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Abstract

In this paper we propose a method for nonparametric regression which admits continuous
and categorical data in a natural manner using the method of kernels. A data-driven method
of bandwidth selection is proposed, and we establish the asymptotic normality of the estimator.
We also establish the rate of convergence of the cross-validated smoothing parameters to their
benchmark optimal smoothing parameters. Simulations suggest that the new estimator performs
much better than the conventional nonparametric estimator in the presence of mixed data. An
empirical application to a widely used and publicly available dynamic panel of patent data
demonstrates that the out-of-sample squared prediction error of our proposed estimator is only
14–20% of that obtained by some popular parametric approaches which have been used to model
this data set.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction and background

One of the most appealing features of nonparametric estimation techniques is that, by
allowing the data to model the relationships among variables, they are robust to func-
tional form speci9cation and therefore have the ability to detect structure which some-
times remains undetected by traditional parametric estimation techniques. In
light of this feature, it is not surprising that nonparametric techniques have attracted
the attention of econometricians as is underscored by the tremendous literature on
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nonparametric estimation and inference which has recently appeared in leading eco-
nomics journals.
Along with the development of nonparametric techniques, it is evident that appli-

cations of nonparametric methods are also on the rise as is witnessed by the recent
special issue on Application of Semiparametric Methods for Micro-Data in the Jour-
nal of Applied Econometrics (Vol. 13, 1998), and the monograph of Horowitz (1998)
which contains some interesting empirical applications.
When compared with the vast theoretical literature, however, the number of em-

pirical applications of nonparametric techniques appears to be relatively sparse. One
frequently cited reason as to why nonparametric techniques have not been more widely
used is because economic data frequently contain both continuous and categorical vari-
ables such as gender, family size, or choices made by economic agents, and standard
nonparametric estimators do not handle categorical variables satisfactorily. The conven-
tional nonparametric approach uses a ‘frequency estimator’ to handle the categorical
variables which involves splitting the sample into a number of subsets or ‘cells’. When
the number of cells in a data set is large, each cell may not have enough observations
to nonparametrically estimate the relationship among the remaining continuous vari-
ables. Perhaps for this reason many authors suggest treating categorical variables as
parametric components, thereby retreating to a semiparametric framework from a fully
nonparametric one. For example, Stock (1989) proposed the estimation of a partially
linear model where the discrete variables enter the model in a linear fashion while the
continuous variables enter the model nonparametrically, while Fan et al. (1998) con-
sidered the estimation of additive partially linear models where the discrete variables
again enter the model in a linear fashion.
It is evident, therefore, that the recurring issue of how best to handle mixed cate-

gorical and continuous data in a nonparametric framework remains unsettled. In this
paper we shall draw upon the work of Aitchison and Aitken (1976) who proposed a
novel extension of the kernel method of density estimation to a discrete data setting
in a multivariate binary discrimination context. A key feature of their technique is that
it allows the data points themselves to determine any dependencies and interactions
in the estimated density function. We continue with this line of inquiry and propose
a natural extension of Aitchison and Aitken’s (1976) work to the problem of mixed
categorical and continuous data in a nonparametric regression framework. 1 The pro-
posed method does not split the sample into cells in 9nite-sample applications and it
handles interaction among the categorical and continuous variables in a natural manner.
The strength of the proposed method lies in its ability to model situations involving
complex dependence among categorical and continuous data in a fully nonparametric
regression framework.

1 There is a rich literature in statistics on smoothing discrete variables (see Hall (1981), Hall and Wand
(1988), Grund and Hall (1993), Fahrmeir and Tutz (1994), Scott (1992), and Simono# (1996), among
others). When faced with a mix of discrete and continuous regressors, the only theoretical work on smoothing
the mixed regressors that we are aware of are the works by Bierens (1983, 1987), and Ahmad and Cerrito
(1994). However, neither of these articles study the fundamental issue of data-driven selection of smoothing
parameters. Delgado and Mora (1995) consider a semiparametric partially linear speci9cation with discrete
regressors, but they did not smooth the discrete regressors.
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The paper is organized as follows. Section 2 presents our kernel estimator of a condi-
tional mean function and establishes the asymptotic normality of the proposed estimator.
We provide the rate of convergence of the cross-validated smoothing parameters to their
optimal values, and in the case of p6 3 (p is the dimension of the continuous regres-
sors), we also obtain asymptotic normality results for these cross-validated smoothing
parameters. Section 3 reports some simulation results which examine the 9nite-sample
performance of the proposed estimator. We apply the new estimation method to a
publicly available data set in Section 4, whereby we consider the nonparametric esti-
mation of a dynamic panel of patent data to generate out-of-sample predictions. We
show that the out-of-sample squared prediction error of our proposed estimator is only
14–20% of that obtained by some popular parametric approaches which have been
used to model this data set. Section 5 concludes the paper and also suggests some
future research topics. All technical proofs are relegated to two appendices.

2. Consistent kernel regression with discrete and continuous variables

We consider a nonparametric regression model where a subset of regressors is cat-
egorical and the remaining are continuous. Let X d

i denote a k × 1 vector of regressors
that assume discrete values and let X c

i ∈Rp denote the remaining continuous regressors.
We use X d

t; i to denote the tth component of X d
i , and we assume that X d

t; i can assume
ct¿ 2 di#erent values, i.e., X d

t; i ∈{0; 1; : : : ; ct −1} for t=1; : : : ; k. De9ne Xi =(X d
i ; X c

i ).
We consider a nonparametric regression model given by

Yi = g(Xi) + ui; (2.1)

where g(·) has an unknown functional form. We use f(x) = f(xc; xd) to denote the
joint density function of (X c

i ; X
d
i ).

For the discrete variables X d
i , we will 9rst consider the case for which there is no

natural ordering in X d
i . The extension to the general case whereby some of the discrete

regressors have natural orderings will be discussed at the end of this section.
We use D=

∏k
t=1{0; 1; : : : ; ct−1} to denote the range assumed by X d

i . For xd; X d
i ∈D.

Aitchison and Aitken (1976) suggested smoothing the discrete regressors xd
t by using

a univariate kernel function given by l̃(X d
t; i; x

d
t ; �)=1−� if X d

t; i = xd
t , and l̃(X d

t; i; x
d
t ; �)=

�=(ct − 1) if X d
t; i �= xd

t , where � is a smoothing parameter. The product kernel for the

discrete variables is then de9ned to be L̃(X d
i ; xd; �) =

∏k
t=1 l̃(X d

t; i; x
d
t ; �). In this paper

we use a di#erent kernel function which has a simpler form than the one suggested by
Aitchison and Aitken (1976), and the simpler form makes it much easier to generalize
our results to cover the ordered categorical variable case. De9ne 2

l(X d
t; i; x

d
t ; �) =

{
1 if X d

t; i = xd
t ;

� if X d
t; i �= xd

t :
(2.2)

2 Note that the kernel weights add up to 1 + (ct − 1)� �= 1 for � �= 0, but this does not a#ect the
nonparametric estimator de9ned in Eq. (2.6) because the kernel function appears in both the numerator and
the denominator of Eq. (2.6), thus the kernel function can be multiplied by any positive constant without
changing the de9nition of ĝ(x).
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Note that when � = 0, the above kernel function l(X d
t; i; x

d; 0) becomes an indicator
function which takes value 1 if X d

t; i = xd
t , and 0 otherwise. If � = 1; l(X d

t; i; x
d; 1) ≡ 1

becomes a constant. The range of � is [0; 1].
De9ne an indicator function 1(X d

t; i �= xd
t ), which takes value 1 if X d

t; i �= xd
t and 0

otherwise. Also, de9ne dxi;x=
∑k

t=1 1(X
d
t; i �= xd

t ), which equals the number of disagreeing
components between X d

i and xd. Then the product kernel for the discrete variables is
de9ned by

L(X d
i ; xd; �) =

k∏
t=1

l(X d
t; i; x

d
t ; �) = 1k−dxi ; x �dxi ; x = �dxi ; x : (2.3)

It is straightforward to generalize the above to the case of a k-dimensional vector
of smoothing parameters �. For simplicity of presentation, only the case of scalar � is
treated here.
We use W (·) to denote the kernel function associated with the continuous variables

xc and h to denote the smoothing parameters for the continuous variables. Using the
shorthand notation Kh; ix = Wh;ixL�; ix, where Wh;ix = h−pW ((X c

i − xc)=h) and L�; ix =
L(X d

i ; xd; �), the kernel estimator of f(x), the joint density function of (X c
i ; X

d
i ), is

given by

f̂(x) =
1
n

n∑
i=1

Kh; ix: (2.4)

It is well known that one needs conditions such as h → 0 and nhp → ∞ as n → ∞ in
order to obtain a consistent estimator when using kernel methods with only continuous
variables. For the discrete variable case we need � → 0, while for the mixed continuous
and discrete variable case we need both sets of conditions.
Let �(y; x) denote the joint density function of (Yi; Xi). First, we consider the case

where the endogenous variable Yi is continuous. In this case we estimate the joint
density of (Yi; Xi) by

�̂(y; x) = n−1
n∑

i=1

h−1w((Yi − y)=h)Kh; ix; (2.5)

where w(·) is a univariate kernel function satisfying assumption (A1) (ii) (see below).
Then we will estimate g(x) = E[Yi|Xi = x] by

ĝ(x) =

∫
y�̂(y; x) dy

f̂(x)
=

n−1∑n
i=1 YiKh; ix

f̂(x)
; (2.6)

where we have used
∫

w(v) dv = 1 and
∫

v w(v) dv = 0. When � = 0, our estimator
reverts back to the conventional approach whereby one uses a frequency estimator to
deal with the discrete variables. The conventional frequency estimator possesses a major
weakness, however, being that it often cannot be applied when the number of cells is
large relative to the sample size since one may not have enough (any) observations
in each cell to conduct nonparametric estimation. In contrast, smoothing the discrete
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variables will be seen to avoid the problem, while the resulting 9nite-sample eRciency
gains can be quite substantial. 3

