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Many practical problems, especially some connected with forecasting, require nonparametric estimation of conditional densities from mixed
data. For example, given an explanatory data vector X for a prospective customer, with components that could include the customer’s salary,
occupation, age, sex, marital status, and address, a company might wish to estimate the density of the expenditure, Y , that could be made by
that person, basing the inference on observations of (X,Y) for previous clients. Choosing appropriate smoothing parameters for this problem
can be tricky, not in the least because plug-in rules take a particularly complex form in the case of mixed data. An obvious difficulty is that
there exists no general formula for the optimal smoothing parameters. More insidiously, and more seriously, it can be difficult to determine
which components of X are relevant to the problem of conditional inference. For example, if the jth component of X is independent of Y ,
then that component is irrelevant to estimating the density of Y given X, and ideally should be dropped before conducting inference. In this
article we show that cross-validation overcomes these difficulties. It automatically determines which components are relevant and which
are not, through assigning large smoothing parameters to the latter and consequently shrinking them toward the uniform distribution on
the respective marginals. This effectively removes irrelevant components from contention, by suppressing their contribution to estimator
variance; they already have very small bias, a consequence of their independence of Y . Cross-validation also yields important information
about which components are relevant; the relevant components are precisely those that cross-validation has chosen to smooth in a traditional
way, by assigning them smoothing parameters of conventional size. Indeed, cross-validation produces asymptotically optimal smoothing
for relevant components, while eliminating irrelevant components by oversmoothing. In the problem of nonparametric estimation of a
conditional density, cross-validation comes into its own as a method with no obvious peers.

KEY WORDS: Bandwidth choice; Binary data; Categorical data; Continuous data; Dimension reduction; Discrete data; Kernel methods;
Mixed data; Nonparametric density estimation; Relevant and irrelevant data; Smoothing parameter choice.

1. INTRODUCTION

Conditional probability density functions play a key role
in applied statistical analysis, particularly in economics. Such
densities are especially important in prediction problems, where
for a given value of a vector X of explanatory variables, we
wish to estimate the conditional density of a response, Y . From
some viewpoints, this is a conventional problem; both para-
metric and nonparametric methods for estimating conditional
distributions already exist. However, the problem has the dis-
tinctive feature that if components of the vector X contain no
information about Y , and are “irrelevant” in this sense to the
problem of estimating the conditional density, then they should
be dropped when conducting inference. Not doing so can seri-
ously inhibit performance, because then conditional inference
will be based on data with dimension that is too high, degrad-
ing both the mathematical convergence rate and the method’s
statistical accuracy.

When the conditional density is estimated nonparametri-
cally, the problem of choosing “relevant” components among
the explanatory variables is closely related to that of selecting
smoothing parameters. For example, if X is p-variate and has
a continuous distribution, then a conventional estimator of the
density g( y|x) of Y given X = x, using second-order kernels
and a sample of size n, converges at rate n−2/( p+5) (assuming
that Y is continuous). This rate is achieved using bandwidths
of size n−1/( p+5). If, however, p2 of those components are
irrelevant to the problem of estimating the distribution of Y
given X (e.g., because they are stochastically independent of Y),
then we can remove them and improve the convergence rate
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to n−2/( p1+5), where p1 = p − p2. To achieve this outcome, the
size of bandwidth should be reduced to n−1/( p1+5).

The result of reducing the length of X in this way is distinctly
different from that achieved by more conventional dimension-
reduction methods, for example, projection pursuit. The latter
generally develops only an approximation to g; the approxima-
tion would generally not consistently estimate the true condi-
tional density as n increased. In contrast, if we could identify
components of X that were independent of Y , then we could
delete these at the outset, leading to improvements in the ac-
curacy with which the density of Y , given X, was consistently
estimated.

In applications of smoothing methods to real data, in the
context of estimating conditional densities, we have found that
“irrelevant” components are surprisingly common. (See in par-
ticular the examples in Sec. 5, based on two classic benchmark
datasets.) In principle, this problem can be tackled by applying
a battery of hypothesis tests before conducting inference. Tests
for independence of individual components or groups or linear
combinations of components can be used to identify irrelevant
explanatory variables. However, such an approach is awkward
and tedious to implement, not in the least because the compo-
nents of X often will be of many different types—e.g., con-
tinuous, unordered discrete, ordered discrete—all in the same
vector. We suggest instead a version of cross-validation in this
context and show that it has virtues that make it especially
suited to simultaneously choosing smoothing parameters and
removing irrelevant components of explanatory variables.

To describe how cross-validation works in this problem, let
us assume initially that all components of X are continuous; this
will simplify exposition. Construction of the cross-validation
criterion, say CV, is not trivial, but a certain weighted form of
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it has an elementary form. If p2 of the components of X are in-
dependent of Y and therefore irrelevant, and if the remaining p1
components of X are relevant, then the empirical bandwidths
that minimize CV will demonstrate markedly dichotomous be-
havior: those that correspond to irrelevant components will di-
verge to infinity as the sample size increases, and those that
correspond to relevant components will consistently estimate
the bandwidths of size n−1/( p1+5) that would be appropriate if
only the relevant components were present.

By diverging to infinity, the bandwidths for irrelevant com-
ponents effectively shrink those components to a distribution
that is virtually “uniform on the real line,” and so eliminate
the irrelevant components from contention. Therefore, without
any particular input from the experimenter, cross-validation au-
tomatically identifies relevant and irrelevant components, re-
moves the latter, and chooses the correct bandwidths for the
former. It conducts a de facto dimension reduction program,
tailored to the problem of estimating the conditional density.

Similar behavior is observed when one or more of the com-
ponents of X are discrete. Application of cross-validation to se-
lecting smoothing parameters effectively shrinks each discrete
irrelevant component to the uniform distribution on its support,
thereby effectively removing it from contention in the problem
of estimating the conditional density of Y given X. For the rel-
evant components that remain, cross-validation automatically
chooses smoothing parameters that are appropriate when only
the relevant components are used for inference.

These results continue to hold in the case of conditional den-
sity estimation from explanatory data with both continuous and
discrete components. For simplicity, in our theoretical work
we treat only mixed unordered discrete and continuous compo-
nents; however, when these are combined with ordered discrete
components, the results are virtually identical. Each context is
characterized, in the case of irrelevant components, by diver-
gence of smoothing parameters to the upper extremities of their
respective ranges or, equivalently, by shrinkage to the uniform
distribution.

In view of our focus on mixed data, we only address the set-
ting in which a different smoothing parameter is used for each
component. Similar results are obtained if smoothing is done
more comprehensively, for example, by using a p × p band-
width matrix to smooth p-variate explanatory variables where
all components are continuous. In this case, cross-validation
automatically identifies linear transformations of X that are in-
dependent of Y , and eliminates them by shrinking them to the
uniform distribution on the real line.

The divergence of cross-validation smoothing parameters
to their upper extremities, characterizing the case of irrele-
vant components, provides invaluable empirical advice about
which components are relevant and which are not. It comes
“for free” when we use cross-validation to select the amount
of smoothing. A formal statistical test of independence would
have greater power, but would be substantially more awkward
to implement.

An alternative approach to solving this problem would be
to use classical variable selection methods to choose relevant
components, and use a separate smoothing-parameter choice
technique to determine how much smoothing to do. However,
the fact that this problem involves both continuous and dis-
crete variables means that there is no off-the-shelf algorithm for

choosing smoothing parameters, except for the cross-validation
approach that we suggest. In particular, configuring plug-in
rules for mixed data is an algebraically tedious task, and in fact
no general formulas are available. In additional, plug-in rules,
even after adaptation to mixed data, require choosing of “pilot”
smoothing parameters, and it is not clear how to best make that
selection for the continuous and discrete variables involved. As
we discuss later, cross-validation avoids these problems and has
the additional virtue of separating variables into relevant and ir-
relevant categories.

