=2(H(X; x))′(In −Mn)m

≡ Jn1(x)− Jn2(x)− Jn3(x) + Jn4(x): (A.2)

Lemma A.1 of Appendix A shows that, ‖Jn2(·)−n−1=2%(·)′U‖�=op(1), where %(x)
is an n× 1 vector with the ith component given by %i(x)=EG[H(Xi; x)]. Lemma A.3
establishes that ‖Jn4(·)−n−1=2 (·)′U‖�=op(1), where  (x) is an n×1 vector with the
ith component given by  i(x)=E[H(Xi; x)-′i]{E[-i-′i]}−1-i and -i = z0(Xi)−EG[z0(Xi)].
Lemma A.2 proves that ‖Jn3(·)‖� = op(1)
De ne Jn(x) = n−1=2 ∑

i [H(Xi; x) − %i(x) −  i(x)]Ui ≡ n−1=2 ∑
i Zi(x). Then by

Lemmas A.1–A.3, we have

‖Ĵ n(·)− Jn(·)‖� = op(1): (A.3)

It is easy to see that E[‖Jn(·)‖2�]¡∞, i.e., Jn(·) is tight. Hence, by the central limit
theorem for Hilbert-valued random arrays (Lemma 2.1) we have that

Jn(·) converges weakly to J∞(·) in L2(S; �; ‖ · ‖�); (A.4)

where J∞(·) is a Gaussian process with mean zero and covariance function given by

8(x; x′) = cov(Jn(x); Jn(x′)) = E[Zi(x)Zi(x′)]

= E{�2(Xi)[H(Xi; x)− %i(x)−  i(x)][H(Xi; x′)− %i(x′)−  i(x′)]}:
(A.3) implies that Ĵ n(·) and Jn(·) have the same limiting distribution, this and (A.4)

imply that Ĵ n(·) converges weakly to J∞(·). This completes the Proof of Theorem
2.2(i).

(ii) Obviously h(J )def=
∫
[J (x)]2F (dx) is a continuous function in L2(S; F). Given

that F is absolutely continuous with respect to the Lebesgue measure �, h(J ) is also
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continuous in L2(S; �). Therefore, by Theorem 2.2(i) and the continuous mapping
theorem, we have

∫
[Ĵ n(x)]2F (dx) converges to

∫
[J∞(x)]2F (dx) in distribution.

Now, de ne An = CMn − h(Ĵ 2n). Then

An = CMn − h(Ĵ 2n) =
∫

[Ĵ n(x)]2Fn (dx)−
∫

[Ĵ n(x)]2F (dx)

= n−2
∑

i

∑
j

∑
k

Û iÛ j{H(Xi; Xk)H(Xj; Xk)− E[H(Xi; Xk)H(Xj; Xk)|Xi; Xj]}

≡ n−2
∑

i

∑
j

∑
k

Û iÛ jVijk ; (A.5)

where Vijk = H(Xi; Xk)H(Xj; Xk) − E[H(Xi; Xk)H(Xj; Xk)|Xi; Xj]. Let gi ≡ g(Xi)
def= z0(Xi)′�+m(Xi) (m(Xi) is an additive function), and ĝi = z0(Xi)′�̂+pK (Xi)′2̂, then
Û i = Yi − ĝi = Ui + (gi − ĝi). Substituting this into (A.5), yields

An = n−2
∑

i

∑
j

∑
k

[Ui + (gi − ĝi)][Uj + (gj − ĝj)]Vijk

= n−2
∑

i

∑
j

∑
k

UiUjVijk + 2n−2
∑

i

∑
j

∑
k

Ui(gj − ĝj)Vijk

+ n−2
∑

i

∑
j

∑
k

(gi − ĝi)(gj − ĝj)Vijk

≡ A1n + 2A2n + A3n; (A.6)

where the de nitions of Ajn (j = 1; 2; 3) should be apparent.
Using E(Ui|Xi) = 0 and E(Vijk |Xi; Xj) = 0, it is easy to see that