Ahmad and Cerrito (1994) consider using more general discrete kernel functions
which include the kernel function (2.3) as a special case (see also Wang and Van Ryzin
(1981) for various approaches to the smoothing of discrete variables). Therefore, using
ĝ(x) de9ned in (2.6) as a kernel estimator for g(x) can be viewed as a special case of
Ahmad and Cerrito (1994). However, the more general kernel functions used in Ahmad
and Cerrito (1994) also render the asymptotic analysis more diRcult. With the simple
kernel function de9ned in (2.3), we are able to derive the rates of convergence of the
cross-validated smoothing parameters to some benchmark optimal values (see Theorems
2.2 and 2.4). In the continuous variable case, it is known that the choice of the kernel
function is not very important, while the selection of smoothing parameters is of crucial
importance for the behavior of the nonparametric estimator. Our experience with the
discrete variable case is similar: the choice of the discrete kernel function (such as the
more general ones in Ahmad and Cerrito (1994) or the simple one given in this paper)
is of much less importance than the selection of the smoothing parameters. In this paper
we advocate the use of the least-squares cross-validation method for selecting both h
and �, and we demonstrate that this method works quite well for simulated and real
data (see also Li and Racine (2001, 2003)).
Next we consider the case where Yi is a discrete variable. Let Dy ={0; 1; : : : ; cy −1}

denote the range of Yi. In this case we estimate �(y; x) by S�(y; x) = n−1∑n
i=1 1(Yi =

y)Kh; ix, where 1(:) denotes an indicator function, 1(Yi=y)=1 if Yi=y and 0 otherwise.
Therefore, we estimate g(x) by

Sg(x) =

∑
y∈Dy

y S�(y; x)

f̂(x)
=

n−1∑n
i=1

∑
y∈Dy

y1(Yi = y)Kh; ix

f̂(x)

=
n−1∑n

i=1 YiKh; ix

f̂(x)
; (2.7)

where we have used
∑

y∈Dy
y1(Yi = y) = Yi. We see that Sg(x) has exactly the same

form as ĝ(x) de9ned in (2.6). Hence, we will use ĝ(x) to denote the kernel estimator
of g(x) regardless of whether or not Yi is continuous or discrete.
As noted above, it is known that the choice of smoothing parameters is of crucial

importance in nonparametric kernel estimation. We choose (�; h) to minimize

CV (�; h) =
n∑

i=1

[Yi − ĝ−i(Xi)]2M (Xi); (2.8)

3 One can also view this method as the classic trade-o# between bias and variance. Although the frequency
estimator is unbiased (in the case with only discrete regressors), it can have a huge variance. The new
estimator on the other hand introduces some 9nite-sample bias, but it can reduce the variance signi9cantly
resulting in much better 9nite-sample performance than that of the conventional frequency estimator.
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where M (·) is a weight function that trims out boundary observations,

ĝ−i(Xi) =
n−1∑

j �=i YjKh; ij

f̂−i(Xi)
(2.9)

is the leave-one-out kernel estimator of g(Xi); Kh; ij=L�; ijWh; ij ; L�; ij=L(X d
i ; X d

j ; �); Wh; ij

= h−pW ((X c
i − X c

j )=h), and

f̂−i(Xi) =
1
n

∑
j �=i

Kh; ij (2.10)

is the leave-one-out estimator of f(Xi). Note that usually one uses the factor n−1 rather
than n in de9ning the leave-one-out kernel estimators ĝ−i(Xi) and f̂−i(Xi). However,
this will not change the result as the factor n − 1 (or n) cancels out in the de9nition
of ĝ−i(Xi). Using the factor of n rather than n − 1 simpli9es the notation and saves
space as can be seen in Appendix B where we provide proofs of the main results of
the paper.
We now list the assumptions that will be used to establish the asymptotic distribution

of ĝ(x).
Let G!

" denote the class of smooth functions introduced in Robinson (1988) (!¿ 0; "
is a positive integer). That is, if m(xc)∈G!

" (recall that xc is a continuous variable),
then m(xc) is " times di#erentiable, and m(xc) and its partial derivatives (up to order
") are all bounded by functions that have 9nite !th moment (e.g., Robinson, 1988).
(A1) (i) We restrict (�̂; ĥ) to lie in a shrinking set %n×Hn, where %n=[0;min{1; C0

(log n)−1}] and Hn = [h; Sh]; h¿C−1n'−1=p; Sh6Cn−' for some C0; C; '¿ 0. (ii) The
kernel function W (·) is the product kernel de9ned by W (v) =

∏p
t=1 w(vt) (vt is the

tth component of v), while the univariate function w(·) is nonnegative, symmetric and
bounded with

∫
w(v)v4 dv¡∞. Moreover, w(·) is m times di#erentiable. Letting w(s)(·)

denote the sth-order derivative of w(·), then ∫ |w(s)(v)vs| dv¡∞ for all s = 1; : : : ; m,
where m¿max{2 + 4=p; 1 + p=2} is a positive integer. (iii) For all xd ∈D; M (·; xd)
is bounded and supported on a compact set with nonempty interior for all xd ∈D. (iv)
f(x) is bounded below on the support of M (·).
(A2) (i) {Xi; Yi}n

i=1 are independent and identically distributed (i.i.d.) as (X; Y ); ui=
Yi−g(Xi) has 9nite fourth moment. (ii) De9ning *2(x)=E[u2i |Xi=x]; *2(·; xd); g(·; xd)
and f(·; xd) all belong to G4

2 for all xd ∈D. (iii) Denote by ∇gi = 9g(v; X d
i )=9v]|v=X c

i
,

and ∇fi = 9f(v; X d
i )=9v]|v=X c

i
. De9ne B1;1(Xi) = {∇f′

i∇gi + (1=2)f(Xi)
∫

tr(∇2gi)}
[
∫
w(v)v2 dv] and B1;2(Xi) = E[g(X c

i ; X
d
j ) − g(X c

i ; X
d
i )|Xi; dij = 1]P(dij = 1|Xi) (dij =

dxi;xj); B1 =E[(B1;1(Xi)=fi)2]; B2 =2E[B1;1(Xi)B1;2(Xi)=f2
i ] and B3 =E[(B1;2(Xi)=fi)2],

where ∇2gi = 9g(v; X d
i )=9v 9v′]|v=X c

i
. Then 4B1B3 − B2

2 ¿ 0.
The requirement that �̂ and ĥ lie in a shrinking set is not as restrictive as it may

appear, since otherwise the kernel estimator will have a nonvanishing bias term resulting
in an inconsistent estimator. The two conditions on h in (A1) (i) are also used in HTardle
and Marron (1985), and these are equivalent to n1−'php¿C−1 and n' Sh6C. Thus,
by choosing a very small value of ', these conditions are virtually identical to the
usual conditions h → 0 and nhp → ∞. (A1) (ii) requires that the kernel function is
di#erentiable up to order m, and this condition is used to show that a remainder term
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in a Taylor expansion of W ((X c
i − xc)=ĥ) will have a negligible order, where ĥ is

the cross-validation choice of h. We note that the widely used standard normal kernel
satis9es (A1) (ii). This condition can be replaced with a compactly supported kernel
function that is HTolder continuous requiring a di#erent type of proof such as Lemma 2
in HTardle et al. (1988). (A1) (iii) and (iv) allow a uniform convergence rate for f̂(x)
and ĝ(x). (A2) (i) and (ii) contain some standard moment and smoothness conditions.
By Cauchy’s inequality we know that 4B1B3 −B2

2¿ 0. (A2) (iii) rules out the case of
a regression function that is in fact independent of xc.
An anonymous referee has correctly noted that if the regression function is inde-

pendent of a discrete variable, then the cross-validation method will not select a small
value of � for this variable (it is widely known that this will also occur for h for a
continuous variable in such instances). Instead the cross-validation method will tend
to select � = 1 (this discrete variable is smoothed out) and lead to a more eRcient
estimation result. However, the distribution of �̂ in this case is quite complicated and
is beyond the scope of this paper.
In Appendix A we show that the leading term of CV (h; �) is CV0 which is given

by

CV0 = B1h4 − B2h2� + B3�2 + B4(nhp)−1; (2.11)

where the Bj’s are some constants. Letting �0 and h0 denote the values of � and h that
minimize CV0(h; �), then it is easy to show that h0 = c1n−1=(4+p) and �0 = c2n−2=(4+p),
where c1 and c2 are some constants which are de9ned in Appendix A. The values of h0
and �0 can be interpreted as the nonstochastic optimal smoothing parameters because
it can be shown that h0 and �0 also minimize the leading term of the nonstochastic
objective function E[CV (h; �)].
In Appendix A we also show that (ĥ − h0)=h0 = op(1) and (�̂ − �0)=�0 = op(1).

Therefore, both ĥ=h0 and �̂=�0 converge to one in probability. Let g̃(x) be de9ned the
same way as ĝ(x) except that (ĥ; �̂) are replaced by (h0; �0), i.e.,

g̃(x) =
n−1∑

i YiWh0 ((X
c
i − xc)=h0)L(X d

i ; xd; �0)

f̃(x)
(2.12)

where Wh0 ((X
c
i − xc)=h0) = h−p

0 W ((X c
i − xc)=h0) and

f̃(x) =
1
n

∑
i

Wh0

(
X c

i − xc

h0

)
L(X d

i ; xd; �0) (2.13)

is the kernel estimator of f(x) using the nonstochastic smoothing parameters (h0; �0).
We 9rst present the asymptotic distribution of g̃(x), and then we will show that ĝ(x)

has the same asymptotic distribution as g̃(x).

Theorem 2.1. Under assumptions (A1) and (A2), we have√
nhp

0 (g̃(x)− g(x)− B(h0; �0)) → N(0; -(x)) in distribution;
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where B(h0; �0) = h20{∇f(x)′∇g(x)=f(x) + tr[∇2g(x)]=2}[ ∫ w(v)v2 dv] + �0
∑

x̃d;dx̃; x=1

[g(xc; x̃d)− g(x)]f(xc; x̃d)=f(x), and -(x) = *2(x)[
∫

W 2(v) dv]=f(x).

In order to establish the asymptotic distribution of ĝ(x), we will 9rst derive the rates
of convergence of (ĥ − h0)=h0 and (�̂ − �0).

Theorem 2.2. Under the same conditions as in Theorem 2.1, we have

(i) If p6 3; (ĥ − h0)=h0 = Op(n−p=[2(4+p)]) and �̂ − � =Op(n−1=2).
(ii) If p¿4; (ĥ−h0)=h0=Op(h20)=Op(n−2=(4+p)) and �̂−�0=Op(h40)=Op(n−4=(4+p)).

