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This paper proposes a bootstrap test for the correct specification of parametric 
conditional distributions. It extends Zheng's test (Zheng, 2000, Econometric Theory 
16, 667-691) to allow for discrete dependent variables and for mixed discrete 
and continuous conditional variables. We establish the asymptotic null distribu- 
tion of the test statistic with data-driven stochastic smoothing parameters. By 
smoothing both the discrete and continuous variables via the method of cross- 
validation, our test has the advantage of automatically removing irrelevant vari- 
ables from the estimate of the conditional density function and, as a consequence, 
enjoys substantial power gains in finite samples, as confirmed by our simulation 
results. The simulation results also reveal that the bootstrap test successfully over- 
comes the size distortion problem associated with Zheng's test. 

1. INTRODUCTION 

Currently, there exists a substantial body of work on consistent model specifi- 
cation testing for regression models and for unconditional distribution (den- 
sity) functions; see Bierens and Ploberger (1997), Delgado and Manteiga (2001), 
Fan (1994, 1997, 1998), Fan and Li (1996), Hong and White (1996), Wool- 

dridge (1992), and the references therein. In many economic applications, how- 

ever, it is the distribution of one variable conditional on some other variables 
that is of more direct interest. The popular parametric binary or multinomial 

response models are but two leading examples of conditional probability models. 
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588 YANQIN FAN ET AL. 

Conditional probability models also are widely deployed in risk management 
and insurance settings, where the dependent variable of interest may be the 
claim size (a continuous variable) and the explanatory variables usually con- 
tain a mixture of discrete and continuous variables such as sex, age, whether 
children are present, whether one smokes, and so forth. Moreover, in risk man- 

agement analysis, usually one is interested in the entire (conditional) distribu- 
tion, rather than only in the conditional mean itself. Hence, a conditional 

probability model is more useful than a regression model in risk analysis. Rel- 

atively speaking, tests for conditional probability models are scarce. Zheng 
(2000), using kernel density estimators, proposed a consistent test for a para- 
metric conditional density function. He showed that the limiting distribution of 
his test statistic is N(0, 1) and that the test can detect Pitman local alternatives 

approaching the null distribution at the rate of (nhq/2)-1/2, where n is the sam- 

ple size, h is the bandwidth, and q is the dimension of the conditioning vari- 
ables. To apply Zheng's test to a given data set, one needs to choose the 

bandwidth; no guidance is provided on how this should be accomplished. More- 

over, the requirement that both the dependent variable y and conditioning vari- 
ables x are continuous variables severely limits the scope of application of 

Zheng's test, as many economic data sets contain both continuous and discrete 
variables. Andrews (1997) proposed a conditional Kolmogorov (CK) test for 

testing a parametric conditional distribution function. His test overcomes the 
difficulties associated with Zheng's test; it does not involve smoothing param- 
eters and allows for both discrete and continuous variables. The critical values 
of the CK test of Andrews are obtained via a parametric bootstrap procedure, 
and the test can detect Pitman type local alternatives that approach the null 
model at the rate of O(n-1/2). Although Andrews' test can handle both contin- 
uous and discrete variables, it does not produce an estimate of the conditional 

density function, which is of course undesirable when the parametric distribu- 
tion function is rejected. In addition, it does not distinguish between relevant 
and irrelevant explanatory variables. 

A related literature is the work on dynamic integral probability transform 
models such as that outlined in Diebold, Gunther, and Tay (1998). Corradi and 
Swanson (2004) and Li and Tkacz (2004) have also proposed bootstrap-based 
tests for conditional distributions. The Corradi and Swanson (2004) procedure 
is a nonsmoothing test similar to that of Andrews (1997), and their test extends 
Andrews' test to the time series data setting. Li and Tkacz (2004) use kernel 

smoothing; however, like Zheng (2000), they only consider the case whereby 
both y and x are continuous variables. The conventional way of handling dis- 
crete variables when estimating a conditional density function involving both 
discrete and continuous explanatory variables is by the so-called frequency 
method in which the entire sample is first split into a number of distinct cells 
and the data in each cell are then used to estimate the conditional density that 
is a function of the remaining continuous variables. For economic data, how- 
ever, it is typically the case that the number of discrete cells is comparable to 
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BOOTSTRAP TEST OF CONDITIONAL DISTRIBUTIONS 589 

or even larger than the sample size. This renders the nonparametric frequency 
approach infeasible. Moreover, one may not know which conditional variables 
should be included in a particular application and hence faces the danger of 

including potentially irrelevant variables in the estimate. This is unfortunate, 
particularly in nonparametric settings, as including irrelevant explanatory vari- 
ables has serious consequences for the accuracy of the resulting estimate: the 
rate of convergence of the density estimator will deteriorate quickly with the 
number of irrelevant continuous variables (the "curse of dimensionality"), 
whereas the number of cells will increase quite quickly with the number of 
irrelevant discrete variables. Recently, Hall, Racine, and Li (2004) proposed 
estimating a conditional density by smoothing both the discrete and continuous 
variables and showed that the use of cross-validation can automatically remove 
irrelevant variables from the resulting estimate. This is because the cross- 
validation method selects bandwidths that converge to some optimal values for 
relevant variables but selects large values for irrelevant conditional variables, 
thereby effectively smoothing out the irrelevant variables from the resulting 
estimate. 