Our method can readily be generalized to cover other econo-
metric models with mixed discrete and continuous variables.
For example, Hahn (1998) and Hirano, Imbens, and Ridder
(2002) considered the nonparametric estimation of average
treatment effects, Horowitz (2001) dealt with nonparametric
estimation of a generalized additive model with an unknown
link function, and Lewbel and Linton (2002) treated nonpara-
metric censored and truncated regression models. Each of these
approaches assumes that the nonparametric covariates are con-
tinuous (or, when discrete covariates are present, uses the
nonparametric frequency method). The cross-validation based
smoothing method presented in this article can be used to gen-
eralize the aforementioned approaches to handle mixed discrete
and continuous covariates. Such an extension also has the ad-
vantage of being able to remove irrelevant covariates (both dis-
crete and continuous), thereby yielding more reliable estimation
results.

There is an alternative approach to defining relevance and ir-
relevance, based on conditional independence rather than con-
ventional independence. To describe this approach, let us again
assume for simplicity that all of the components of X are con-
tinuous. We might say that X = (X[1],X[2]) represents a decom-
position of X into relevant and irrelevant parts X[1] and X[2], if
Y and X[2] are independent conditional on X[1]. Although this
approach is attractive in at least a theoretical sense, it has cer-
tain difficulties from an operational viewpoint. To appreciate
why, consider, for example, the case where Y = Z1 + Z2 + Z3,
Xj = Zj +εZj+3 for j = 1,2, X = (X1,X2), ε > 0, and Z1, . . . ,Z5

are independent standard normal random variables. If ε is small,
then, depending on which of X1 and X2 we decide to condi-
tion upon, a practical assessment of “relevance” based on con-
ditional independence is likely to suggest that either X1 or X2

(not both) is irrelevant.
Therefore, in practical terms, and using an assessment based

on conditional independence, the problem can be ambiguous,
and empirical difficulties may be expected to arise when decid-
ing how to partition X into relevant and irrelevant parts. On
the other hand, if an unconditional view of independence is
taken, as suggested in the present article, then our method will
generally conclude that both X1 and X2 are relevant, even for
small ε. However, in cases where the sort of ambiguity men-
tioned earlier does not arise, sketched theoretical analyses in
particular cases and small-scale simulation studies suggest that
cross-validation will successfully detect irrelevance, by virtue
of the corresponding bandwidths diverging, when irrelevance is
defined in the sense of conditional independence. Alternative
techniques might be developed for dealing with the ambiguity
described in the previous paragraph.
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Section 2 introduces our cross-validation algorithm, and Sec-
tion 3 develops properties of mean squared error (MSE) and op-
timal smoothing parameters when no irrelevant components are
present. The results given there set theoretical benchmarks for
the performance of bandwidth selectors after irrelevant compo-
nents have been removed. Section 4 shows that cross-validation
attains these benchmarks. There we give concise, mathemat-
ical definitions of what we mean by “relevant” and “irrele-
vant” components. Section 5 gives numerical illustrations of the
performance of cross-validation in removing irrelevant compo-
nents and conducting adaptive inference. There we pay par-
ticular attention to the case of mixed continuous and discrete
explanatory variables, and we also apply our method to two
well-known datasets with large numbers of discrete cells rel-
ative to their sample sizes (thus the conventional frequency
method is infeasible for both datasets). We show that our pro-
posed estimator smooths out some irrelevant variables and
yields better out-of-sample predictions than some commonly
used parametric methods.

The use of least squares cross-validation to select smoothing
parameters in density estimation dates from work of Rudemo
(1982) and Bowman (1984), following earlier discussion of the
Kullback–Leibler case by Habbema, Hermans, and Van Den
Broek (1974). Tutz (1991) treated cross-validation for condi-
tional density estimation from mixed variables. Theory for least
squares cross-validation was developed by Hall (1983a, 1985)
and Stone (1984), and second-order properties were addressed
by Hall and Marron (1987).

Smoothing methods for ordered categorical data have been
surveyed by Simonoff (1996, sec. 6). Hall (1983a) and Li and
Racine (2003) treated unconditional joint density estimation
from mixed data. There is a large literature on dimension re-
duction for density estimation, including work of Friedman,
Stuetzle, and Schroeder (1984) and Jones and Sibson (1987).

One of the reasons for estimating conditional densities rather
than conditional distributions is that the densities give a better
idea of the relative placement of “weight” in the distribution.
As a result, there is constant, continuing interest in the topic of
conditional density estimation. For a recent reference, see the
work of Fan and Yim (2004), who discussed novel methods for
conditional density estimation.

2. METHODOLOGY FOR CROSS–VALIDATION

Let f̂ denote an estimator of the density, f , of (X,Y), and let
m̂ be an estimator of the marginal density, m, of X. We estimate
g( y|x) = f (x, y)/m(x), the density of Y conditional on X, by
ĝ( y|x) = f̂ (x, y)/m̂(x), and use as our performance criterion the
weighted integrated squared error (ISE),

ISE =
∫

{ĝ( y|x) − g( y|x)}2m(x)dW(x)dy, (1)

where dW(x) denotes the infinitesimal element of a measure.
The presence of dW(x) at (1) serves only to avoid difficul-

ties caused by dividing by 0, or by numbers close to 0, in the
ratio f̂ (x, y)/m̂(x). This is usually a problem only for the con-
tinuous components of x. Therefore, if X denotes a generic Xi,
if X = (Xc,Xd) represents a division of X into continuous and
discrete components, and if x = (xc,xd) is the corresponding
division of x, then we take dW(x) = w(xc)dxc dV(xd), where

dV(xd) denotes the infinitesimal element of the Dirac delta
measure that places unit mass at each atom of xd. In this no-
tation, (1) can be written equivalently as

ISE =
∑

xd

∫

{ĝ( y|x) − g( y|x)}2m(x)w(xc)dxc dy, (2)

where m(x) = mc(xc|xd)P(Xd = xd), mc(xc|xd) denotes the
density of Xc given that Xd = xd, and the sum

∑

xd is taken
over all atoms of the distribution of Xd.

We assume that Xc is p-variate and Xd q-variate. In practice,
to overcome the “curse of dimensionality,” it may be appropri-
ate to reduce either or both of p and q. Standard dimension-
reduction methods can be modified for this purpose; see, for
example, the methods discussed by Friedman and Stuetzle
(1981), Friedman et al. (1984), Huber (1985), Powell, Stock,
and Stoker (1989), and Klein and Spady (1993). However, it
should be remembered that in such cases the dimensions in
which actual information is carried may not be strictly less than
the dimension of the data, and that consequently, our theoreti-
cal results in Section 3 will not strictly apply after dimension
reduction.

Our estimators of f and m will be of the kernel type,

f̂ (x, y) = n−1
n∑

i=1

K(x,Xi)L( y,Yi) and

(3)

m̂(x) = n−1
n∑

i=1

K(x,Xi),

where K and L are nonnegative, generalized kernels. As (3) sug-
gests, we use the same vector of smoothing parameters (one for
each component) when treating the explanatory variables Xi,
regardless of whether we are addressing the numerator or the
denominator of the estimator ĝ( y|x) = f̂ (x, y)/m̂(x).

This “convention” guarantees that for each fixed x such that
m̂(x) �= 0, ĝ(·|x) is a proper probability density. It also ensures
that, except when m̂ = 0, ĝ is well defined and bounded by
supu,v L(u, v). If m̂ = 0, then ĝ has the form 0/0, and, for the
sake of theoretical completeness, might be defined to equal an
arbitrary but fixed constant. Using the same bandwidth in the
numerator and denominator of ĝ does not adversely affect the
rate of convergence of estimators of g.