Using the result of Theorem 2.2 and a Taylor expansion argument, we show that
ĝ(x) − g(x) − B(h0; �0) = g̃(x) − g(x) − B(h0; �0) + (s:o:), where (s:o:) means smaller
order terms. Hence, ĝ(x) has the same asymptotic distribution as that of g̃(x). We give
this result in the next theorem.

Theorem 2.3. Let �̂ and ĥ denote the cross-validation choices of � and h that minimize
Eq. (2.8). Under assumptions (A1) and (A2), we have

(i)
√

nĥp(ĝ(x)−g(x)−B(h0; �0))=
√

nhp
0 (g̃(x)−g(x)−B(h0; �0))+op(1) → N(0; -(x))

in distribution, where B(h0; �0) and -(x) are de)ned in Theorem 2.1.
(ii) De)ne B̂(ĥ; �̂)=ĥ2{∇f̂(x)′∇ĝ(x)=f̂(x)+tr[∇2ĝ(x)]=2}[ ∫ w(v)v2 dv]+�̂

∑
x̃d;dx̃; x=1

[ĝ(xc; x̃d)− ĝ(xc; xd)]f̂(xc; x̃d)=f̂(x); -̂(x) = *̂2(x)[
∫

W 2(v) dv]=f̂(x) and *̂2(x) =
n−1∑

i [Yi − ĝ(Xi)]2Wĥ; ixL�̂; ix=f̂(x). Then

√
nĥp(ĝ(x)− g(x)− B̂(ĥ; �̂))=

√
-̂(x) → N(0; 1) in distribution:

Theorem 2.3 demonstrates that the convergence rate of ĝ(x) is the same as the
case where there are continuous regressors xc only. Indeed, when there are no discrete
variables (x = xc), Theorems 2.2 and 2.3 collapse to the well-known case with only
continuous regressors. However, when there are no continuous regressors, it can be
shown that the cross-validation choice of � will converge to zero at the rate of Op(n−1).
This result cannot be easily obtained as a corollary of Theorem 2.3, and a separate
proof is needed to show this. This proof for the discrete-regressor-only case is available
from the authors upon request.
When proving Theorem 2.2 for the rates of convergence of (ĥ−h0)=h0 and �̂−�0, we

have shown that, for p6 3, the leading terms of both
√

n(�̂ − �0) and np=[2(4+p)](ĥ−
h0)=h0 are some mean-zero Op(1) random variables. In fact, one can further show that
these mean-zero Op(1) random variables have asymptotic normal distributions.

Theorem 2.4. Under the same conditions as in Theorem 2.2 and for p6 3, we have

√
n(�̂ − �0) → N(0; V1) in distribution;
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and

np=[2(4+p)](ĥ − h0) → N(0; V2) in distribution;

where V1 and V2 are two )nite positive constants.

The exact expressions of V1 and V2 are complicated, therefore, we do not give the
explicit expressions for them here. But we give suRcient details about them in the
proof of Theorem 2.4 in Appendix A, where we show that they are the asymptotic
variances of some Op(1) U-statistics.
HTardle et al. (1988) derived the asymptotic distribution of (ĥ − h0)=h0 for a model

with a univariate nonstochastic regressor (see also HTardle et al. (1992) on the use
of ‘double smoothing’ to improve the rate of convergence of (ĥ − h0)=h0). Here, we
generalize the result of HTardle et al. (1988) to the case of p6 3 augmented by a
k × 1 vector of discrete regressors. Upon inspection of the proofs of Theorems 2.2
and 2.4, it can be seen that even for p = 4, one can still establish the asymptotic
normality of

√
n(�̂ − �0 − "1) and np=[2(4+p)](ĥ − h0 − "2)=h0, where "1 and "2 are

some constants. The extra nonzero center terms "1 and "2 come from the contribution
of the A2n term because, when p=4; A2n has the same order as A1n (see Appendix A
for the de9nitions of A1n and A2n). We do not formally establish this result for space
considerations.

2.1. The general categorical data case: some regressors have a natural ordering

Up to now we have assumed that the discrete variables do not have a natural or-
dering, examples of which would include di#erent regions, ethnicity, and so forth. We
now examine the extension of the above results to the case where a discrete variable
has a natural ordering, examples of which would include preference orderings (like,
indi#erence, dislike), health (excellent, good, poor), or discrete representations of some
inherently continuous variables. 4

Using the same notation as above, let xt be the tth component of x and suppose
that xt can assume ct¿ 2 di#erent values (t = 1; : : : ; k). Aitchison and Aitken (1976,
p. 29) suggest the kernel weight function given by l(Xi; t ; xt ; �)=

( ct
s

)
�s(1−�)ct−s when

|Xi; t − xt |= s (06 s6 ct), where
( ct

s

)
= ct!=[s!(ct − s)!]. These weights add up to one

because 1 = [(1 − �) + �]ct . While there is no doubt that one can extend the results
of Theorems 2.1–2.4 to cover this case, such an extension would be quite tedious.
Therefore, we suggest the use of a simple kernel function de9ned by l(Xi; t ; xt) = �s

when |Xi; t − xt |= s (06 s6 ct), where � is the smoothing parameter. In this case the

4 In the linear regression model case, it may be possible to retrieve information related to the original
continuous variables such as partial e#ects (see Hsiao (1983), and Hsiao and Mountain (1985)). However,
in the nonparametric regression case, this type of information retrieval does not seem possible because we
do not impose any functional form assumptions.
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product kernel function is given by

L(Xi; x; �) =
k∏

t=1

�|X
d
i; t−xd

t | = �'xi ; x ; (2.14)

where 'xi;x =
∑k

t=1 |X d
i; t − xd

t | is the L1 distance between X d
i and xd.

We see that Eq. (2.14) has a form identical to that of Eq. (2.3) except that dxi; x is
replaced by 'xi; x. In particular, the estimation bias will be of order O(�).
In practice, it is likely that some of the discrete variables have natural orderings

while others will not. Let X̃ d
i denote a k1 × 1 vector (say, the 9rst k1 components of

X d
i ) of discrete regressors that have a natural ordering (16 k16 k), and let SX d

i denote
the remaining discrete regressors that do not have a natural ordering. In this case, the
product kernel will be of the form

L(X d
i ; xd; �) =

[
k1∏
t=1

�|X̃
d
i; t−x̃d

t |
]
[�d Sxi ; Sx ] = �'x̃i ; x̃+d Sxi ; Sx ; (2.15)

where 'x̃i ; x̃ =
∑k1

t=1 |X̃ d
t; i − x̃d

t | is the L1 distance between X̃ d
i and x̃d, and d Sxi ; Sx equals

the number of disagreeing components between SX d
i and Sxd.

The results of Theorem 2.3 can be easily extended to the general case when some
(or all) of the discrete regressors have a natural ordering as the following corollary
demonstrates.

Corollary 2.1. Under the same conditions found in Theorem 2.3 with the )rst k1
components of X d

i being ordered discrete variables (16 k16 k), let ĝ(x) be de)ned
as in Eq. (2.6) with the kernel function L(·) being de)ned by Eq. (2.15).
Then the conclusion of Theorem 2.3 remains unchanged.

The proof of Corollary 2.1 is identical to the proof of Theorem 2.3 and is thus
omitted.
We now turn our attention to the 9nite-sample behavior of the proposed estimator.

3. Monte Carlo results— nite-sample performance

For what follows we shall compute the out-of-sample mean-square error using n−1
2∑n2

i (Yi − Ŷ i)2 where Yi and Ŷ i are the actual and predicted values for an independent
evaluation sample.
The 9rst data generating process (DGP) which we consider is given by

Yi =
4∑

t=1

0tXt; i +
4∑

t=1

4∑
s �=t; s=1

0t;sXt; iXs; i +
4∑

t=1

Xt; im1(Zi) + m2(Zi) + ui; (3.1)

where, for t=1; : : : ; 4; Xt; i ∈{0; 1} with P(Xti = l)=0:5 for l=0; 1; m1(Zi)= sin(Zi2),
and m2(Zi) = Zi − 0:5Z2

i +0:3Z3
i ; Zi is uniformly distributed on the interval [0; 2], and

ui is N(0; 1). We choose 0t = 1 and 0t;s = 0:5 for all t; s = 1; : : : ; 4.
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Table 1
Finite-sample estimator comparison

n1 Model Mean MSE Median MSE SD (MSE) IQR(MSE)

100 NP 2.30 2.24 0.40 0.47
NP-FREQ 2.59 2.47 0.65 0.43
PAR 1.22 1.21 0.08 0.10
PAR-LIN 2.92 2.91 0.14 0.18

200 NP 1.64 1.62 0.16 0.18
NP-FREQ 1.77 1.75 0.15 0.20
PAR 1.10 1.10 0.04 0.05
PAR-LIN 2.84 2.83 0.11 0.14

500 NP 1.27 1.26 0.05 0.06
NP-FREQ 1.30 1.29 0.05 0.06
PAR 1.04 1.04 0.01 0.02
PAR-LIN 2.79 2.78 0.09 0.12

We compute predictions from our nonparametric model (NP), the nonparametric
models with � = 0 (NP-FREQ) which is the conventional frequency estimator, a cor-
rectly speci9ed parametric model (PAR), and a misspeci9ed linear parametric model
with no interaction terms (PAR-LIN). We report the mean, median, standard error, and
interquartile range of MSE over the 1,000 Monte Carlo replications. The estimation
samples are of size n1 (100, 200, and 500), and the independent evaluation sample is
always of size n2 = 1; 000.
From Table 1 we observe that our proposed nonparametric estimator dominates both

the conventional frequency nonparametric estimator and the estimator based on a mis-
speci9ed linear model, while it converges quite quickly to the correctly speci9ed bench-
mark parametric model.