A1n = n−2
∑

i

∑
j 	=i

∑
l	=i; k 	=j

UiUjVijk +Op(n−1=2) ≡ A1n;1 + Op(n−1=2); (A.7)

where A1n;1 = n−2 ∑
i

∑
j 	=i

∑
k 	=i; k 	=j UiUjVijk . It is easy to see that

E[A2
1n;1] =

1
n4
∑

i

∑
j 	=i

∑
k 	=i; k 	=j

∑
i′

∑
j′ 	=i′

∑
k′ 	=i′ ; k′ 	=j′

E[UiUjVijkUi′Uj′Vi′j′k′ ]

=
1
n4
O(n3) = O(n−1): (A.8)

(A.7) and (A.8) imply that A1n =Op(n−1=2) = op(1).
Next, we show that A2n =op(1). Let 2= 2f satisfy assumption (A3)(i) with f=m

(the additive function). Then we have

gi − ĝi = z0(Xi)(�− �̂) + m(Xi)− p(xi)′2 + p(Xi)′(2 − 2̂): (A.9)
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Substituting (A.9) into A2n we get

A2n = n−2
∑

i

∑
j

∑
k

Ui{z0(Xj)′(�−�̂)+(m(Xj)−p(Xj)′2)+p(Xj)′(2−2̂)}Vijk

≡ A2n;1(�− �̂) + A2n;2 + A2n;3(2 − 2̂); (A.10)

where A2n;1 = n−2 ∑
i

∑
j

∑
k Uiz0(Xj)′Vijk , A2n;2 = n−2 ∑

i

∑
j

∑
k Ui(m(Xj)

−p(Xj)′2)Vijk , and A2n;3 = n−2 ∑
i

∑
j

∑
k Uip(Xj)′Vijk .

E[‖A2n;1‖2]= n−4 ∑
i

∑
j

∑
k

∑
j′ E[U

2
i z0(Xj)′z0(Xj′)VijkVij′k ] =O(1). Hence, A2n;1

(�− �̂) = Op(1)Op(n−1=2) = op(1).
E[‖A2n;2‖2]6 n−4 ∑

i

∑
j

∑
k

∑
j′ E[�

2(Xi)(m(Xj)−p(Xj)′2)2VijkVij′k ]6C supx∈S

|m(x)− p(x)′2|2 = O(
∑

l K−21l) = o(1). Thus, A2n;2 = op(1).

E[‖A2n;3‖2] = n−4
∑

i

∑
j

∑
k

∑
j′

E[�2(Xi)p(Xj)′p(Xj′)VijkVij′k ]

6CE[p(Xi)′p(Xi)]

=C tr E[p(Xi)′p(Xi)] = CE{tr[p(Xi)p(Xi)′]}= C K:

This implies that A2n;3 = Op(K1=2). Hence, A2n;3(2 − 2̂) = Op(K1=2)Op(K1=2=n1=2 +∑L
l=1 K−1l) = op(1).
Summarizing the above we have shown that A2n = op(1).
Using (A.9) A3n can be written as

A3n = n−2
∑

i

∑
j

∑
k

[(�− �̂)′z0(Xi) + (2 − 2̂)′p(Xi) + (m(Xi)− p(Xi)′2)]Vijk

×[z0(Xj)′(�− �̂) + p(Xj)′(2 − 2̂) + (m(Xj)− p(Xj)′2)]

= (�− �̂)A3n;1(�− �̂) + A3n;2 + A3n;3 + other terms; (A.11)

where A3n;1 = n−2 ∑
i

∑
j

∑
k z0(Xi)′z0(Xj)Vijk , A3n;2 = n−2 ∑

i

∑
j

∑
k (2̂− 2)′p(Xi)

p(Xj)′(2̂ − 2)Vijk , A3n;3 = n−2 ∑
i

∑
j

∑
k (m(Xi)− p(Xi)′2)(m(Xj)− p(Xj)′2)Vijk .