Next we define K(x,Xi). Reflecting the division X = (Xc,Xd),
write Xi = (Xc

i ,Xd
i ), where Xd

i = (Xd
i1, . . . ,Xd

iq) and Xc
i =

(Xc
i1, . . . ,Xc

ip) denote the discrete and continuous components

of Xi. (In particular, we no longer use the notation Xc
j and Xd

j

for the jth components of Xc and Xd.) We assume that Xd
ij

takes the values 0,1, . . . , rj − 1. Put xc = (xc
1, . . . , xc

p) and

xd = (xd
1, . . . , xd

q), and define

Kc(xc,Xc
i ) =

p∏

j=1

1

hj
K

(xc
j − Xc

ij

hj

)

,

where K is a traditional kernel function (i.e., a symmetric, uni-
variate probability density) and

Kd(xd,Xd
i ) =

q∏

j=1

{λj/(rj − 1)}Nij(x)(1 − λj)
1−Nij(x), (4)
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where Nij(x) = I(Xd
ij �= xd

j ), depending on xd
j alone, and I is the

usual indicator function. In these formulas, h1, . . . ,hp are band-
widths for the continuous components of X and satisfy 0 < hj <

∞, whereas λ1, . . . , λq are smoothing parameters for the dis-
crete components and are constrained by 0 ≤ λj ≤ (rj − 1)/rj.
Note that when λj = (rj − 1)/rj assumes its upper extreme
value, Kd(xd,Xd

i ) becomes unrelated to (xd
j ,Xd

ij) (i.e., the jth
component of xd is completely smoothed out).

Formula (4) describes kernels that are appropriate for un-
ordered categorical data (see, e.g., Aitchison and Aitken 1976).
In the ordered case, alternative approaches can be used, us-
ing in effect near-neighbor weights (see, e.g., Wang and van
Ryzin 1981; Burman 1987; Hall and Titterington 1987). In
each case the kernel weights are intrinsically different from
their continuum counterparts. In particular, for the weights
defined in (4), in the asymptotic limit as each λj converges
to 0, Kd(xd,Xd

i ) converges to 1 if Xd
i = xd and to 0 other-

wise. The resulting kernel-weighted estimator of the probability
at xd converges to the naive cell-proportion (or maximum like-
lihood) estimator, which equals the proportion of the data for
which Xd

i = xd.
The generalized kernels, K(x,Xi) and L( y,Yi), are given by

K(x,Xi) = Kc(xc,Xc
i )K

d(xd,Xd
i ) and

(5)

L( y,Yi) = 1

h
L

(
y − Yi

h

)

,

where L is another univariate kernel, possibly identical to K,
and h is another bandwidth. The quantities at (5) are substituted
into (3) to give f̂ and m̂.

Expanding the right side of (1), we deduce that

ISE = I1n − 2I2n + I3n, (6)

where

I1n =
∫

ĝ( y|x)2m(x)dW(x)dy,

I2n =
∫

ĝ( y|x)f (x, y)dW(x)dy,

and I3n does not depend on the smoothing parameters used to
compute f̂ and m̂. Observe that

I1n =
∫

Ĝ(x)
m(x)

m̂(x)2 dW(x),

where Ĝ(x) = ∫
f̂ (x, y)2 dy is expressible as

Ĝ(x) = 1

n2

n∑

i1=1

n∑

i2=1

K
(
x,Xi1

)
K

(
x,Xi2

)
∫

L
(
y,Yi1

)
L
(
y,Yi2

)
dy.

Thus, the cross-validation approximations Î1n and Î2n, to
I1n and I2n, are motivated as

Î1n = 1

n

n∑

i=1

Ĝ−i(Xi)w(Xc
i )

m̂−i(Xi)2

and

Î2n = 1

n

n∑

i=1

f̂−i(Xi,Yi)w(Xc
i )

m̂−i(Xi)
,

where the subscript “−i” on a function of the data indi-
cates that quantity is computed not from the n-sample, Z =
{(X1,Y1), . . . , (Xn,Yn)}, but rather from the (n − 1)-sample,
Z\{(Xi,Yi)}.

Each Îjn is a function of the smoothing parameters, although
we have suppressed this dependence. The cross-validation cri-
terion, CV, consists of the first two terms on the right side of
formula (6), but replaced by the approximations

CV(h,h1, . . . ,hp, λ1, . . . , λq)

= Î1n(h,h1, . . . ,hp, λ1, . . . , λq)

− 2Î2n(h,h1, . . . ,hp, λ1, . . . , λq).

In numerical work for cross-validation for density estima-
tion, one generally tries to guard against using too small a value
of bandwidth. If there are two or more local minima of the
cross-validation criterion, then one uses the second smallest of
these turning points, not the smallest. Therefore, one searches
up to a large positive value of bandwidth and takes the local
minimum in that range if there is only one of these values, or
the second smallest local minimum if there are more than one
of the values. Occasionally there is no local minimum in the
range, in which case one takes the value at the end of the range
to be the empirical bandwidth approximation.

3. MEAN SQUARED ERROR PROPERTIES

3.1 Main Results

Here we describe smoothing parameters that, in asymptotic
terms, are optimal for minimizing the mean integrated squared
error (MISE) defined by taking the expected value at (2),

MISE(h,h1, . . . ,hp, λ1, . . . , λq)

=
∑

xd

∫

E{ĝ( y|x) − g( y|x)}2m(x)w(xc)dxc dy. (7)

In this formula we interpret ĝ( y|x) as an arbitrary constant
when it equals 0/0.

Recall that x = (xc,xd), where xc = (xc
1, . . . , xc

p) and xd =
(xd

1, . . . , xd
q), and that w is a function of xc. Let Sc = supp w

denote the support of the function w, and let Sd be the support
of the distribution of Xd. We assume that:

The densities f and m have two continuous deriva-
tives as functions of xc; w is continuous and non-
negative and has compact support, m(x) is bounded
away from 0 for x = (xc,xd) ∈ Sc × Sd, and
supx∈Sc×Sd f (x, y) vanishes outside a compact set of
values y.

(8)

Let f00(xc,xd, y)[fjj(xc,xd, y)] denote the second derivative of
f (xc,xd, y) with respect to y [resp. xc

j ]. Put κ = ∫
K2, κL = ∫

L2,

κ2 = ∫
u2K(u)du, and κL2 = ∫

u2L(u)du. Define an indicator
function Ii(ud,xd) by

Ij(ud,xd) = I(ud
j �= xd

j )

q∏

s �=j

I(ud
s = xd

s ).
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Note that Ij(ud,xd) = 1 if and only if ud and xd differ only at the
jth component. Let a0, . . . ,ap and b1, . . . ,bq denote real num-
bers. We define a function of these quantities that represents the
dominant term in an expansion of MISE [see (14) and (18)],

χ(a0, . . . ,ap,b1, . . . ,bq)

=
∑

xd

∫ ([ q∑

j=1

bj

rj − 1

∑

ud

Ij(ud, xd
j )

×
{

f (xc,ud, y) − m(xc,ud)

m(x)
f (x, y)

}

+ 1

2
κL2a2

0 f00(x, y)

+ 1

2
κ2

p∑

j=1

a2
j

{

fjj(x, y) − mjj(x)

m(x)
f (x, y)

}]2

+ κpκL f (x, y)

a0 · · ·ap

)

w(xc)

m(x)
dxc dy, (9)

where for v = u or x,
∑

vd denotes summation over atoms vd =
(vd

1, . . . , vd
q) of the distribution of Xd.

Write a0
0, . . . ,a0

p and b0
1, . . . ,b0

q for the values that mini-
mize χ , subject to each of them being nonnegative. It is pos-
sible for a0

j or b0
j to be infinite. Now a0

j = 0 for some j, only if

at least one of the other a0
j ’s is infinite. For the time being, we

exclude these degenerate cases, considering that:

The a0
j ’s and b0

j ’s are uniquely defined, and each is
finite.