3.1. A comparison of unordered and ordered kernel types

The second DGP which we consider is given by

Yi = Zi1 + Zi2 + Xi1 + Xi2 + ui; (3.2)

where Xij ∼ N(0; 1); Zij ∈{0; 1; : : : ; 5} with P(Zij = l) = 1=6 for l = 0; : : : ; 5 and ui ∼
N(0; 1).
We consider three nonparametric estimators di#ering by their kernel functions—the

unordered kernel, ordered kernel, and the frequency approach. We expect that, the
smaller the ratio of the sample size to the number of ‘cells’, the worse the nonpara-
metric frequency approach relative to our proposed estimator. Also, the ordered kernel
should dominate the unordered kernel estimator in 9nite-sample applications since the
data indeed have a natural ordering. We again consider the out-of-sample performance
given by MSE = n−1

2

∑n2
i=1(Yi − Ŷ i)2 (n2 = 1; 000). The number of Monte Carlo repli-

cations is again 1,000, and results are presented in Table 2.
From Table 2 we observe that both the ordered and the unordered kernel estimators

dominate the frequency estimator on MSE grounds. Also, it is evident that when we
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Table 2
Comparison of out-of-sample MSE for each model

n1=c n1 Ordered NP Unordered NP NP-frequency

2.78 100 1.98 2.90 6.12
5.56 200 1.64 2.12 2.80
13.9 500 1.39 1.66 1.78
27.8 1,000 1.27 1.42 1.48

take into account the natural ordering of the data, we achieve further 9nite-sample
eRciency gains relative to the unordered kernel estimator. Finally, the smaller the ratio
of the sample size to the number of cells, the better the performance of estimator
relative to the frequency estimator.

3.2. Ordered categorical variables with unequal distances

Next we consider a situation in which there exists an ordered categorical variable;
however, the true distance between categories is not as coded. We have in mind sit-
uations such as coding years of education with 0 denoting a high school diploma, 1
denoting some post-secondary education but not having graduated, 2 denoting a bach-
elors degree or equivalent, 3 denoting some graduate work but not having graduated,
and 4 denoting a graduate degree. Such situations are common in applied settings. The
salient feature is simply that there indeed exists an underlying order; however, the true
underlying distance between categories is not as coded and is somewhat arbitrary. The
aim of this simulation is simply to assess whether the proposed approach performs ad-
equately in such settings, in particular, whether accounting for a natural order in such
settings can result in improved 9nite-sample performance relative to the conventional
frequency approach.
The third DGP we consider is given by

Yi = 1 +
√

Zi + Xi + ui; i = 1; : : : ; n; (3.3)

where Zi ∈{0; 1; : : : ; 4} having P(Zi = l) = 1=5 for l = 0; 1; : : : ; 4; Xi ∼ N(0; 1), and
ui ∼ N(0; 1). Note that for this DGP the true distance between category 0 and 1 is 1
but between 1 and 2 is 0.41, 2 and 3 0.32, and 3 and 4 0.27; however, the data on Zi

are ∈{0; 1; : : : ; 4}.
We shall consider a number of approaches: the frequency approach, an unordered

approach, an ordered approach, and also a ‘dummy variable’ approach in which 9ve
0/1 dummy variables are created corresponding to the 0/1/2/3/4 coding of the variable
of interest (for this method there will be 9ve di#erent � smoothing parameters). We
compute the out-of-sample MSE=n−1

2

∑n2
i=1(Yi−Ŷ i)2 of each approach using estimation

samples of size n1 (50; 100; 200), independent evaluation samples of size n2 = 1; 000,
and we conduct 1,000 Monte Carlo replications for each estimation sample size. Table
3 presents the mean out-of-sample MSE for each approach evaluated over the 1,000
Monte Carlo replications.
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Table 3
Comparison of out-of-sample MSE for each model

n1 Ordered NP Unordered NP Dummy NP NP-frequency

50 1.33 1.40 1.41 1.50
100 1.19 1.23 1.23 1.26
200 1.11 1.13 1.13 1.14

It can be seen from Table 3 that the proposed method in which one accounts for
the natural ordering yields signi9cantly improved 9nite-sample estimates relative to
the frequency estimator, and also performs better than the case whereby one does not
account for the natural ordering. In addition, taking a dummy-variable approach yields
estimates comparable to the unordered case but which are inferior to the proposed
method. On the basis of this modest simulation we argue that even when there exists
a natural ordering which has been coded arbitrarily but where the coding preserves the
order itself, the proposed approach outperforms the conventional frequency estimator
in 9nite-sample settings.

3.3. A semiparametric index model

Often semiparametric index models are used when one deals with a data set for
which the ‘curse-of-dimensionality’ is present. We investigate the performance of our
proposed estimator relative to the semiparametric index model in a small sample setting
having four explanatory variables.
We consider two more DGPs which are given by

DGP4: Yi = Zi1 + Zi2 + Xi1 + Xi2 + ui; (3.4)

DGP5: Yi = Zi1 + Zi2 + Zi1Zi2 + Xi1 + Xi2 + Xi1Xi2 + ui; (3.5)

where Xij ∼ N(0; 1) and Zij ∈{0; 1} with P(zij = l) = 0:5 for l = 0; 1, and where
ui ∼ N(0; 1).
For DGP4 we compare the NP, single-index, and correctly speci9ed parametric

model, while for DGP5 we compare the NP, misspeci9ed single-index (ignoring the
interaction terms), and correctly speci9ed parametric model. We consider the out-of-
sample MSE=n−1

2

∑n2
i=1(Yi−Ŷ i)2 (n2=1; 000). The number of Monte Carlo replications

is again 1,000, and results are summarized in Table 4.
As expected, the above simulations show that the single-index model performs better

than our nonparametric estimator for DGP4, and our proposed estimator outperforms
the misspeci9ed single-index estimator for DGP5.
Having investigated the 9nite-sample performance of our estimator in a range of

simulated settings, we now consider its out-of-sample performance for a widely used
and publicly available data set.
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Table 4
Comparison of out-of-sample MSE for each model

DGP4 DGP5

n1 NP SP PAR NP SP PAR

100 1.43 1.16 1.04 1.83 2.18 1.07
200 1.27 1.08 1.02 1.52 1.95 1.03
500 1.15 1.03 1.01 1.29 1.84 1.01

4. An empirical application: modeling count panel data

We consider the data used by Hausman et al. (1984) in which they model the
number of successful patent applications made by 9rms in scienti9c and non-
scienti9c sectors across a 7-year period. The variables they use are the
following:
PATENTS: number of successful patent applications in the year, CUSIP: 9rm iden-

ti9er, YEAR: year of data, SCISECT: dummy for 9rms in scienti9c sector, LOGR: log
of R&D spending, LOGK: log of R&D stock at beginning of year.
This data set is a balanced panel containing 896 observations on six variables, and the

9rst four variables are categorical while the last two are continuous. For the categorical
variables there were 227 unique values for the variable PATENTS, 128 values for
CUSIP (128 9rms), seven for YEAR, and two for SCISECT. For this data set, the
number of discrete cells exceeds the sample size, therefore, the conventional frequency
estimator cannot be used which is not uncommon in practice.
We wish to assess the dynamic predictive ability of the proposed method for this

time-series count panel, and we use the 9rst 6 years of data for estimation purposes and
the remaining seventh year for evaluation purposes leaving n1=768 (128 9rm×6 years)
and n2 = 128 (128 9rm × 1 year).
For comparison purposes we consider three parametric models found in the litera-

ture: (1) A nonlinear OLS regression of log(PATENTS) on the explanatory variables,
where log(PATENTS) is set to zero and a dummy variable used when PATENTS= 0
(Hausman et al., 1984, p. 912); (2) a pooled Poisson count panel model; and (3) a
Poisson count panel model with 9rm-speci9c e#ects. We apply the proposed nonpara-
metric method 9rst ignoring the natural ordering in the discrete regressor YEAR and
then accounting for the ordering by using an ordered kernel.
We again assess predictive ability on the independent data using MSE = n−1

2

∑n2
i=1

(PATENTSi − [PATENTSi)2 where [PATENTSi denotes the predicted values generated
from each model. As well, we compute the correlation coeRcient between the actual
and predicted values of PATENTS, 6̂ŷ;y. Results appear in Table 5.
The results presented in Table 5 show that the new approach completely dominates

the parametric speci9cations and that accounting for the natural order in the discrete
explanatory variable YEAR leads to further 9nite-sample eRciency gains. The squared
prediction error of our nonparametric estimator (using the ordered kernel) is only
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Table 5
Comparison of out-of-sample performance for each model

Model Prediction MSE 6̂ŷ;y

OLS 2618.3 0.86
Poisson (pooled) 1915.9 0.87
Poisson (9rm-e#ects) 2834.7 0.82
Unordered kernel 403.4 0.97
Ordered kernel 385.2 0.98

14–20% of those obtained by various parametric methods which have been used to
model this data set.
Additional empirical applications demonstrating how smoothing discrete variables

can lead to superior out-of-sample predictions compared to commonly used parametric
methods are available from the website http://econweb.tamu.edu/li/papers.htm
under the title “Empirical Applications of Smoothing Discrete Variables”.

5. Concluding remarks

In this paper we propose a nonparametric kernel estimator for the case where the
regressors contain a mix of continuous and categorical variables. A data-driven method
of bandwidth selection is proposed, and we establish the asymptotic normality of the
estimator. Simulations show that the new estimator performs substantially better than
the conventional nonparametric estimator which has been used to handle the presence
of categorical variables. An empirical application demonstrates the usefulness of the
proposed method in practice.
Li and Racine (2003) have considered the nonparametric estimation of joint den-

sity functions with mixed discrete and continuous variables, and have shown that the
proposed method performs signi9cantly better than the conventional frequency estima-
tor. Ker and Racine (2001), and Li and Racine (2001) show that, via many types
of empirical data (e.g., U.S. crop yield data, female labor market participation data,
marketing data, medical treatment data, etc.), smoothing the discrete variables often
leads to much better out-of-sample predictions than the conventional sample-splitting
nonparametric method and some commonly used parametric methods. One should ex-
pect that the smoothing method outperforms the frequency method in general, since the
former includes the latter as a special case (when � = 0). However, when the sample
size is very large, the computational cost can be high for the cross-validation-based
smoothing method. Therefore, in practice one may want to use the frequency method
when the sample size is much larger than the number of discrete cells due to the
computational simplicity of the frequency method. But even in such a situation the
eRciency gain of the smoothing method over the frequency method can be substantial
because the cross-validation method may choose large values of � for some discrete
variables (e.g., Insik et al., 2002).

http://econweb.tamu.edu/li/papers.htm
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There are numerous ways in which the results of the present paper can be extended,
and we brie\y mention a few of them at this point.

1. Using a local polynomial nonparametric approach rather than a local constant ap-
proach.

2. Nonparametric estimation of a conditional density with mixed discrete and contin-
uous data.

3. Consistent model speci9cation tests with mixed discrete and continuous regressors,
including the testing of parametric functional forms, nonparametric signi9cance test-
ing, and so forth.
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Appendix A.