E[‖A3n;1‖]=n−4 ∑
i

∑
j

∑
k

∑
i′
∑

j′ E[z0(Xi)z0(Xj)z0(Xi′)Z0(Xj′)VijkVi′j′k ]=O(n).
Hence, A3n;1 =Op(n1=2) and (�− �̂)A3n;1(�− �̂)=Op(n−1=2) because �− �̂=Op(n−1=2).

|A3n;2|=
∣∣∣∣∣n−3=2

∑
i

∑
j

(2̂ − 2)′p(Xi)p(Xj)′(2̂ − 2)′
[
n−1=2

∑
k

Vijk

]∣∣∣∣∣
∣∣∣∣∣

6 n−1=2
∑

i

[(2̂ − 2)′p(Xi)p(Xi)′(2̂ − 2)]

[
sup

x;x′∈S

∣∣∣∣∣ n−1=2
∑
k

Vx;x′ ;Xk

∣∣∣∣∣
]

6 {n1=2(2̂ − 2)′(P′P=n)(2̂ − 2)}Op(1)
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= n1=2(2̂ − 2)′[IK + op(1)](2̂ − 2)Op(1)

= 2n1=2Op

(
K=n+

L∑
l=1

K−21l

)
= op(1);

where in the above Vx;x′ ;Xk =H(x; Xk)H(x′; Xk)−E[H(x; Xk)H(x′; Xk)], and we used
supx;x′∈S |n−1=2 ∑

k Vx;x′ ;Xk |=Op(1) by Lemma A.4.
E[‖A3n;3‖2] = n−4 ∑

i

∑
j

∑
k

∑
i′
∑

j′ E[(mi − p′
i2)(mj − p′

j2)(mi′ − p′
i′2)(mj′ −

p′
j′2)VijkVi′j′k ]6Cn supx∈S|m(x)− p(x)′2|4 = O(n)O(

∑
l K−41l) = o(1), where mi =

m(Xi) and pi = p(Xi). Hence, A3n;3 = op(1).
Similarly, one can show that all the other terms in A3n are op(1). Thus, we have

shown that An = A1n + 2A2n + A3n = op(1). Therefore, we have

CMn=
∫

[Ĵ n(x)]2F (dx)+An=
∫

[Ĵ n(x)]2F (dx)+op(1) →
∫

[J∞(x)]2F (dx);

(A.12)

in distribution by the result of Theorem 2.2(i) and the continuous mapping theorem.
This completes the Proof of Theorem 2.2(ii).

Proof of Theorem 2.3. (i) Following the same proof as that of Theorem 2.2(i), one
can show that, under HL, ‖Ĵ n(·) − [Jn(·) + n−1 ∑

i g(Xi)H(Xi; ·)]‖� = op(1). Also,
‖n−1 ∑

i g(Xi)H(Xi; ·)− E[g(Xi)H(Xi; ·)] ‖� = op(1). These imply that

‖Ĵ n(·)− [Jn(·) + ?0(·)]‖� = op(1):

Hence, by the same arguments as in the Proof of Theorem 2.2(i) we have that (the
tightness of Jn(·) + ?0(·) follows from Lemma 2.1)

Ĵ n(·) converges weakly to J∞(·) + ?0(·) in L2(S; �; ‖ · ‖�).
(ii) Using the similar arguments as in the proof of Theorem 2.2(i), one can show

that, under H1,
‖n−1=2Ĵ n(·)−n−1∑

i [5(Xi)−EG+(5(Xi))]H(Xi; ·)‖�=op(1), and that ‖n−1∑
i [5(Xi)

−EG+(5(Xi))]H(Xi; x)−?1(·)‖�=op(1). Theseimplythat‖n−1=2Ĵ n(·)−?1(·)‖�=op(1).