(10)

Therefore, 0 < a0
j < ∞ for each j, but it is nevertheless possible

for one or more of the bj’s to vanish. The following general re-
sult may be proved. Consider the following function of positive
quantities z0, . . . , zp and general variables zp+1, . . . , zp+q:

χ(z0, . . . , zp+q)

=
∫ {p+q∑

j=0

Bj(x, y)zj

}2

dx dy + c0

(z0 · · · zp)1/2

= zTAz + c0

(z0 · · · zp)1/2 ,

where z = (z0, . . . , zp+q)
T and A is a (p + q + 1) × (p +

q+1) matrix. Then, if A is positive definite, χ(z0, . . . , zp+q) has
a unique minimum, at a point where z0, . . . , zp are positive and
finite and zp+1, . . . , zp+q are nonnegative and finite.

When searching for a minimum of MISE, over values of its
(p + q + 1)-variate argument, we confine attention to

(h,h1, . . . ,hp, λ1, . . . , λq) ∈ [0, η]p+q+1, where η =
ηn denotes any positive sequence that satisfies
nεηn → ∞ for each ε > 0.

(11)

This avoids the need to treat issues addressed by Sain (2001),
who pointed out that even in univariate density estimation the
asymptotically optimal bandwidth, in the sense of minimizing
MSE, need not converge to 0.

Theorem 1. Assume (8) and (10), and that the smoothing
parameters h0,h0

1, . . . ,h0
p, λ

0
1, . . . , λ

0
q that minimize MISE are

constrained by (11). Then

h0 ∼ a0
0n−1/( p+5),

h0
j ∼ a0

j n−1/( p+5), for 1 ≤ j ≤ p, (12)

λ0
j = b0

j n−2/( p+5) + o
(
n−2/( p+5)

)
for 1 ≤ j ≤ q,

and inf MISE ∼ n−4/( p+5) infχ .

A key assumption in Theorem 1 is (10), which excludes
some cases where components of Xd or Xc contain no effec-
tive information about Y . To appreciate this point, let Zc,−j

(resp., Zd,−j) denote the (p + q)-vector that arises after remov-
ing the jth component, Xc

j (resp., Xd
j ) of Xc (resp. of Xd) from

Z = (X,Y). If Xc
j and Zc,−j were independent random vari-

ables, or if Xd
j and Zd,−j were independent, then when con-

structing ĝ = f̂ /m̂, it would make little sense to compute either
f̂ or m̂ using the full-data vectors (Xi,Yi). We would instead
delete the jth component of the continuous part of Xi or of the
discrete part of Xi.

In the first of these cases, fjj = (mjj/m)f , and so the term in a2
j

vanishes from the right side of (9). As a result, a0
j = ∞, and so

(10) is violated. It can be restored by excluding the jth compo-
nent of Xc, as argued earlier. In the second case the quantity bj

in (9) can be absorbed into the other bk’s, and so the minimizer
of χ is not uniquely defined. Therefore, (10) again fails, but it
can be restored by dropping the jth component of Xd. In these
instances it is fair to say that Xc

j or Xd
j is “completely irrelevant”

for estimating g.
If Xd

j were independent of Y but not independent of the other
components of X, then, although in some respects the correct
approach would be to delete the jth component of the discrete
part of each data vector, failing to do so would not necessar-
ily mean that (10) was violated. This reflects the fact that the
full-data vectors can produce estimators of m with lower MSE,
and so may be beneficial. A similar argument applies if Xc

j is
independent of Y but not of other components of X, although
in this case a relatively standard kernel approach to estimation,
advocated in (3), is not the best way to proceed.

3.2 Proof of Theorem 1

Using (13), it may be shown that ISE does not converge to 0
unless Vh → ∞ as n → ∞, where V = nh1 · · ·hp. Therefore,
we may, without loss of generality, add to (11) the constraint
that Vh ≥ tn, where {tn} is an unspecified sequence of constants
diverging to infinity.

Note that ĝ = (g + δf )/(1 + δm), where δf = ( f̂ − f )/m and
δm = (m̂ − m)/m. By Taylor expansion,

ĝ( y|x) − g( y|x)

= {
f̂ (x, y) − m̂(x)g( y|x)+ Q(x, y)

}
m(x)−1, (13)

where Q = −mδmδf + (δ2
m − δ3

m + · · ·)( f + mδf ) consists of
quadratic and higher-order terms in δf and δm. Using these ex-
pansions and the methods we use later to approximate

MISE1 =
∑

xd

∫

E{ f̂ ( y|x) − m̂(x)g( y|x)}2 w(xc)

m(x)
dxc dy,
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and noting the convention that ĝ is taken to equal a constant if
it would otherwise equal 0/0, it may be proved that

MISE = MISE1 + o(η1), (14)

uniformly in smoothing-parameter vectors in [0, η]p+q+1 satis-
fying Vh ≥ tn, where η1 = η2 + η3, η2 = ∑

j λj + ∑

j h2
j + h2,

and η3 = (Vh)−1.
Put ρj = λj/{(1 − λj)(rj − 1)}, and let ψ(xc, y|xd) denote

the density of (Xc,Y) given Xd. Write ψ00(xc, y|xd)[ψjj(xc,

y|xd)] for the second derivative of ψ(xc, y|xd) with respect
to y (resp. xc

j ). Given members xd = (xd
1, . . . , xd

q) and ud =
(ud

1, . . . ,ud
q) of the sample space of Xd, let ud

j (x) = I(ud
j �= xd

j ).
In this notation,

E{ f̂ (x, y)}

=
∑

ud

P(Xd = ud)

{ q∏

j=1

(1 − λj)ρ
ud

j (x)

j

}∫ { p∏

j=1

K(zj)

}

L(v)

× ψ
(
xc

1 − h1z1, . . . ,

xc
p − hpzp, y − hv|ud

1, . . . ,ud
q

)
dz1 · · · dzp dv

= f (x, y)

+
q∑

j=1

λj

rj − 1

{
∑

ud

Ij(ud,xd)f (xc,ud, y) − f (x, y)

}

+ 1

2
κL2h2f00(x, y) + 1

2
κ2

p∑

j=1

h2
j fjj(x, y) + o(η2),

where the remainders here and in (15)–(17) are of the stated
size uniformly in xc ∈ supp w, in xd in the support of the dis-
tribution of Xd, and in y, as well as in smoothing-parameter
vectors in [0, η]p+q+1 satisfying Vh ≥ tn.

Similarly,

E{m̂(x)}

= m(x) +
q∑

j=1

λj

rj − 1

{
∑

ud

Ij(ud,xd)m(xc,ud) − m(x)

}

+ 1

2
κ2

p∑

j=1

h2
j mjj(x) + o(η2). (15)

Therefore,

E{ f̂ (x, y)} − E{m̂(x)}g( y|x)

=
q∑

j=1

λj

rj − 1

∑

ud

Ij(ud,xd)

×
{

f (xc,ud, y) − m(xc,ud)

m(x)
f (x, y)

}

+ 1

2
κL2h2f00(x, y)

+ 1

2
κ2

p∑

j=1

h2
j

{

fjj(x, y) − mjj(x)

m(x)
f (x, y)

}

+ o(η2). (16)

Note also that

n var{ f̂ (x, y) − m̂(x)g( y|x)}
= var[K(x,Xi){L( y,Yi) − g( y|x)}]
= E{K(x,Xi)L( y,Yi)}2 + o(η3)

= nκpκL f (x, y)η3 + o(η3). (17)

Combining (16) and (17), we deduce that

MISE1(h,h1, . . . ,hp, λ1, . . . , λq)

= n−4/( p+1)χ(a0, . . . ,ap,b1, . . . ,bq) + o(η1), (18)

uniformly in smoothing-parameter vectors in [0, η]p+q+1 satis-
fying Vh ≥ tn, where the scalars a0, . . . ,ap,b1, . . . ,bq are de-
fined by h = a0n−1/( p+5), hj = ajn−1/( p+5), and λj = bjn−2/( p+5).
The theorem follows from (14) and (18).