A.1. Proof of Theorem 2.1

Write g̃(x)−g(x)=(g̃(x)−g(x))f̃(x)=f̃(x). We 9rst consider the numerator (g̃(x)−
g(x))f̃(x):

(g̃(x)− g(x))f̃(x) =
1
n

∑
i

[Yi − g(x)]Wh0

(
X c

i − xc

h0

)
L(X d

i ; xd; �0)

=
1
n

∑
i

[g(Xi)− g(x)]Wh0

(
X c

i − xc

h0

)
L(X d

i ; xd; �0)

+
1
n

∑
i

uiWh0

(
X c

i − xc

h0

)
L(X d

i ; xd; �0)

≡ I1n(x) + I2n(x); (A.1)

where the de9nition of I1n and I2n should be apparent. De9ne the shorthand notation
Wh0 ;ix=h−p

0 W ((X c
i −xc)=h0) and L�0 ;ix=L(X d

i ; xd; �0). It is straightforward to show that

E(I1n) = E[(g(Xi)− g(x))Wh0 ;ixL�0 ;ix]

= E[(g(Xi)− g(x))Wh0 ;ixL�0 ;ix|dix = 0]P(dix = 0)

+E[(g(Xi)− g(x))Wh0 ;ixL�0 ;ix|dix = 1]P(dix = 1) + O(�20)

= E[(g(Xi)− g(x))Wh0 ;ix|dix = 0]P(xd)

+ �0E[(g(Xi)− g(x))Wh0 ;ix|dix = 1]
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×P(dix = 1) + O(�20)

=
∫

f(xc + h0v; xd)(g(x + h0v; xd)− g(xc; xd))W (v) dv +O(�20)

+ �0
∑

x̃d;dx̃;x=1

[∫
f(xc + hv|x̃d)[g(xc + h0v; x̃d)− g(x)]W (v) dv

]

×p(dx̃;x = 1) + O(�20)

= h20{∇f(x)′∇g(x) + f(x) tr[∇2g(x)]=2}
[∫

w(v)v2 dv
]
+O(�0h20 + h40)

+ �0
∑

x̃d;dx̃; x=1

[g(xc; x̃d)− g(x)]f(xc; x̃d) + O(�0h20) + O(�20)

=f(x)B(h0; �0) + O(h40 + �0h20 + �20);

where B(h0; �0) = h20{∇f(x)′∇g(x)=f(x) + tr[∇2g(x)]=2}[ ∫ w(v)v2 dv] + �0
∑

x̃d;dx̃; x=1

[g(xc; x̃d)− g(x)]f(xc; x̃d)=f(x). Similarly, one can easily show that var(I1n)= o((h20 +
�0)2), which implies that

I1n = E[I1n] + (s:o:) = B(h0; �0) + op(h20 + �0): (A.2)

Also, E(I2n) = 0 and

Var(I2n) = E[(I2n)2]

= n−1E[*2(Xi)W 2
h0 ;ixL

2
�0 ;ix]

= n−1{E[*2(Xi)W 2
h0 ;ix|dix = 0] P(xd) + O(�0)}

= (nhp
0 )

−1
{
*2(x)f(x)

[∫
W 2(v) dv

]
+O(�0 + h20)

}

= (nhp
0 )

−1{-(x)f2(x) + o(1)}:

By a standard triangular array central limit theorem argument, we have

√
nhp

0 I2n → N(0; -(x)f2(x)) in distribution: (A.3)

Finally, it is easy to show that

f̃(x) = f(x) + op(1): (A.4)
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Combining Eqs. (A.1)–(A.4), we have√
nh0(g̃(x)− g(x)− B(h0; �0))

=

√
nhp

0 (g̃(x)− g(x)− B(h0; �0))f̃(x)

f̃(x)

=
√

nh0I2n
f(x)

+ op(1) → N(0; -(x)) in distribution: (A.5)

A.2. Proof of Theorem 2.2(i)

From Eq. (2.8) we have

CV (�; h)
def
K n−1

∑
i

[Yi − ĝ(Xi)]2M (Xi) = n−1
∑

i

(gi + ui − ĝi)2Mi

= n−1
∑

i

(gi − ĝi)2Mi + 2n−1
∑

i

ui(gi − ĝi)Mi + n−1
∑

i

u2i Mi; (A.6)

where gi = g(Xi); ĝi = ĝ−i(Xi) and Mi = M (Xi).
Write gi − ĝi = (gi − ĝi)f̂ i=fi + (gi − ĝi)(fi − f̂ i)=fi (f̂ i = f̂−i(Xi)). By similar

arguments as in the proof of Lemma 1 of HTardle and Marron (1985), one can establish
the uniform consistency of f̂(x) to f(x) and ĝ(x) to g(x). Therefore, the second term
is of smaller order than the 9rst term. Replacing (gi−ĝi) by (gi−ĝi)f̂ i=fi in Eq. (A.6),
we obtain the leading term of CV (�; h) (ignoring n−1∑

i u
2
i Mi since it is independent

of �) and we denote this by CV1(�; h):

CV1(�; h) = n−1
∑

i

(gi − ĝi)2f̂2
iMi=f2

i + 2n−1
∑

i

ui(gi − ĝi)f̂ iMi=fi: (A.7)

To simplify notation and to save space, we will omit the trimming function Mi

below. Substituting Eqs. (2.9) and (2.10) into Eq. (A.7), and noting that Yj = gj + uj,
we have (omitting Mi)

CV1 = n−3
∑

i

∑
j �=i

∑
l�=i

(gi − Yj)(gi − Yl)Kh; ijK2
h; il=f

2
i + 2n−1

∑
i

ui(gi − ĝi)f̂ i=fi:

= n−3
∑

i

∑
j �=i

∑
l�=i

(gi − gj − uj)(gi − gl − ul)Kh; ijKh; il=f2
i

+2n−1
∑

i

ui(gi − ĝi)f̂ i=fi:

= n−3
∑

i

∑
j �=i

∑
l�=i

(gi − gj)(gi − gl)Kh; ijKh; il=f2
i
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+ n−3
∑

i

∑
j �=i

∑
l�=i

ujulKh; ijKh; il=f2
i

− 2n−3
∑

i

∑
j �=i

∑
l�=i

(gi − gj)ulKh; ijKh; il=f2
i

+2n−2
∑

i

∑
j �=i

ui(gi − Yj)Kh; ij=fi

=


n−3

∑
i

∑
j �=i

∑
l�=i

(gi − gj)(gi − gl)Kh; ijKh; il=f2
i




+


n−3

∑
i

∑
j �=i

∑
l�=i

ujulKh; ijKh; il=f2
i − 2n−2

∑
i

∑
j �=i

uiujKh; ij=fi




+2


n−2

∑
i

∑
j �=i

ui(gi − gj)Kh; ij=fi − n−3

×
∑

i

∑
j �=i

∑
l�=i

(gi − gj)ulKh; ijKh; il=f2
i




≡ {S1}+ {S2}+ 2{S3};

where the de9nition of Sj (j = 1; 2; 3) should be apparent.
By lemmas B.1–B.3 we know that

S1 = B1h4 − B2h2� + B3�2 + SB5h2(nhp)−1

+ B̃1h6 + B̃2h4� + B̃3h2�2 + B̃4�3 + (s:o:);

S2 = (nhp)−1[B4 + h2B̃5] + (nhp=2)−1Z1n + (s:o:);

S3 = h2n−1=2Z2n + �n−1=2Z3n + (s:o:); (A.8)

where the Zjn’s are mean-zero Op(1) random variables, while the Bj’s, B̃j’s and SB5

are some constants de9ned in the proofs of the lemmas in Appendix B.
De9ne CV2 = CV − CV1. By Lemma B.4 we know that

CV2 = C̃1h6 + C̃2h4� + C̃3h2�2 + C̃4�3 + C̃5h2(nhp)−1 + (s:o:): (A.9)

Using Eqs. (A.8) and (A.9), we have

CV = CV1 + CV2 = S1 + S2 + 2S3 + CV2

= {B1h4 − B2h2� + B3�2 + B4(nhp)−1}
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+ {(nhp=2)−1Z1n + h2n−1=2Z2n + �n−1=2Z3n}
+ {C1h6 + C2h4� + C3h2�2 + C4�3 + C5h2(nhp)−1}+ (s:o:);

≡ {A1n}+ {A2n}+ {A3n}+ (s:o:); (A.10)

where A1n = B1h4 − B2h2� + B3�2 + B4(nhp)−1; A2n = (nhp=2)−1Z1n + h2n−1=2Z2n +
�n−1=2Z3n, and A3n = C1h6 + C2h4� + C3h2�2 + C4�3 + C5h2(nhp)−1; Cj = B̃j + C̃j

(j = 1; 2; 3; 4) and C5 = SB5 + B̃5 + C̃5.
Given that h = o(1) and � = o(1), we have CV = A1n + (s:o:). That is, A1n is the

leading term of CV . We rewrite A1n as

A1n = B3[� − B2h2=(2B3)]2 + [B1 − B2
2=(4B3)]h4 + B4(nhp)−1: (A.11)

Let h0 and �0 denote the values of h and � that minimize A1n=A1n(h; �). Then from
Eq. (A.11) it is easy to see that �0 and h0 satisfy the following equations:

�0 = B2h20=(2B3) and 4[B1 − B2
2=(4B3)]h

p+4
0 =

pB4

n
: (A.12)

Solving Eq. (A.12) leads to

h0 = c1n−1=(4+p) and �0 = c2n−2=(4+p); (A.13)

where c1 = {pB4=(4[B1 − B2
2=(4B3)])}1=(4+p) and c2 = B2c21=(2B3).

From CV=A1n+op(A1n), we know that ĥ=h0+op(h0) and �̂=�0+op(�0). Therefore,

we have (ĥ − h0)=h0
p→0 and (�̂ − �0)=�0

p→0.
Next we derive the rates of convergence of (ĥ − h0)=h0 and (�̂ − �0)=�0.