Proof of Theorem 2.4. The idea underlying the proof of Theorem 2.4 is very simple.
In order to show that a statistic converges to a limiting distribution in distribution
in probability, we verify that certain conditions hold in probability. Hence, for any
subsequence, there is a further subsequence that those conditions hold almost surely.
For our J ∗

n (·) statistic, we write it in two parts, a leading term converges to a zero
mean Gaussian process, and a remainder term that converges to zero in probability. Say,
J ∗
n (·) = J ∗

n1(·) + G∗
n(·), and we show that (J ∗

n1(·)|Z1; Z2; : : :) → J ∗
∞(·) in distribution in

probability, and that E∗[‖Gn(·)∗‖2�]=op(1). Then
∫
[J ∗

n (x)]
2 dF(x) → ∫

[J ∗
∞(x)]2 dF(x)

in distribution by the continuous mapping theorem. Finally, we show that CM∗
n −∫

[J ∗
n (x)]

2 dF(x)=op(1). Thus, CM∗
n → ∫

[J ∗
∞(x)]2 dF(x) in distribution in probability.

Now we turn to the proof of Theorem 2.4.
Û ∗

i =Y ∗
i − z0(Xi)′�̂∗−pK (Xi)′2̂∗=U ∗

i − z0(Xi)′(�̂∗− �̂)−pK (Xi)′(2̂∗− 2̂). Similar to
the derivation of Eq. (A.1), we have pK (Xi)′2̂∗=pK (Xi)′(P′P)−1P′(Y ∗−Z0�̂∗), and in
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matrix notation, P2̂∗=P(P′P)−1P′(U ∗−Z0(�̂∗− �̂)+P2̂)=Mn(U ∗−Z0(�̂∗− �̂)+P2̂).
Hence,

Û ∗ = U ∗ −MnU ∗ − (In −Mn)Z0(�̂∗ − �̂): (A.13)

Using Eq. (A.13) we have

Ĵ ∗
n(x) = n−1=2

∑
i

H(Xi; x)Û ∗
i = n−1=2(H(X; x))′Û ∗

= n−1=2(H(X; x))′U ∗ − n−1=2(H(X; x))′MnU ∗

− n−1=2(H(X; x))′(In −Mn)Z0(�̂∗ − �∗)

≡ J ∗
n1(x)− J ∗

n2(x)− J ∗
n3(x):

Similar to Proofs of Lemmas A.1 and A.2, one can show that (i), ‖J ∗
n2(·)−n−1=2%(·)

U ∗‖2� = op(1), and (ii) ‖J ∗
n3(·) − n−1=2 (·)′U ∗‖2� = op(1). Here, for any two random

elements A∗
n(·) and B∗

n (·), ‖A∗
n(·)−B∗

n (·)‖2� =op(1) means that plimn→∞ {E∗[‖A∗
n(·)−

B∗
n (·)‖2�]}= 0. We provide a proof for (i) below. (ii) can be proved similarly.
De ne an n× n diagonal matrix D(Û 2) with the ith diagonal element given by Û 2

i .
Also let Vi(x) be de ned as in the proof of Lemma A.1, i.e., Vi(x)=H(Xi; x)−%i(x).
De ne %̃(x) =Mn%(x) and Ṽ (x) =MnV (x). Then we have

E∗{‖J ∗
n2(x)− n−1=2%(x)′U ∗‖2�}= E∗

{∫
[J ∗

n2(x)− n−1=2%(x)′U ∗]2� (dx)
}

=E∗
{∫

[n−1=2[(H(X; x))′MnU ∗ − %(x)′U ∗]]2� (dx)
}

=n−1
∫
{[MnH(X; x)− %(x)]′E∗[U ∗U ∗′

][MnH(X; x)− %(x)]}� (dx)

=n−1
∫
{[Mn(%(x) + V (x))− %(x)]′D(Û 2)[Mn(%(x) + V (x))− %(x)]}� (dx)

=n−1
∫
{[%̃(x) + Ṽ (x)− %(x)]′D(Û 2)[%̃(x) + Ṽ (x)− %(x)]}� (dx)

=n−1
∑

i

Û 2
i

∫
[%̃i(x) + Ṽ i(x)− %i(x)]2� (dx):

Now we consider the case that n is large, it is easy to see that

n−1
∑

i

Û 2
i

∫
[%̃i(x) + Ṽ i(x)− %i(x)]2� (dx)