4. PROPERTIES OF CROSS–VALIDATION

Recall from Section 2 that X = (Xc,Xd), where Xc is
p-variate and Xd is q-variate. We assume that only the first
p1 components of Xc and the first q1 components of Xd are
“relevant” to estimating the distribution of Y given X, the oth-
ers being “irrelevant” in the sense defined as follows:

For integers 0 ≤ p1,p2 ≤ p and 0 ≤ q1,q2 ≤ q sat-
isfying p1 + p2 = p and q1 + q2 = q, the following
is true: The vector X(1) comprising the first p1 com-
ponents of Xc and the first q1 components of Xd is
stochastically independent of the vector X(2) com-
pristing the last p2 components of Xc, and the last
q2 components of Xd, and X(2) and Y are indepen-
dent.

(19)

A technical definition of “relevance” of the first p1 components
of Xc, and first q1 components of Xd, is given in (21).

For the p1 relevant continuous components and q1 rele-
vant discrete components of X, we should impose the analog
of assumption (10), asserting that the asymptotically optimal
smoothing parameters are of conventional size. To this end, we
introduce the following analog of the function χ at (9), now
tailored to just the relevant components of X:

χ̄(a0, . . . ,ap1,b1, . . . ,bq1)

=
∑

x̄d

∫ ([ q1∑

j=1

bj

rj − 1

∑

ūd

Ij(ūd, x̄d)

×
{

f̄ (x̄c, ūd, y) − m̄(x̄c, ūd)

m̄(x̄)
f̄ (x̄, y)

}

+ 1

2
κL2a2

0 f̄00(x̄, y)

+ 1

2
κ2

p1∑

j=1

a2
j

{

f̄jj(x̄, y) − m̄jj(x̄)

m̄(x̄)
f̄ (x̄, y)

}]2

+ κp1κL f̄ (x̄, y)

a0 · · ·ap1

)

w̄(x̄c, x̄d)dx̄c dy, (20)
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where

w̄(x̄c, x̄d)

=
∑

xd
q1+1,...,x

d
q

∫ w(x̄c, xc
p1+1, . . . , xc

p)

m(x̄c, xc
p1+1, . . . , xc

p, x̄d, xd
q1+1, . . . , xd

q)

× dxc
p1+1 · · · dxc

p,

and the “bar” notation refers to functions or vectors involving
only the first p1 continuous components and the first q1 discrete
components. For example, x̄c is the vector comprising the first
p1 components of xc, f̄ denotes the joint density of the first
p1 components of Xc and of Y , f̄jj denotes the jth derivative of
f̄ with respect to the jth component of x̄c, and so on.

The function χ̄ coincides exactly with χ in the case in which
the last p2 aj’s and last q2 bj’s are deleted from the argument
of χ and the weight w(xc)/m(x) at (9) is replaced by w̄(x̄c, x̄d).
Of course, w̄(x̄c, x̄d) is obtained from w(xc)/m(x) on integrat-
ing (and summing) out the irrelevant components of x and is
the weight function appropriate to the MISE that would be ob-
tained at (7) if we were to drop all irrelevant components from
the estimator ĝ( y|x) appearing there. Therefore, we expect the
optimal values of smoothing parameters in the present problem
to be exactly those given by Theorem 1, but with (p,q) at (12)
replaced by (p1,q1), and h0,h0

1, . . . ,h0
p1

, λ0
1, . . . , λ

0
q1

there cho-
sen to minimize χ̄ , defined in (20), rather than χ , given in (9).
Theorem 2 later in this section shows that cross-validation se-
lects smoothing parameters for the relevant components of X in
precisely this asymptotically optimal manner.

Write a0
0, . . . ,a0

p1
and b0

1, . . . ,b0
q1

for the values that mini-
mize χ̄ , subject to each of them being nonnegative. The analog
of condition (10) is that:

The a0
j ’s and b0

j ’s are uniquely defined, and each is
finite.

(21)

To be able to detect the effect of relevant components of X
on the conditional distribution of Y , within the domain to which
we are constrained by the weight function w, we assume that

sup
x̄∈supp w̄

sup
y

ḡ( y|x̄) > 0. (22)

The empirical observation that smoothing parameters chosen
by cross-validation diverge to their upper extremes when the
respective components of X are irrelevant reflects the fact that
cross-validation attempts to shrink the distributions of irrelevant
components to the least-variable, uniform case. There they have
the least impact on the variance terms of curve estimators; the
fact that they contain no information about Y means that they
have little impact on bias. However, if the irrelevant compo-
nents of X are already uniformly distributed, then the effect of
choosing the respective smoothing parameters may be compar-
atively small, and so different behavior can be expected. For the
sake of simplicity, we consider the case of uniformly distributed
irrelevant components as pathological and impose a regularity
condition to eliminate it, as follows.

Define a kernel ratio for irrelevant data components,

R
(
x̄,hp1+1, . . . ,hp, λq1+1, . . . , λq

)

=
E[{∏p

j=p1+1 K(
x̄c

j −Xc
1j

hj
)2}∏q

j=q1+1{(1 − λj)ρ
N1j(x̄)

j }2]
(E[{∏p

j=p1+1 K(
x̄c

j −Xc
1j

hj
)}∏q

j=q1+1{(1 − λj)ρ
N1j(x̄)

j }])2
.

Note that by Hölder’s inequality, R ≥ 1 for all choices of
hp1+1, . . . ,hp, λq1+1, . . . , λq. It is easy to see that, provided that
K(0) > K(δ) for all δ > 0, R → 1 as hj → ∞ (for p1 + 1 ≤
j ≤ p) and λj → (rj − 1)/rj (for q1 + 1 ≤ j ≤ q). Generally
speaking, however, R > 1 for other values of these smoothing
parameters. But exceptions to this rule can arise if marginal dis-
tributions are uniform. We eliminate problems of this type by
assuming that:

The only values of hp1+1, . . . ,hp, λq1+1, . . . , λq, in
the range hj ≥ 0 and 0 ≤ λj ≤ (rj − 1)/rj, for which
R(x̄,hp1+1, . . . ,hp, λq1+1, . . . , λq) = 1 for some x̄ ∈
supp w̄, are hj = ∞ for p1 + 1 ≤ j ≤ p and λj = (rj −
1)/rj for q1 + 1 ≤ j ≤ q.

(23)

As discussed in Section 3, we need to ensure that the cross-
validation algorithm is not seduced by the possibility that there
exist nonvanishing smoothing parameters that produce estima-
tors with zero bias. In Section 3 we averted this problem by
treating only smoothing parameters that converge to 0; see as-
sumption (11). By here that is not desirable, because we expect
smoothing parameters corresponding to irrelevant components
to be bounded away from 0. Constraint (11) would have us as-
sume in advance that the bandwidths associated with relevant
components converge to 0, yet for the sake of realism we do
not wish those components to be identified to the experimenter.
Therefore, we take a different tack, as follows.

Note that, in view of (19), the contributions of irrelevant com-
ponents cancel from the ratio µ̄g( y|x̄) = E{ f̂ (x, y)}/E{m̂(x)}.
Let ḡ denote the version of g when irrelevant components are
dropped. We assume that:

∫
dy

∫

supp w̄{µ̄g( y|x̄) − ḡ( y|x̄)}2 dx̄, interpreted as a
function of h1, . . . ,hp1 and λ1, . . . , λq1 , vanishes if
and only if all of those smoothing parameters vanish.