A.2.1. The case of p6 3
In the case of p6 3, we have CV =A1n +A2n + (s:o:), and we rewrite A1n +A2n as

A1n + A2n = B3[� − (h2B2 − n−1=2Z3n)=(2B3)]2 + [B1 − B2
2=(4B3)]h4

+ h2n−1=2[Z2n + B2Z3n=(2B3)]

+ (nhp)−1[B4 + hp=2Z1n]− n−1Z2
3n=(4B3): (A.14)

Using Eq. (A.14), we minimize CV =A1n+A2n+(s:o:) over � and h, and we obtain

�̂ = ĥ2B2=(2B3)− n−1=2Z3n=(2B3) + (s:o:) (A.15)

and

B0ĥp+4 − p
n

B4 + 2ĥp+2n−1=2[Z2n + B2Z3n=(2B3)]− pĥp=2

2
Z1n + (s:o:)

= 0; (A.16)

where B0 = 4[B1 − B2
2=(4B3)]. Writing ĥ = h0 + h1 and noting that h1 has an order

smaller than that of h0 because (ĥ − h0)=h0 = op(1) which implies h1=h0 = op(1), we
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have

ĥ4 ≡ (h0 + h1)4+p = h4+p
0 + (4 + p)hp+3

0 h1 + (s:o:): (A.17)

Using Eqs. (A.12) and (A.17), then from Eq. (A.16), we obtain

B0(p+4)hp+3
0 h1+2hp+2

0 n−1=2[Z2n+B2Z3n=(2B3)]−php=2
0

2n
Z1n+(s:o:)=0: (A.18)

Eq. (A.18) gives

h1 =
p(2nh3+p=2

0 )−1Z1n − 2(n1=2h0)−1[Z2n + B2Z3n=(2B3)]
B0(4 + p)

+ (s:o:): (A.19)

By noting that h1 = ĥ − h0, we have from Eq. (A.19) that

(ĥ − h0)=h0 =
1

B0(4 + p)
{p(2nh4+p=2

0 )−1Z1n

− 2(n1=2h20)
−1[Z2n + B2Z3n=(2B3)]}+ (s:o:)

= Op(h
p=2
0 ) = Op(n−p=[2(4+p)]): (A.20)

Using ĥ = h0 + h1 in Eq. (A.15) gives us

�̂= (h0 + h1)2B2=(2B3) + n−1=2Z3n=(2B3) + (s:o:)

= �0 + 2h0h1B2=(2B3) + n−1=2Z3n=(2B3) + (s:o:) = �0 + Op(n−1=2); (A.21)

because h0h1 = O(n−1=2) by Eq. (A.19).
Eqs. (A.20) and (A.21) complete the proof for p6 3, part (i) of Theorem 2.2.

A.2.2. The case of p¿ 4
We now consider the case of p¿ 4. When p = 4; A3n has the same order as A2n

and when p¿ 5; A3n has an order larger than that of A2n. We 9rst consider the case
of p¿ 5 below. In this case we have CV = A1n + A3n + (s:o:) since A2n = op(A3n) in
this case. Therefore, we have

CV = A1n + A3n + (s:o:) = B1h4 − B2h2� + B3�2 + B4(nhp)−1

+C1h6 + C2h4� + C3h2�2 + C4�3 + C6h2(nhp)−1 + (s:o:): (A.22)

Taking derivatives of Eq. (A.22) with respect to � and h and setting them to zero
will give us two equations. We then replace ĥ by h0 + h1 and �̂ by �0 + �1. Noting
that h1 has an order smaller than h0 and that �1 has an order smaller than �0, then
using expansions of

ĥs = (h0 + h1)s = hs
0 + shs−1

0 h1 + (s:o:);

�̂t = (�0 + �1)t = �t
0 + t�t−1

0 �1 + (s:o:); (A.23)

for some positive integers s and t, we obtain two equations that are linear in h1 and �1
(i.e., we only retain up to the linear terms in h1 and �1). It is easy to see that solving
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these two linear equations for h1 and �1 leads to

�1 = (�̂ − �0) = Op(h40) = Op(n−4=(4+p));

h1=h0 = (ĥ − h0)=h0 = Op(h20) = Op(n−2=(4+p)): (A.24)

Finally, when p=4; A2n has the same order as A3n, but this only amounts to adding
some extra terms having the same order as A3n, while the above arguments leading to
Eq. (A.24) remain unchanged. Hence, Eq. (A.24) holds true for the case of p = 4.
This completes the proof of Theorem 2.2(i).

A.3. Proof of Theorem 2.3(i)

One can prove Theorem 2.3 using the stochastic equicontinuity arguments as in
Ichimura (2000). However, below we use a simple Taylor series expansion argument
to prove Theorem 2.3.
From (ĥ − h0)=h0 = op(1) we have

1

ĥp
=

1
hp
0
+

1
hp
0
Op

(
ĥ − h0

h0

)
=

1
hp
0
(1 + op(1)): (A.25)

Using Eq. (A.25) and �̂ − �0 = op(1), it is easy to see that

(ĝ(x)− g(x))f̂(x)

=
1

nĥp

∑
i

[g(Xi)− g(x) + ui]W
(

X c
i − xc

ĥ

)
L(X d

i ; xd; �̂)

=
1

nhp
0

∑
i

[g(Xi)− g(x) + ui]W
(

X c
i − xc

ĥ

)
L(X d

i ; xd; �0) + (s:o:)

=
1

nhp
0

∑
i

[g(Xi)− g(x) + ui]W
(

X c
i − xc

ĥ

)
L(X d

i ; xd; �0) + (s:o:)

≡ Jn + (s:o:); (A.26)

where Jn = (nhp
0 )

−1∑
i [g(Xi)− g(x) + ui]W ((X c

i − xc)=ĥ)L(X d
i ; xd; �0). De9ne Jn;0 by

replacing ĥ by h0 in Jn:

Jn;0
def=

1
nhp

0

∑
i

[g(Xi)− g(x) + ui]W
(

X c
i − xc

h0

)
L(X d

i ; xd; �0)

≡ (g̃(x)− g(x))f̃(x): (A.27)
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Then by the proof of Theorem 2.1(i) we know that Jn;0 =Op((nh
p
0 )

1=2)=Op(h20). Next,
applying a Taylor expansion to W ((X c

i − xc)=ĥ) at ĥ = h0, we have

W
(

X c
i − xc

ĥ

)
=W

(
X c

i − xc

h0

)
+

∑
16s6m−1

1
s!

W̃ (s)
(

X c
i − xc

h0

)(
ĥ − h0

h0

)s

+
1
m!

W̃ (m)
(

X c
i − xc

h̃

)(
ĥ − h0

h̃

)m

; (A.28)

where W̃ (s)((X c
i − xc)=h)def=hs (9s=9hs)W ((X c

i − xc)=h), and h̃ is between ĥ and h0. It
is easy to see that W̃ (s)(v) contains terms of W (t)(v) = (9t =9vs1

1 : : : 9vsp
p )W (v) (s1 +

· · ·+ sp = t) times a tth-order polynomial in v for 16 t6 s. Also, W̃ (s)(v) is an even
function and thus can be viewed as a second-order kernel function (though it may take
negative values).
Substituting Eq. (A.28) into Eq. (A.26) we obtain

Jn =
1

nhp
0

∑
i

[g(Xi)− g(x) + ui]W
(

X c
i − xc

h0

)
L(X d

i ; xd; �0)

+Op(Jn;0)Op

(
ĥ − h0

h0

)
+ h−p

0 Op

((
ĥ − h0

h0

)m)

= Jn;0 + op(Jn;0) + op(h20) = Jn;0 + op(h20); (A.29)

since Jn;0 = Op(h20) and ((ĥ− h0)=h̃)m=h̃p = h−p
0 Op([(ĥ− h0)=h0]m) + (s:o:) = op(h20) by

Theorem 2.2 and Assumption (A1) (ii).
Similarly, it is straightforward to show that

f̂(x) = f(x) + op(1): (A.30)

Summarizing the results in Eqs. (A.26), (A.27), (A.29) and (A.30) we have√
nĥp(ĝ(x)− g(x)− B(h0; �0))

=

√
nĥp(ĝ(x)− g(x)− B(h0; �0))f̂(x)

f̂(x)

=

√
nhp

0 (Jn;0 − B(h0; �0))
f(x)

+ op(1) → N(0; -(x)) in distribution; (A.31)

where the last convergence result follows from the proof of Theorem 2.1.

A.4. Proof of Theorem 2.3(ii)

Using the results of Theorem 2.3(i), it is obvious that B̂(h0; �0)=B(h0; �0)+op(h20+�0)
and -̂(x) =-(x) + op(1). Hence, Theorem 2.3(ii) follows from these results and from
Theorem 2.3(i).
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A.5. Proof of Theorem 2.4

From Eqs. (A.19)–(A.21) we know that both np=[2(4+p)](ĥ − h0)=h0 and
√

n(�̂ −
�0) can be written as linear combinations of Z1n; Z2n and Z3n (plus some op(1)
terms), where Z1n is de9ned in Lemma B.2, Z2n and Z3n are de9ned in Lemma
B.3. For example, Z1n = (nhp=2){n−2∑∑

j �=i;dij=0 uiuj(W
(2)
h; ij − 2Wh;ij)=fi} (W (2)(:) is

the two-fold convolution kernel de9ned from W (:)). Obviously Z1n is a second-order
degenerate U-statistic, thus using the central limit theorem for degenerate U-statistics
of Hall (1984), it is straightforward to show that Z1n converges in distribution to a
mean-zero 9nite-variance normal random variable. Similarly, for Z2n and Z3n, using
H-decomposition, it is easy to see that the leading terms of both Z2n and Z3n are partial
sums of the form of n−1=2∑

i uiC(Xi) + (s:o:) for some function C(·). Therefore, Z2n

and Z3n are asymptotically normally distributed with mean zero and 9nite variance.
Note that Z1n is uncorrelated with either Z2n or Z3n. It is easy to show that a linear
combination of Z1n; Z2n and Z3n has an asymptotic normal distribution with mean
zero and 9nite variance which results in Theorem 2.4.

Appendix B.