=n−1
∑

i

U 2
i

∫
[(%̃i(x) + Ṽ i(x)− %i(x)]2� (dx) + op(1)

=n−1
∑

i

�2(Xi)
∫

[(%̃i(x) + Ṽ i(x)− %i(x)]2� (dx) + op(1)
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6Cn−1
∑

i

∫
[(%̃i(x) + Ṽ i(x)− %i(x)]2� (dx) + op(1)

=C
∫

[‖%̃(·)− %(·)‖2� + ‖Ṽ (·)‖2�] + op(1)

=Op

(
L∑

l=1

K−21l
l + K=n

)
+ op(1) = op(1);

by Lemmas B.1 and B.2.
Therefore, we have shown that Ĵ ∗

n(·)=n−1=2 ∑
i [H(Xi; ·)−%(·)− (·)]U ∗

i +op(1) ≡
J ∗
n (·) + op(1), where J ∗

n (·) = n−1=2∑
i [H(Xi; ·) − %(·) −  (·)]U ∗

i ≡ n−1=2 ∑
i Z

∗
i (·).

Lemma 2.1 gives the tightness of J ∗
n (·), i.e.,

E∗[‖J ∗
n (·)‖2�] = n−1

∑
i

Û 2
i

∫
[H(Xi; ·)− %(·)−  (·)]2� (dx)6C

[
n−1

∑
i

Û 2
i

]
:

When n is large we can replace Û i by Ui. Applying a weak law of large numbers
yields

C

[
n−1

∑
i

Û 2
i

]
= C

[
n−1

∑
i

U 2
i

]
+ op(1)

p→CE[�2(X )]¡∞:

The conditional covariance function of J ∗
n (·) is

cov∗(Z∗
1 (x); Z

∗
1 (x

′)) = n−1
∑

i

[H(Xi; x)− %(x)−  (x)][H(Xi; x′)

−%(xs)−  (x′)]Û 2
i :

For n large, we can replace Û i by Ui and by a weak law of large numbers, we get

cov∗(Z∗
1 (x); Z

∗
1 (x

′)) = n−1
∑

i

[H(Xi; x)− %(x)−  (x)]

[H(Xi; x′)− %(x′)−  (x′)]U 2
i

=E{�2(Xi)[H(Xi; x)− %(x)−  (x)]

H(Xi; x′)− %(x′)−  (x′)]}+ op(1) = 8(x; x′) + op(1):

Next, we consider the  nite-dimensional distribution of J ∗
n (x). Let f(·)∈L2(S; ‖ ·

‖�), and 〈·; ·〉 denote the inner product. De ne B(Xi; x)=[H(Xi; x)−%(x)− (x)]. Then
〈J ∗

n (·); f(·)〉=
∫
J ∗
n (x)f(x)� (dx)=n−1=2 ∑

i U
∗
i

∫
B(Xi; x)f(x)� (dx)≡n−1=2 ∑

i WiU ∗
i .

Wi only depends on the original data. The U ∗
i are conditional independent and have

zero means, we only need to verify the Lindeberg’s condition. Exactly the same ar-
guments as in Stute et al. (1998, pp. 148–149) shows that the Lindeberg’s condi-
tion indeed holds. Thus, 〈J ∗

n (·); f(·)〉 converges to a normal variable with zero mean
and variance E[�2(Xi)

∫
B(Xi; x)2f2(x)� (dx)]. By Cramer–Wold device we obtain the

 nite-dimensional convergence result.
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Summarizing the above we have shown that J ∗
n (·) converges weakly to J ∗

∞(·), where
J ∗
∞(·) is a zero mean Gaussian process, with covariance function identical to that of

J∞(·).
De ne A∗

n = CM∗
n − ∫ [Ĵ ∗

n(x)]
2 dF(x).