(24)

Finally, we assume conventional conditions on the band-
widths and kernels. Define

H = H(h,h1, . . . ,hp, λ1, . . . , λq)

= h

( p1∏

j=1

hj

) p2∏

j=p1+1

min(hj,1),

let 	j = [0, (rj − 1)/rj] denote the range of possible values
taken by λj, and let 0 < ε < 1/(p + 5). Assume that

0 < h ≤ n−ε ; nε−1 ≤ H ≤ n−ε ; h1 · · ·hp1h ≥ nε−1;
the kernels K and L are symmetric, compactly sup-
ported, Hölder-continuous probability densities; and
K(0) �= 0.

(25)

We also impose the obvious requirement that the bandwidths
that minimize CV are chosen so that CV is well defined, which
in particular means that the estimator m̂ should not vanish on
supp w. This implies that for some C1 > 0, the probability that
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none of the bandwidths h,h1, . . . ,hp is less than n−C1 con-
verges to 1 as n → ∞. In concert with (25), this entails that
for some C2 > 0, the probability that none of the bandwidths
h,h1, . . . ,hp1 exceeds nC2 converges to 1 as n → ∞. Therefore,
it may be supposed without loss of generality that

for some C > 0, min(h,h1, . . . ,hp) > n−C and
(26)

max(h1, . . . ,hp1) ≤ nC.

We use this property in several places in our proofs, [e.g., in the
second-to-the-last paragraph of step (a)], although we do not
list it among the regularity conditions in Theorem 2.

We should comment on the extent to which (25) and (26)
require knowledge of p1, the number of relevant components
of X. The conditions do betray knowledge of whether p1 is
0 or positive. However, we claim that under the following
side condition, which does not depend on p1, they hold when-
ever 1 ≤ p1 ≤ p2:

No hj, for 1 ≤ j ≤ p2, takes a value exceeding
D log n, where D > 0 is arbitrary; h1, . . . ,hp2 ∈
[nδ−1,n−δ] for some δ ∈ (0, 1

2 ); and 1 ≤ p1 ≤ p2.
(27)

If this constraint holds, then (25) and (26) obtain for any ε ∈
(0, δ) and C ≥ 1, and all sufficiently large n, regardless of the
value of p1. Condition (27) is, of course, reasonable, in that
it does not prevent h1, . . . ,hp1 from taking appropriately small
values, and at the same time it allows hp1, . . . ,hp2 to assume
values that diverge to infinity.

Theorem 2. Assume (8), (19), and (22)–(25), and let
ĥ, ĥ1, . . . , ĥp, λ̂1, . . . , λ̂q denote the smoothing parameters that
minimize CV subject to the bandwidth constraints imposed
in (25). Then, interpreting each convergence of a sequence of
random variables as convergence in probability, we have

n1/( p1+5)ĥ0 → a0
0, and

n1/( p1+5)ĥ0
j → a0

j for 1 ≤ j ≤ p1;
P(ĥj > C) → 1 for p1+ 1 ≤ j ≤ p and all C> 0,

n2/( p1+5)λ̂0
j → b0

j for 1 ≤ j ≤ q1;
λ̂j → (rj − 1)/rj for q1 + 1 ≤ j ≤ q;

and n4/( p1+5) inf MISE → infχ .

A proof of Theorem 2 is given in a longer version of this
article, obtainable from the authors.

The conclusions of Theorem 2 may be summarized as fol-
lows. The smoothing parameters chosen by cross-validation,
and corresponding to relevant components of the variables Xi,
have the properties of asymptotic optimality described by The-
orem 1. On the other hand, the cross-validation smoothing pa-
rameters that correspond to irrelevant components converge in
probability to the upper extremities of their respective ranges.

It is always possible, in practice, for the method to make a
mistake and, in effect, incorrectly remove relevant variables by
choosing a too-large value of bandwidth. Results such as The-
orem 2 state that the probability that this can happen converges
to 0 as n → ∞, but nevertheless there is always a nonzero prob-
ability that the method will do the wrong thing.

Next we discuss the performance of the empirical smooth-
ing parameters when they are used to construct ĝ at a point.
We show that they produce an estimator that has the same
first-order properties it would enjoy if the asymptotically op-
timal, deterministic parameters were used. The latter may
be defined as: h = n−1/( p1+5)a0

0, hj = n−1/( p1+5)a0
j for 1 ≤

j ≤ p1; λj = n−2/( p1+5)b0
j for 1 ≤ j ≤ q1; hj → ∞ for p1 +

1 ≤ j ≤ p; and λj → (rj − 1)/rj for q1 + 1 ≤ j ≤ q, where
a0

0,a0
1, . . . ,a0

p1
,b0

1, . . . ,b0
q1

minimize χ̄ defined at (20).
If ĝ is computed using the asymptotically optimal determin-

istic smoothing parameters, then

ĝ( y|x) = g( y|x) + n−2/( p1+5){β(x̄, y) + σ(x̄, y)Zn(x, y)}
+ op

(
n−2/( p1+5)

)
, (28)

where the random variable Zn(x, y) has the standard normal dis-
tribution,

β(x̄, y) =
q1∑

j=1

bj

rj − 1

∑

ūd

Ij(ūd, x̄d)

×
{

ḡ( y|x̄c, ūd) − m̄(x̄c, ūd)

m̄(x̄)
ḡ( y|x̄)

}

+ 1

2
κL2a2

0ḡ00( y|x̄)

+ 1

2
κ2

p1∑

j=1

a2
j

{

ḡjj( y|x̄) − m̄jj(x̄)

m̄(x̄)
ḡ( y|x̄)

}

and

σ(x̄, y)2 = κp1κLḡ( y|x̄)

a0 · · ·ap1

denote asymptotic bias and variance, and ḡjj( y|x̄) is the second
derivative of ḡ( y|x̄) with respect to x̄c

j . We give a proof of (28)
as part of our derivation of Theorem 3 in Section 7. The theorem
argues that (28) continues to hold if we choose the smoothing
parameters empirically, by cross-validation.

Recall that Sc = supp w and that Sd denotes the support of
the distribution of Xd.

Theorem 3. Assume the conditions imposed in Theorem 2;
let ĥ, ĥ1, . . . , ĥp, λ̂1, . . . , λ̂q denote the empirically chosen
smoothing parameters prescribed there, and let x = (xc,xd) ∈
Sc × Sd. Then (28) remains true, for the same functions
β and σ , if ĝ( y|x) is computed using the smoothing parame-
ters chosen by cross-validation rather than the asymptotically
optimal, deterministic parameters.

Up to now, we have assumed that the dependent variable Y
is continuous. If instead Y is discrete, taking r different values,
then we need to replace L( y,Yi) = h−1L{( y − Yi)/h}, defined
at (5), by L( y,Yi) = λNi( y)(1−λ)1−Ni( y), where Ni( y) = I(Yi �=
y). Then we need to modify Theorem 3 by replacing p1 + 5
by p1 + 4 and replacing n1/( p1+5)ĥ → a0

0 by n2/( p1+4)λ̂ → b0,
where b0 is defined similarly to b0

j for j = 1, . . . ,q1.



Hall, Racine, and Li: Cross-Validation 1023

5. NUMERICAL SIMULATION AND
PRACTICAL EXAMPLES

5.1 Monte Carlo Study

In this section we outline a modest Monte Carlo experiment
designed to investigate the performance of the proposed estima-
tor. We choose a popular setting, conditional binary prediction,
and consider a latent variable probit data-generating process
(DGP) with a mix of covariate types given by

Y∗
i = θ1Z1i + θ2Z2i + θ3Xi + θ4Z1iXi

+ θ5Z2iXi + θ6Z1iZ2i + θ7Z1iZ2iXi + εi, (29)

Yi = 1 if Y∗
i > 0 and Yi = 0 otherwise,

where the variables Xi, Z1i, Z2i, and εi, for 1 ≤ i ≤ n are
totally independent; the Xi’s are uniformly distributed on
the interval [0,1]; Z1i and Z2i take values only in the set
A ≡ {−2,−1,0,1,2}; Pr(Z1i = z) = Pr(Z2i = z) = .1, .4, .1,

.35, .05 as z ranges among the respective values in A; and
the εi’s are normal N(0,1). We also treated the case where
Pr(Z1 = z) = Pr(Z2 = z) = 1/5 for each z ∈ A. The results that
we obtained were qualitatively identical to those in the earlier
setting and thus are not reported here.