Lemmas B.1–B.3 below utilize the U-statistics H-decomposition with variable ker-
nels. Here we provide an intuitive explanation of H-decomposition for a second-order
U-statistic. A second-order U-statistic has the form

Un =
2

n(n − 1)

∑ ∑
16i¡j6n

Hn(Xi; Xj); (B.1)

where Hn(:; :) is a symmetric function. The H-decomposition involves rewriting Un in
the form of uncorrelated terms of di#ering order:

Un =E[Hn(Xi; Xj)] +
2
n

∑
i

{E[Hn(Xi; Xj)|Xi]− E[Hn(Xi; Xj)]}

+
2

n(n − 1)

∑ ∑
16i¡j6n

{Hn(Xi; Xj)− E[Hn(Xi; Xj)|Xi]

−E[Hn(Xi; Xj)|Xj] + E[Hn(Xi; Xj)]}: (B.2)

If E[H 4
n (Xi; Xj)]=O(1), then it is easy to see that the three terms in Eq. (B.2) are of

the orders Op(1); Op(n−1=2) and Op(n−1), respectively. Moreover, the three terms are
uncorrelated with each other. In our application of the H-decomposition below, usually
E[Hn(Xi; Xj)] = O(an) (say an = O((h2 + �)2), the second term in the decomposition
is of the order of Op(n−1=2an), and the third term is of even smaller order. We also
use the H-decomposition of a third-order U-statistic, while Lee (1990, Section 1.6)
provides a detailed result of H-decomposition for a general kth-order U-statistic. For
U-statistics with variable kernels, see Powell et al. (1989).
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Lemma B.1. S1=B1h4−B2h2�+B3�2+ B̃1h6+ B̃2h4�+ B̃3h2�2+ B̃4�3+ SB5h2(nhp)−1+
(s:o:), where Bj’s, B̃j’s and SB5 are some constants de)ned in the proof below.

Proof. S1 = n−3∑∑∑
i �=j �=l(gi − gj)(gi − gl)Kh; ijKh; il=f2

i + n−3∑
i

∑
j �=i(gi − gj)2

K2
h; ij=f

2
i = S1a + S1b. We 9rst consider S1a. S1a = [n−3∑∑∑

i �=j �=l H1a(Xi; Xj; Xl)],
where H1a(Xi; Xj; Xl) is a symmetrized version of (gi − gj)(gi − gl)Kh; ijKh; il=f2

i given
by H1a(Xi; Xj; Xl)=(1=3){(gi −gj)(gi −gl)Kh; ijKh; il=f2

i +(gj −gi)(gj −gl)Kh; ijKjl=f2
j +

(gl − gj)(gl − gi)KljKh; il=f2
l }.

We 9rst compute E[(gi − gj)Kh; ij|Xi] (note that dij = dxi;xj):

E[(gi − gj)Kh; ij|Xi]

=E[(gi − gj)Wh;ij|Xi; dij = 0]P(dij = 0|Xi)

+E[(gi − gj)Wh;ij|Xi; dij = 1]P(dij = 1|Xi)�

+
k∑

l=2

E[(gi − gj)Wh;ij|Xi; dij = l]P(dij = l|Xi)�l

= {B1;1(Xi)h2 + O(h4)}+ {−B1;2(Xi)� +O(�h2)}+ {O(�2)}; (B.3)

where B1;1(Xi) = {∇f′
i∇gi + (1=2)f(Xi)

∫
tr(∇2gi)}[

∫
w(v)v2 dv], and B1;2(Xi) =

E[g(X c
i ; X

d
j )− g(X c

i ; X
d
i )|Xi; dij = 1]P(dij = 1|Xi) are as de9ned in Assumption (A1).

Note that in the above calculation, gi−gj �= 0 even when dij=0. This arises because
dij = 0 only restricts X d

i = X d
j , while [(gi − gj)|dij = 0] = g(X c

i ; X
d
i ) − g(X c

j ; X
d
i ) �= 0

because X c
i �= X c

j .
Using Eq. (B.3) we have

E[H1a(Xi; Xj; Xl)]

=E[(gi − gj)(gi − gl)Kh; ijKh; il=f2
i ]

=E{E[(gi − gj)Kh; ij|Xi]E[(gi − gl)Kh; il|Xi]=f2
i }

=E{E[(gi − gj)Kh; ij|Xi]=fi}2

=E[(B1;1(Xi)=fi)2h4 − 2f−2
i B1;1(Xi)B1;2(Xi)h2� + (B1;2(Xi)=fi)2�2]

+ B̃1h6 + B̃2h4� + B̃3h2�2 + B̃4�3 + (s:o:)

≡ [B1h4 − B2h2� + B3�2] + B̃1h6 + B̃2h4� + B̃3h2�2 + B̃4�3 + (s:o:); (B.4)

where B1 =E[(B1;1(Xi)=fi)2]; B2 =E[2f−2
i B1;1(Xi)B1;2(Xi)] and B3 =E[(B1;2(Xi)=fi)2].

Similarly, the B̃j’s correspond to terms with higher-order derivatives (with respect to
the continuous variables) and/or terms where dxi;xj assumes values larger than 1 (which
results in higher-order polynomials in �). We do not give the explicit de9nitions of
the B̃j’s here to save space and because we do not use their speci9c expressions in
the paper.
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Therefore, by Eqs. (B.3) and (B.4) and the H-decomposition, we have

S1a =E[H1a(Xi; Xj; Xl)]

+ 3n−1
∑

i

{E[H1a(Xi; Xj; Xl)|Xi]− E[H1a(Xi; Xj; Xl)]}+ (s:o:)

= E[H1a(Xi; Xj; Xl)] + n−1=2Op(h4 + h2� + �2) + (s:o:)

= B1h4 − B2h2� + B3�2 + B̃1h6 + B̃2h4� + B̃3h2�2 + B̃4�3 + (s:o:):

Next, we consider S1b. De9ning H1b(Xi; Xj) = (gi − gj)2K2
h; ij(1=f

2
i + 1=f2

j )=2, then
S1b = n−1[n−2∑

i

∑
j �=i H1b(Xi; Xj)], and it is easy to see that

E[H1b(Xi; Xj)] = E[(gi − gj)2K2
h; ij=f

2
i ]

= E[(gi − gj)2K2
h; ij=f

2
i |dij = 0]p(dij = 0)

+E[(gi − gj)2K2
h; ij=f

2
i |dij¿ 1]p(dij¿ 1)

= E[(gi − gj)2W 2
h; ij=f

2
i |dij = 0]p(dij = 0) + h−pO(�2)

= SB5h2h−p +O(h−p(h4 + �2));

where SB5 = E[(∇gi)′∇gi=fi][
∫

w2(v)v2 dv]p(dij = 0).
Similarly one can easily show that E[H1b(Xi; Xj)|Xi] = O(h2h−p). Hence,

S1b = n−1[E[H1b(Xi; Xj)]

+ 2n−1
∑

i

{E[H1b(Xi; Xj)|Xi]− E[H1b(Xi; Xj)]}+ (s:o:)]

= h2(nhp)−1 SB5 + n−1=2O((nhp)−1h2):

Summarizing the above we have shown that

S1 = S1a + S1b = B1h4 − B2h2� + B3�2 + B̃1h6 + B̃2h4�

+ B̃3h2�2 + B̃4�3 + SB5h2(nhp)−1 + (s:o:) (B.5)

Lemma B.2. S2=(nhp)−1[B4+B̃5h2]+(nhp=2)−1Z1n+(s:o:), where B4 and B̃j (j=5; 6)
are some constants and Z1n is a Op(1) random variable.

Proof.

S2 = n−3
∑

i

∑
j �=i

∑
l�=i

ujulKh; ijKh; il=f2
i − 2n−2

∑
i

∑
j �=i

uiujKh; ij=fi

= n−3
∑

i

∑
j �=i

u2jK
2
h; ij=f

2
i + n−3

∑∑ ∑
i �=j �=l

ujulKh; ijKh; il

− 2n−2
∑

i

∑
j �=i

uiujKh; ij=fi ≡ S2a + S2b − 2S2c:
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De9ne H2a(Zi; Zj)=(1=2)(u2i =f
2
i +u2j =f

2
j )K

2
h; ij, then S2a=n−1[n−2∑∑

i �=j H2a(Zi; Zj)].

E[H2a(Zi; Zj)]

=E[u2i K
2
h; ij=f

2
i ] = E[*2(Xi)K2

h; ij=f
2
i ]

=E[*2(Xi)K2
h; ij=f

2
i |dij = 0]p(dij = 0) + E[*2(Xi)K2

h; ij=f
2
i |dij¿ 1]p(dij¿ 1)

=E[*2(Xi)W 2
h; ij=f

2
i |dij = 0]p(dij = 0) + O(�2h−p)

=h−p

[∑
xd

∫
f−1(xc; xd)*2(xc; xd)f(xc + hv; xd)W 2(v) dxc dv

]

×p(dij = 0) + O(�2h−p)

=h−p[B4 + B̃5h2 + O(h4)] + O(�2h−p);

where B4 = E[*2(Xi)=f(Xi)][
∫

W 2(v) dv]p(dij = 0) and
B̃5 = (1=2)E[*2(Xi) tr(∇2f(Xi))=f2(Xi)][

∫
w2(v)v2 dv]p(dij = 0). Next,

E[H2a(Zi; Zj)|Zi] = (1=2){(u2i =f2
i )E[K

2
h; ij|Zi] + E[(*2(Xj)=f2

j )K
2
h; ij|Zi]}

=(1=2)u2i f
−2
i {E[K2

h; ij|Xi; dij = 0]p(dij = 0|Xi)

+
k∑

l=1

E[K2
h; ij=f

2
i |Xi; dij = l]p(dij = l|Xi)}

+(1=2)E[*2(Xj)K2
h; ij=f

2
j |Xi; dij = 0]p(dij = 0|Xi)

+
k∑

l=1

E[*2(Xj)K2
h; ij=f

2
j |Xi; dij = l]p(dij = l|Xi)

=(1=2)h−pf−1
i

{
[u2i + *2(Xi)]

[∫
W 2(v) dv

]
+O(h2 + �2)

}

=(1=2)h−pf−1(Xi)
{
[u2i + *2(Xi)]

[∫
W 2(v) dv

]
+Op(h2 + �)

}

=B4(Zi)h−p +Op(h−p(h2 + �));

where B4(Zi) = (1=2)f−1
i [u2i + *2(Xi)][

∫
W 2(v) dv]. It is easy to check that B4 =

E[B4(Zi)].
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Hence, by the H-decomposition we have

S2a = n−1

{
E[H2a(Zi; Zj)]

+ 2n−1
∑

i

{E[H2a(Zi; Zj)|Zi]− E[H2a(Zi; Zj)]}+ (s:o:)

}

= (nhp)−1[B4 + B̃5h2 + O(h4 + �2 + h2�)]

+ (nhp)−1n−1=2[Z2a;n +Op(h2 + �)] + (s:o:);

where Z2a;n = n−1=2∑
i [B4(Zi)− E(B4(Zi))].