Then by similar arguments as we did in the proof of Theorem 2.2, one can show
that A∗

n =op(1). We provide a sketchy proof below. Note that A∗
n can be obtained from

An given in (A.5) with Û iÛ j replaced by Û ∗
i Û

∗
j . Also note that Û ∗

i =Y ∗
i − z0(Xi)′�̂∗−

p(Xi)′2̂∗ = U ∗
i + z0(Xi)′(�̂− �̂∗) + p(Xi)′(2̂ − 2̂∗), we have

A∗
n = n−2

∑
i

∑
j

∑
k

Û ∗
i Û

∗
j Vijk

= n−2
∑

i

∑
j

∑
k

U ∗
i U

∗
j Vijk+(�̂−�̂∗)′

[
n−2

∑
i

∑
j

∑
k

z0(Xi)z0(Xi)′Vijk

]

×(�̂−�̂∗)+ n−2
∑

i

∑
j

∑
k

(2̂−2̂∗)′p(Xi)p(Xi)′Vijk(2̂−2̂∗)+other terms

≡ B1n + B2n + B3n + other terms: (A.14)

We will consider B3n  rst. Similar to the analysis of the A3n term, we have

|B3n|6 n−3=2
∑

i

∑
j

|(2̂∗ − 2∗)′p(Xi)p(Xj)′(2̂∗ − 2∗)|
[∣∣∣∣∣n−1=2

∑
k

Vijk

∣∣∣∣∣
]

6 n−1=2
∑

i

{[(2̂∗ − 2∗)′p(Xi)p(Xi)′(2̂∗ − 2∗)]2}
[
sup

x;x′∈S

∣∣∣∣∣n−1=2
∑
k

Vx;x′ ;Xk

∣∣∣∣∣
]

6 n1=2(2̂∗ − 2̂)(P′P=n)(2̂∗ − 2̂)Op(1)

= n−1=2[U ∗′
P(P′P)−1(P′P)(P′P)−1P′U ∗]Op(1)

= n1=2[n−1U ∗′
P](P′P=n)−1[n−1P′U ∗]Op(1)

= n1=2Op

(
(K=n) +

∑
l

K−21l

)
Op(1) = op(1);

where we have used n−1P′U ∗ =Op((K=n)1=2 +
∑

l K−1l) and P′P=n=Op(1). This is
because

E∗[‖n−1P′U ∗‖2] = n−2E∗[U ∗′
PP′U ∗] = n−2[Û

′
PP′Û ]

=n−2
∑

i

∑
j

Û iÛ jP(Xi)′P(Xj) = n−2
∑

i

∑
j

Û iÛ jP(Xi)′P(Xj)

=n−2
∑

i

∑
j

[UiUj + 2Ui(gj − ĝj) + (gi − ĝi)(gj − ĝj)]
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=Op(n−1) + Op

(
n−1=2

[
(K=n)1=2 +

∑
l

K−1l

])
+Op

(
(K=n) +

∑
l

K−21l

)

=Op

(
(K=n) +

∑
l

K−21l

)
:

Hence, n−1P′U ∗ =Op((K=n)1=2 +
∑

l K−1l).
Using the fact that E∗(U ∗

i )=0 and (�̂∗− �̂)=Op(n−1=2), it is easy to show that B1n

and B2n are op(1). Similarly one can show all the other terms are op(1). Therefore,
A∗
n = op(1).
Thus, we have

CM∗
n =

∫
[J ∗

n (x)]
2 dFn(x) =

∫
[J ∗

n (x)]
2 dF(x) + A∗

n

=
∫

[J ∗
n (x)]

2 dF(x) + op(1) →
∫

[J ∗
∞(x)]2 dF(x)

in distribution by the continuous mapping theorem.
Below we give some lemmas that are used in proofs of Theorems 2.2 and 2.3. For

an n×d matrix A, we denote Ã=MnA and Ãi is the ith component of Ã. For example
m̃=Mnm and Z̃0 =MnZ0.

Lemma A.1. ‖Jn2(·)− n−1=2%(·)′U‖2� = op(1), where %(x) is a n× 1 vector with the
ith element given by %i(x) = EG[H(Xi; x)].