We fix the sample size at n1 = 100, and for each Monte Carlo
replication compute the correct classification ratio (CCR) on
independent evaluation data drawn from the same DGP (n2 =
1,000) for each of three estimators, the proposed estimator, a
parametric probit estimator, and the conventional (frequency)
nonparametric estimator. The CCR is computed as the fraction
of predicted Y equal to actual Y for the evaluation sample, and
for each estimator we predict Ŷ = 1 if the estimated conditional
probability P̂r(Y = 1|z1, z2, x) exceeds .5 and Ŷ = 0 otherwise.
We conduct the following three experiments:

1. For the DGP specified in (29), we set θ = (1,1,1,1,

1,1,1)T, and let the parametric model be correctly speci-
fied (a probit model with index function given by β1z1i +
β2z2i + β3xi + β4z1ixi + β5z2ixi + β6z1iz2i + β7z1iz2ixi).

2. We set θ = (0,0,1,0,0,0,0)T and let both the para-
metric and the nonparametric models be overspecified
[a probit with index function β1z1i + β2z2i + β3xi +
β4z1ixi + β5z2ixi + β6z1iz2i + β7z1iz2ixi and a function
g( yi|xi, z1i, z2i) subject only to smoothness constraints].

3. We set θ = (1,1,1,1,1,1,1)T and let the parametric
model be underspecified (a probit with index function
β1z1i + β2z2i + β3xi).

We report the median CCR on the independent evaluation
data for each model over the 1,000 Monte Carlo replications
along with the 5th and 95th percentiles, and summarize these
results in Tables 1–3.

We note that, compared with the correctly specified paramet-
ric model (Table 1), the proposed estimator exhibits a < 5%
predictive efficiency loss. For the overspecified model (Table 2),
however, the proposed estimator exhibits a 4% predictive effi-
ciency gain. Although both the parametric and nonparametric
models use the same information in this instance, and the es-
timator based on the parametric model has a faster rate of
convergence, the cross-validated kernel estimator effectively

Table 1. Correct Parametric Model: Median,
5th and 95th Percentiles of CCR

Conditional Frequency Probit

.815 .814 .853
[.744, .841] [.757, .840] [.821, .870]

removes the irrelevant variables from the resulting estimator,
producing finite-sample efficiency gains, whereas the presence
of irrelevant variables contributes additional noise to a para-
metric model. The median cross-validated bandwidths for the
irrelevant variables Z1 and Z2 over the 1,000 Monte Carlo
replications were only slightly below their maximal upper
bound values of .8 (λ̂med

z1
= .75, λ̂med

z2
= .69), underscoring the

tendency of cross-validation to remove such variables from
the resulting estimate. Relative to the underspecified paramet-
ric model (Table 3), the proposed estimator exhibits a 14%
predictive efficiency gain. The underspecification arises from
neglected interaction terms, the omission of which is not un-
common in applied settings. Note also that the conventional
frequency nonparametric estimator cannot remove irrelevant
variables, and when there exist irrelevant variables, the effi-
ciency loss of the conventional nonparametric method relative
to the proposed cross-validated method is a substantial 12%.

5.2 Veterans Lung Cancer Data

We consider the dataset of Kalbfleisch and Prentice (1980,
pp. 223–224) that models survival in days of cancer patients
using six categorical explanatory variables: treatment type, cell
type, Karnofsky score, months from diagnosis, age in years, and
previous therapy. The dataset contains 137 observations, and
the number of cells greatly exceeds the number of observations.
Clearly, the conventional frequency nonparametric method can-
not be used for this dataset. We create a binary outcome taking
the value 1 if survival is less than or equal to 180 days and 0 if
otherwise, and consider the performance of the proposed esti-
mator versus a parametric probit estimator. We wish to evaluate
the true predictive performance of each estimator. To this end,
we randomly shuffle the data into an estimation sample of size
n1 = 132 and an independent evaluation sample of size n2 = 5.
Given the small evaluation sample size, we create 1,000 such
random splits, compute the out-of-sample CCR for each split,
and then summarize results over all 1,000 splits to alleviate any
concerns that results from a single split may not be representa-
tive. Summarizing, the average predictive efficiency gain for the
cross-validated kernel estimator was 8.4% relative to the para-
metric estimator, averaged over all 1,000 random shuffles. Of
more direct interest is the ability of cross-validation to remove
“irrelevant variables” by assigning a bandwidth close to the per-
missible upper bound. Table 4 presents the median bandwidths
over the 1,000 splits along with the 5th and 95th percentiles
(with upper bounds given in square brackets).

Table 2. Overspecified Parametric Model: Median,
5th and 95th Percentiles of CCR

Conditional Frequency Probit

.652 .584 .629
[.564, .690] [.527, .616] [.576, .665]



1024 Journal of the American Statistical Association, December 2004

Table 3. Underspecified Parametric Model: Median,
5th and 95th Percentiles of CCR

Conditional Frequency Probit

.815 .813 .715
[.748, .843] [.754, .842] [.689, .734]

It can be seen from Table 4 that variables 1, 5, and 6 are
effectively removed from the nonparametric estimator, indicat-
ing that cell type and Karnofsky score (variables 2 and 3) are
deemed the most “relevant” by the cross-validation criterion.
The Karnofsky score measures patient performance of activi-
ties of daily living. The score has proven useful not only for
following the course of the illness (usually progressive deficit
and ultimately death), but also as a prognosticator; patients with
the highest (best) Karnofsky scores at the time of tumor diag-
nosis have the best survival and quality of life over the course
of their illness.

It would appear that in small-sample settings involving a
large number of covariates, the proposed estimator performs
well for this popular dataset in terms of its predictive perfor-
mance on independent evaluation data, particularly when com-
pared with a common parametric specification.

5.3 Female Labor Force Participation

The Mroz data file is taken from the 1976 panel study of
income dynamics and is based on data for the previous year,
1975. Of the 753 observations, the first 428 are for women with
positive hours worked in 1975, and the remaining 325 observa-
tions are for women who did not work for pay in 1975. (A more
complete discussion of the data is given in Mroz 1987, app. 1.)
The dataset consists of the following variables: LFP (a dummy
variable that equals 1 if the woman worked in 1975 and 0 oth-
erwise), KL6 (the number of children younger than age 6 years
in the household), K618 (the number of children between ages
6 and 18), WA (wife’s age), WE (wife’s educational attainment,
in years), CIT [a dummy variable that equals 1 if the family
lives in a large city (SMSA) and 0 otherwise], UN (unemploy-
ment rate in county of residence, in percentage points and taken
from bracketed ranges), LWW1 (logarithm of wife’s average
hourly earnings, in 1975 dollars for working women, log of
predicted wage for nonworkers), PRIN (wife’s property income
computed as total family income minus the labor income earned
by the wife).

We apply the proposed method for the prediction of labor
force participation. We predict L̂FP = 1 if the estimated condi-
tional probability that LFP = 1 exceeds .5, and L̂FP = 0 other-
wise, and compare this with predictions from a logit model. For
the full sample of size n = 753, we cross-validate and fit the
conditional and logit densities, then predict the probability of

Table 4. Median Cross-Validated Bandwidth Values Over the 1,000
Splits, With Their 5th and 95th Percentiles in Parentheses

λ̂1
med[.50] λ̂2

med[.75] λ̂3
med[.92] λ̂4

med[.96] λ̂5
med[.98] λ̂6

med[.50]

.50 .28 .01 .87 .96 .50
(.50, .50) (.18, .36) (0, .14) (.76, .92) (.72, .97) (.20, .50)

NOTE: Numbers in square brackets represent maximum bandwidths, and so are the respective
values of (r j − 1) /r j .