Next, S2b can be written as a third-order U-statistic. S2b = [n−3∑∑∑
i �=j �=l H2b

(Zi; Zj; Zl)], where H2b(Zi; Zj; Zl)] is a symmetrized version of ujulKh; ijKh; il=f2
i given

by

H2b(Zi; Zj; Zl) = (1=3)[ujulKh; ijKh; il=f2
i + uiulKh; ijKh;jl=f2

j + ujuiKh;ljKh; il=f2
l ]:

Note that E[H2b(Zi; Zj; Zl)|Zj] = 0 because E(ul|Zj) = 0. Hence the leading term of
S2b is a second-order degenerate U-statistic:

E[H2b(Zi; Zj; Zl)|Zi; Zj]

=(1=3)uiujE[Kh;ljKh; il=f2
l |Xi; Xj]

=uiujE[Kh;ljKh; il=f2
l |Xi; Xj; dlj + dil = 0]P(dlj + dil = 0|Xi; Xj) + (s:o:):

Note that

E[Kh;ljKil=f2
l |Xi; Xj; dlj + dil = 0] = E[Wh;ljWh; il=f2

l |Xi; Xj; dlj + dil = 0]

=W (2)
h; ij1(dij = 0)=fi +O(h2);

where W (2)
h; ij=h−pW (2)((X c

i −X c
j )=h) with W (2)(v)def=

∫
W (u)W (v+u) du is the two-fold

convolution kernel derived from W (·). Hence,

S2b = 3


n−2

∑∑
j �=i

E[H2b(Zi; Zj; Zl)|Zi; Zj] + (s:o)




=


n−2

∑∑
j �=i

uiujE[Kh;ljKh; il=f2
l |Zi; Zj] + (s:o:)




=


n−2hp

∑ ∑
j �=i;dij=0

uiujW
(2)
h; ij=fi + (s:o:)




= (nhp=2)−1Z2b;n + op((nhp=2)−1);

where Z2b;n = (nhp=2){n−2∑∑
j �=i;dij=0 uiujW

(2)
h; ij=fi}.
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Finally,

S2c = n−2
∑

i

∑
j �=i

uiujKh; ij=fi

= n−2
∑

i

∑
j �=i;dij=0

uiujWh; ij=fi + n−2
∑

i

∑
j �=i;dij¿1

�dij uiujWh; ij=fi

= n−2
∑

i

∑
j �=i;dij=0

uiujWh; ij=fi + (s:o:)

= (nhp=2)−1Z2c;n + (s:o:);

where Z2c;n = (nhp=2)[n−2∑
i

∑
j �=i;dij=0 uiujWh; ij=fi].

Summarizing the above we have shown that

S2 = S2a + S2b − 2S2c = (nhp)−1[B4 + B̃5h2] + (nhp=2)−1Z1n + (s:o:); (B.6)

where Z1n=Z2b;n−2Z2c;n. Note that Z1n is a second-order generate U-statistic. Using
Theorem 1 of Hall (1984), it is easy to see that Z1n has an asymptotic mean-zero
9nite-variance normal distribution. Hence, Z1n =Op(1).

Lemma B.3. S3 = h2n−1=2Z2n + �n−1=2Z3n + op(n−1=2(h2 + �)), where both Z2n and
Z3n are mean-zero Op(1) random variables.

Proof.

S3 = n−2
∑

i

∑
j �=i

ui(gi − gj)Kh; ij=fi − n−3
∑

i

∑
j �=i

∑
l�=i

(gi − gj)ulKh; ijKh; il=f2
i

= n−2
∑

i

∑
j �=i

ui(gi − gj)Kh; ij=fi − n−3
∑

i

∑
j �=i

(gi − gj)ujK2
h; ij=f

2
i

− n−3
∑∑ ∑

i �=j �=l

(gi − gj)ulKh; ijKh; il=f2
i

≡ S3a − S3b − S3c:

We 9rst consider S3a. The leading terms of S3a are the cases (i) dij = 0 and (ii)
dij = 1. We use S3a; (i) and S3a; (ii) to denote these two cases. For case (i), we have
S3a; (i) =n−2∑

i

∑
j �=i;dij=0 H3a(Zi; Zj), where H3a(Zi; Zj)]=(1=2)[ui(gi−gj)=fi+uj(gj −

gi)=fj]Wh;ij:

[H3a(Zi; Zj)|Zi] = (1=2)(ui=fi)E[(gi − gj)Wh;ij|X c
i ]

=−(1=4)h2(ui=fi) tr[∇2gi]
[∫

w2(v)v2 dv
]
+Op(h4)

≡ h2B3a; (i)(Zi) + Op(h4);

where B3a; (i)(Zi) =−(1=4)(ui=fi) tr[∇2gi][
∫

w2(v)v2 dv].
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Using H-decomposition and noting that E[H3a(Zi; Zj)] = 0, we have

S3a; (i) =

{
2n−1

∑
i

E[H3a(Zi; Zj)|Zi] + (s:o:)

}

= 2h2n−1
∑

i

B3a; (i)(Zi) + (s:o:)

≡ n−1=2h2Z3a; (i) + (s:o:);

where Z3a; (i) = n−1=2∑
i B3a; (i)(Zi).

Now consider S3a; (ii):

S3a; (ii) =


�n−2

∑
i

∑
j �=i;dij=1

ui(gi − gj)Wh;ij=fi


= �n−1=2Z3a; (ii); (B.7)

where Z3a; (ii) = n−3=2∑
i

∑
j �=i;dij=1 ui(gi − gj)Wh;ij=fi. Obviously, Z3n is Op(1).

It is easy to see that when dij¿ 2, we have S3a=Op(�2n−1=2). Thus, we have shown
that

S3a = h2n−1=2Z3a; (i) + �n−1=2Z3a; (ii) + Op(�2n−1=2): (B.8)

Next, for S3b it is easy to see that

S3b = (nhp)−1Op(S3a) = Op((nhp)−1(h2 + �)n−1=2) = op(n−1=2(h2 + �)): (B.9)

Finally, we consider S3c. The leading terms should have dil = 0 (since there is no
(gi − gl) term in S3c). The two leading cases are (i) dil = 0 and dij = 0, (ii) dil = 0
and dij = 1. We use S3c; (i) and S3c; (ii) to denote these two cases.

S3c; (i) can be written as a third-order U-statistic S3c; (i) = n−3∑∑ ∑
i �=j �=l;dij=0;dil=0

H3c; (i)(Zi; Zj; Zl), where H3c; (i)(Zi; Zj; Zl) is a symmetrized version of ul(gi − gj)Kh; ij

Kh; il=f2
i . Obviously E[H3c; (i)(Zi; Zj; Zl)] = 0 and it can easily be veri9ed that

E[H3c; (i)(Zi; Zj; Zl)|Zi] = (1=3)h2uiB3c; (i)(Zi);

where

B3c; (i)(Zi) = {(∇gi)′∇fi=fi + (1=2) tr[∇2gi]}
[∫

w(v)v2 dv
]
: (B.10)

Therefore, by H-decomposition we have

S3c; (i) = 3n−1
∑

i

E[H3c; (i)(Zi; Zj; Zl)|Zi] + (s:o:)

= h2n−1=2

[
n−1=2

∑
i

uiB3c; (i)(Xi)

]
+ (s:o:)

≡ h2n−1=2Z3c; (i) + (s:o:);

where Z3c; (i) = [n−1=2∑
i uiB3c; (i)(Xi)] with B3c; (i) de9ned in Eq. (B.10).
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Next,

S3c; (ii) = �n−3
∑∑ ∑

{i �=j �=l;dil=0;dij=1}
(gi − gj)ulWh; ijWh; il=f2

i

≡ �n−1=2{Z3c; (ii)}; (B.11)

where Z3c; (ii) = n−5=2∑∑∑
{i �=j �=l;dil=0 ;dij=1}(gi − gj)ulWh; ijWh; il=f2

i }. It is straightfor-

ward to show that E{[Z3c; (ii)]2}=O(1). Hence, Z3c; (ii) = Op(1).
It is easy to see that when dij + dil¿ 2, we will have a factor of �2, and S3c =

Op(�2n−1=2) in such cases. Hence, we have

S3c = h2n−1=2Z3c; (i) + n−1=2�Z3c; (ii) + Op(�2n−1=2): (B.12)

Summarizing Eqs. (B.8), (B.9), and (B.12), we have shown that

S3 = S3a − S3b − S3c = h2n−1=2Z2n + �n−1=2Z3n + op(n−1=2(h2 + �)); (B.13)

where Z2n =Z3a; (i) −Z3c; (i) and Z3n =Z3a; (ii) −Z3c; (ii), both are mean-zero Op(1)
random variables.

Lemma B.4. CV2(h; �)= C̃1h6 + C̃2h4�+ C̃3h2�2 + C̃4�3 + C̃5h2(nhp)−1 + (s:o:), where
C̃j’s are some )nite constants.

Proof. Since the details of the proof are very similar to the proofs of Lemmas B.1
and B.3, we only sketch a proof here.

CV2 = n−1
∑

i

(ĝi − gi)2(f̂ i − fi)2=f2
i + 2n−1

∑
i

(f̂ i − fi)(ĝi − gi)2f̂ i=f2
i

+2n−1
∑

i

ui(ĝi − gi)(f̂ i − fi)=fi: (B.14)

It is easy to see that the 9rst term on the right-hand side of Eq. (B.14) has an order
smaller than the second and third terms. Let CV2;L denote the leading term of CV2,
i.e., CV2 =CV2;L +(s:o:). Replacing (ĝi − gi) by (ĝi − gi)f̂ i=fi in the second and third
terms of Eq. (B.14), we obtain the leading term of CV2:

CV2;L = 2n−1
∑

i

(f̂ i − fi)(ĝi − gi)2f̂2
i=f

3
i + 2n−1

∑
i

ui(f̂ i − fi)(ĝi − gi)f̂ i=f2
i

=Op(h6 + h4� + h2�2 + �3 + h2(nhp)−1) + (s:o:); (B.15)

where the order calculations follow the same arguments as in the proofs of Lemmas
B.1–B.3. It is not hard to see that a detailed calculation would reveal that

CV2;L = C̃1h6 + C̃2h4� + C̃3h2�2 + C̃4�3 + C̃5h2(nhp)−1 + (s:o:); (B.16)

for some constants C̃j. We will not give the explicit de9nitions of Cj’s to save space.
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