Proof. De ne Vi(x)=H(Xi; x)−%i(x). Then EG(Vi(x))=0 and EG(V 2
i (x)) is bounded

for any x∈S. We have,

E[‖Jn2(·)− n−1=2%(·)′U‖2� |X ]

= n−1
∫

[(H(X; x))′Mn − %(x)′]E(UU ′|X )[MnH(X; x)− %(x)]� (dx)

6 Cn−1
∫

[MnH(X; x)− %(x)]′[MnH(X; x)− %(x)]� (dx)

=Cn−1‖MnH(X; x)− %(x) ‖2� = Cn−1‖Mn(%(x) + V (x)− %(x) ‖2�
6 2Cn−1 { ‖Mn%(x)− %(x) ‖2�] + ‖MnV (x) ‖2�}

=Op

(
L∑

l=1

K−21l
l + K=n

)
= op(1) by Lemmas B:1 and B:2:

Lemma A.2. ‖Jn3(·)− n−1=2 (·)U‖2� = op(1).

Proof. Note that z0(Xi)− z̃0(Xi) estimates -i=z0(Xi)−EG[z0(Xi)], or in matrix notation
Z0−MnZ0 estimates -. From Lemma B.3 we know that (�̂−�)={E[-i-′i]}−1n−1 ∑

i -iUi]+
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op(n−1=2). Using Lemmas B.1 and B.2 we have ‖n−1H(X; ·)′(In−Mn)Z0−E[H(Xi; ·)′-i]
‖2� = op(1). Hence,

Jn3(·) = n−1=2H(X; ·)′(In −Mn)Z0(�̂− �) = E[H(Xi; ·)-i][n1=2(�̂− �)] + op(1)

= E[H(Xi; ·)-i]{E[-i-′i]}−1

[
n−1=2

∑
i

-iUi

]
+ op(1) = n−1=2 (·)U + op(1):

Lemma A.3. ‖Jn4(·)‖2� = op(1).

Proof. [‖Jn4(·)‖2�6 n−1 ∑
i

∑
j

∫
H(Xi; x)H(Xj; x)(mi − m̃i)(mj − m̃j)� (dx)6C∑

i

∫
[(mi − m̃i)2]� (dx) = C[‖m− m̃‖2�] = nOp(

∑L
l=1 K−21l

l ) = op(1) by Lemma B.1.

Lemma A.4. Denotes z = (x; x′)∈S × S and de'ne Vz;Xi = H(x; Xi)H(x′; Xi) −
E[H(x; Xi)H(x′; Xi)]. Then

sup
z∈S×S

∣∣∣∣∣n−1=2
∑

i

Vz;Xi

∣∣∣∣∣=Op(1):

Proof. By Theorem 3.1 of Ossiander (1987), or a more general result from Anderson
et al. (1988), we know that n−1=2 ∑

i Vz;Xi is tight in z ∈S×S under the sup-norm if
|Vz1 ;Xi −Vz2 ;Xi |6A(Xi)‖z1−z2‖, with E(A2(Xi))¡∞. By the assumption that H(·; ·) is
bounded and satis es a Lipschitz condition (see Assumption A.4), it is easy to check
that the above conditions hold. Hence, we know that n−1=2 ∑

i Vz;Xi is tight under
the sup-norm. The  nite-dimensional convergence of n−1=2 ∑

i Vz;Xi is trivial to check.
Thus, n−1=2 ∑

i V·;Xi converges weakly to a zero mean Gaussian process (say, V∞(·))
with covariance structure given by E[Vz;XiVz′ ;Xi ]. Consequently, supz∈S×S [n−1=2 ∑

i
Vz;Xi ] converges weakly to supz∈S×SV∞(z) = Op(1), which in turn implies that
supz∈S×S [n−1=2 ∑

i Vz;Xi ] = Op(1).