Table 5. Confusion Matrices

Logit Conditional

A/P 0 1 A/P 0 1

0 166 159 0 281 44
1 80 348 1 120 308

CCR 68.2% CCR 78.2%

NOTE: A/P, actual/predicted values.

labor force participation. To avoid the overfitting critique, we
omit the ith individual’s data point when predicting its prob-
ability of participation; that is, we form leave-one-out predic-
tions for the kernel method. The confusion matrices (whose
diagonal elements are correctly predicted outcomes and whose
off-diagonal elements are incorrectly predicted outcomes) are
presented in Table 5. It can be seen that the proposed method
yields a 15% efficiency gain relative to the parametric logit
specification, which is often used to model this dataset.

Next we consider the cross-validated bandwidths, and in par-
ticular focus on those for the categorical variables. The r in col-
umn 2 of Table 6 represents the number of values assumed by
the associated categorical variables. Note from this table that
the variables CIT and K618 were effectively “smoothed out” of
the resulting estimate by the conditional density estimator, be-
cause their cross-validated bandwidths are fairly close to their
maximum (upper-bound) values. It appears that the conditional
cross-validation approach to bandwidth selection may provide
substantial predictive improvements over the results obtained
were one to use a logit model.

6. PROOF OF THEOREM 3

We begin with a stochastic approximation to f̂ /m̂, as follows.
Defining µm = E(m̂), µf = E(f̂ ), m = m̂ − µm, and f = f̂ −
µf , it may be proved that for some δ > 0 and all C > 0,

P

(

sup

∣
∣
∣
∣

f̂ (x, y)w(xc)

m̂(x)
−

[
µf (x, y)w(xc)

µm(x)

{

1 − m(x)

µm(x)

}

+ f (x, y)w(xc)

µm(x)

]∣
∣
∣
∣ > n−δ(nH)−1

)

= O(n−C), (30)

where the supremum is of the stated order uniformly in
x, y,h,h1, . . . ,hp, λ1, . . . , λq prescribed by

1 ≤ i ≤ n and (x, y) such that x = (xc,xd),
with xd in the support of the distribution of Xd;
h,h1, . . . ,hp, λ1, . . . , λq such that h ≤ n−ε and
nε−1 ≤ H ≤ n−ε ; and uniformly in λj ∈ 	j for 1 ≤
j ≤ q

for arbitrary but fixed ε ∈ (0, 1
2 ).

Table 6. Cross-Validated Bandwidths for Categorical Variables

Variable r Maximum Conditional CV

CIT 2 .500 .492
KL6 4 .750 .095
K618 9 .888 .867
WA 31 .967 .822
WE 13 .923 0
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Let ηn denote any positive sequence decreasing to 0, and
let Sn be the set of all vectors, v = (h,h1, . . . ,hp, λ1, . . . , λq), of
smoothing parameters that satisfy the properties h =
n−1/( p1+5)a0, hj = n−1/( p1+5)aj for 1 ≤ j ≤ p1, hj ≥ η−1

n for
p1 + 1 ≤ j ≤ p, λj = n−2/( p1+5)bj for 1 ≤ j ≤ q1, and λj =
(rj −1)/rj − δj for q1 +1 ≤ j ≤ q, where aj ∈ [a0

j −ηn,a0
j +ηn],

bj ∈ [max(0,b0
j − ηn),b0

j + ηn], and δj ∈ [0, ηn].
Result (30) implies that

ĝ( y|x) = µf (x, y)

µm(x)

{

1 − m(x)

µm(x)

}

− f (x, y)

µm(x)
+ op

(
n−2/( p1+5)

)
, (31)

uniformly in v ∈ Sn. Here let v = vn denote any deterministic
smoothing parameter sequence in Sn. Property (28) is a conse-
quence of (31) and the results

µf (x, y)

µm(x)
= µ̄f (x̄, y)

µ̄m(x̄)

= ḡ( y|x̄) + n−2/( p1+5)β(x̄, y) + o
(
n−2/( p1+5)

)
, (32)

n2/5

ν1(x)m̄(x̄)
{ḡ(x̄, y)m(x) + f (x, y)

} → N{0, σ (x̄, y)2}, (33)

and
∣
∣
∣
∣

m(x)

ν1(x)

∣
∣
∣
∣ +

∣
∣
∣
∣

f (x, y)

ν1(x)

∣
∣
∣
∣ = Op

(
n−2/( p1+5)

)
, (34)

where the convergence in (33) is in distribution. Property (32)
follows by elementary calculus, (33) follows by a central limit
theorem for sums of independent random variables, and (34)
follows by calculating the mean square of the left side and
showing that it equals O(n−4/( p1+5)).

We apply the superscript “ ∗ ” to a quantity to denote the
value that it takes for any particular deterministic but otherwise
arbitrary v ∈ Sn. To extend (28) to the case where the smooth-
ing parameter sequence is stochastic, and in particular obtained
by cross-validation, it suffices to show that

sup
v∈Sn

∣
∣
∣
∣

µ̄f (x̄, y)

µ̄m(x̄)
− µ̄∗

f (x̄, y)

µ̄∗
m(x̄)

∣
∣
∣
∣ = o

(
n−2/( p1+5)

)
, (35)

sup
v∈Sn

∣
∣
∣
∣

∗
f (x, y)

ν∗
1 (x)

− f (x, y)

ν1(x)

∣
∣
∣
∣ = op

(
n−2/( p1+5)

)
, (36)

and

sup
v∈Sn

∣
∣
∣
∣

∗
m(x)

ν∗
1 (x)

− m(x)

ν1(x)

∣
∣
∣
∣ = op

(
n−2/( p1+5)

)
. (37)

Result (35) follows by elementary calculus, so it suffices to de-
rive (36) and (37). We confine our attention to (36).

Write 
†
f for the version of f obtained by omitting the

last p2 components of the Xc
i ’s and the last q2 components of

the Xd
i ’s. That is, defining

Ai(x, y) =
{ p1∏

j=1

1

hj
K

(xc
j − Xc

ij

hj

)}

×
{ q∏

j=1

(
λj

rj − 1

)Nij(x)

(1 − λj)
1−Nij(x)

}

× 1

h
L

(
y − Yi

h

)

,

we put 
†
f = n−1 ∑

i(Ai − EAi). Let

#
f (x, y) = f (x, y)

ν1(x)
− 

†
f (x, y).

Elementary moment calculations show that E(#
f )

2 =
o(n−4/( p1+5)), uniformly in smoothing parameters v ∈ Sn. Us-
ing properties of rates of convergence in invariance principles
for multivariate empirical processes (see, e.g., Rio 1996), these
results may be generalized by showing that the normalized sto-
chastic process, indexed by v ∈ S , converges to 0 uniformly in
smoothing parameters in Sn,

n2/( p1+5) sup
v∈Sn

|#
f (x, y)| → 0

in probability.
Therefore, to establish (36) it suffices to prove that

sup
v∈Sn

∣
∣

†
f (x, y) − 

†∗
f (x, y)

∣
∣ = o

(
n−2/( p1+5)

)
, (38)

where 
†∗
f (x, y) denotes the version of 

†
f (x, y) computed for

any particular value of the smoothing parameter vector v. [Note
that neither 

†∗
f (x, y) nor 

†
f (x, y) depends on the last p2 hj’s

or the last q2 λj’s.] Simple moment calculations show that

E{†
f (x, y) − 

†∗
f (x, y)}2 = o(n−4/( p1+5)) uniformly in v ∈ Sn,

and this result again may be extended, to (38), using properties
of invariance principles for multivariate empirical processes.
Therefore (36) holds, completing the proof of the theorem.

[Received July 2003. Revised April 2004.]
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