Appendix B. some useful lemmas

Following the same arguments as in Newey (1997), we will assume B = I in As-
sumption (A2). Hence pK (·) = PK (·), This is because all nonparametric series esti-
mators are invariant to nonsingular transformations of pK (·). Also we will assume

Qdef=E[pK (Xi)pK (Xi)′] = I . This is because, for a symmetric square root Q−1=2 of
Q−1, Q−1=2pK (·) is a nonsingular transformation of pK (·), and using (A2)(i), it is

easy to show that 0̃0(K)
def=supx∈S ‖Q−1=2pK (·)‖6C00(K). Also if we change pK (·)

to TpK (·) ≡ Q−1=2pK (·) and de ne T2 = Q1=22, assumption (A3)(i) is satis ed since
|g(·)− pK (·)′2|= |f(·)− TpK (·)′ T2|. Thus, all the assumptions still hold when pK (·) is
changed to Q−1=2pK (·).
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Lemma B.1. Let fi(x) ≡ f0(x; Xi)∈G (the class of additive functions), f0(x; Xi) is
of dimension d× 1 (d is a 'nite positive integer). Let fX (x) denote the n×d matrix
with the ith row given by fi(x)′. De'ne f̃ X (x) =MnfX (x). Then

n−1‖fX (x)−MnfX (x)‖2� =Op

(∑
l

K−21l
l

)
= op(1):

Proof. n−1E[‖fX (x) − MnfX (x)‖2�] ≡ n−1E[‖fX (x) − f̃ X (x)‖2�] = n−1
∫
E[‖fX (x) −

f̃ X (x)‖2]� (dx)=O(
∑

l K−21l
l ) by the result of Andrews and Whang (1990) and Newey

(1995, 1997), or see Lemma A.4 of Li (2000) for a proof of this result.

Lemma B.2. Denotes vi(x) ≡ V (x; Xi) with EG(vi(x)) = 0 and EG([vi(x)]2) uniformly
bounded in x∈S. De'ne V (x)=(v1(x); : : : ; vn(x))′ and Ṽ (x)=MnV (x). Then we have

n−1‖MnV (·)‖2� = n−1‖Ṽ (·)‖2� =Op(K=n) = op(1):

Proof. Without loss of generality we can assume E[pK (Xi)pK (Xi)′] = IK (see the
arguments in the beginning of Appendix B). First we show that E[‖P′V (·)=n‖2�] =
O((K=n)1=2). Note that pK (Xi)∈G and vi(·) ⊥ G imply that E[pK (Xi)vi(·)] = 0. We
have

E[‖P′V (·)=n‖2�] = n−2



∑

i

∫
E[vi(x)2pK (Xi)′pK (Xi)]� (dx)

+
∑

i

∑
j 	=i

∫
E[vi(x)pK (Xi)′]E[vj(x)pK (Xj)]� (dx)




= n−1
∫

E[v1(x)2pK (X1)′pK (X1)]� (dx)

6Cn−1E[pK (X1)′pK (X1)] = O(K=n):

This implies that

‖P′V (x)=n‖2� =Op(K=n) = op(1): (B.1)

n−1‖MnV (·)‖2� = n−1
∫

V (x)′MnV (x)� (dx)

=
∫
(V (x)′P=n)(P′P=n)−(P′V (x)=n)� (dx)

=
∫
(V (x)′P=n)[I + (P′P=n)− − I ](P′V (x)=n)� (dx)
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=
∫

‖P′V (x)=n‖2[1 + op(1)]� (dx)

=
∫

Op(K=n)[1 + op(1)]� (dx) = Op(K=n) = op(1)

by Eq. (B.1), and the fact that ‖(P′P=n)− − I‖= Op(00(K)
√
K=

√
n) = op(1) (see the

proof of Theorem 1 of Newey (1997, pp. 161–162)).

Lemma B.3. (�̂ − �) = {E[-i-′i]}−1{n−1 ∑
i -iUi} + op(n−1=2), where -i = z0(Xi) −

EG(z0(Xi)).

This was proved in Theorem 2.1 of Li (2000). Note that Lemma B.3 implies that
�̂− �=Op(n−1=2).
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