In this paper, we exploit the approach of Hall et al. (2004) to establish an 
alternative test for a parametric conditional density function. It is constructed 
based on the Zheng (2000) setup; however, it improves upon Zheng's test in a 
number of important ways: (i) the bandwidth is automatically chosen by cross- 
validation, thereby avoiding potential arbitrariness in the test's outcome due to 
an arbitrary choice of the bandwidth; (ii) it allows for both discrete and contin- 
uous variables; and (iii) the critical values are obtained from a parametric boot- 

strap procedure, which corrects the size distortions present in Zheng's approach. 
Although (ii) and (iii) are shared by Andrews' CK test, our test automatically 
produces an estimate of the conditional density function when the parametric 
density function is rejected by the test. More importantly, by automatically 
smoothing both the discrete and continuous variables via the method of cross- 
validation, our test has the advantage of automatically removing irrelevant vari- 
ables from the resulting estimate (see Hall et al., 2004) and, as a consequence, 
enjoys substantial power gains in finite samples, as confirmed by our simula- 
tion results. Although our proposed test can only detect Pitman local alterna- 
tives approaching the null at rates slower than 0(n-1/2), it can be shown that 
for high-frequency alternatives, our test can detect local alternatives that approach 
the null at rates o(n-1/2) in terms of the L1 norm of the difference between the 
local alternative and the null model (e.g., Fan, 1998; Fan and Li, 2000). Hence 
it provides a complement to Andrews' CK test. 

The remainder of this paper is organized as follows. In Section 2 we review 
and suggest a modified version of Zheng's test statistic. We also propose a boot- 

strap method for approximating the null distribution of our test. Section 3 reports 
Monte Carlo simulation results that examine the finite-sample performance of 
the proposed test. Finally, Section 4 concludes. Proofs are presented in the 
Appendix. 
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590 YANQIN FAN ET AL. 

2. THE NULL HYPOTHESIS AND THE TEST 

2.1. Zheng's Test 

We begin by briefly reviewing the test proposed by Zheng (2000). Suppose 
that the data consist of {yi, 

xi1}i, 
an independent and identically distributed 

(i.i.d.) sample drawn from the distribution of (y, x) with the joint density func- 
tion p(y, x). Let p(yIx) denote the conditional density function of y given x. 
We are interested in testing whether p(y x) belongs to a particular parametric 
family. Let f(y x, 6) denote a parametric conditional density function with 0 
being a k x 1 parameter. The null hypothesis is given by 

Ho:Pr[p(yilxi) =f(yiIxi,00)]= 1 forsome 0O E O, 

where 0 is the parameter space that is a compact set in Rk. The alternative 
hypothesis is the negation of the null: 

HI:Pr[p(yiIxi) =f(yi I xi,)] < 1 for all 0 E 0. 

The Kullback-Leibler information criterion (Kullback and Leibler, 1951), 
measuring the discrepancy of two conditional density functions, is defined as 

I(p,f) = E log[ f(yi xi . (1) 
Lf ( y; xt ,6 JJ 

It is well known that I(p,f) 
- 

0 and I(p,f) = 0 if and only if p(ylx) = 

f(y x, 00) almost everywhere (a.e.). Thus, I(p,f) serves as a proper measure to 
test Ho. For technical reasons, instead of basing his test on the information mea- 
sure, Zheng (2000) considered its first-order expansion, 

E log [ fp (lYix i) --E f 
p(yiIxi ] 

[ p(yi 
xi) 

-f(yi xi,)y ) (2) 
f(yj Ixi, 00) 

Weighting (2) by the marginal density p,(x) of the conditional variable x 
leads to the following measure: 

l, fp 

)= E p(yi,xi)- 

flyiIlxi' o)?)p,(xi) 
f ( yi 

xi oi") 
Zheng (2000) has shown that 11(p, f) 

-? 
0 and the equality holds if and only if 

H0 is true. Therefore, Il (p,f) also serves as a proper measure to test for H0. 
For continuous random variables y and x, Zheng (2000) proposed estimating 
p(yi, xi) by a standard kernel density estimator and estimatingf(yi xi, Oo)Pl(xi) 
by a smoothed density estimator P(yi, xi) given by 
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BOOTSTRAP TEST OF CONDITIONAL DISTRIBUTIONS 591 

P(Yi, xi) = -1 fW2, hy Wh f(yIxj,O) dy, (4) 
nj=lf hy h 

where W2, hy(.) hyl 2(.), W2(*) is a (specially defined) univariate kernel 
function, Wh(-) is a product kernel Wh((Xi - xj)/h) = H14=1 hs1 w((xis 

- 
Xjs)/hs) with w(.) being a standard (second-order) univariate kernel, hy 

and hs's are the 
smoothing parameters, and 0 is an estimator of 0o under the null model. The 
measure I,(p,f) is then estimated by 

Tc 
n(n- 1 

Yi 
h X j 

_l 
,h 

, j x W2,hYY) h Q 7')J2,h hWh(Xi ,dy 

f(yilx,,O) " 
(5) 

To establish the null asymptotic distribution of Th, Zheng (2000) sug- 
gested transforming the dependent variable such that it takes values in [0,1] 
and then choosing a special kernel function for w2(') with the property that 
h' fo w2((yi 

- y)/hy)2dy 
-- 

1 as n -> oo. The use of the smoothed estimator 
(y, x) eliminates the bias of the kernel estimator of p(yi, xi) under Ho such 

that the test statistic is appropriately centered for a wide range of smoothing 
parameter values. Under some regularity conditions, Zheng (2000) showed that 
the asymptotic null distribution of T,•h is normal and provided a consistent esti- 
mator of its asymptotic variance. 

2.2. Our Framework 

We now extend Zheng's test to include both continuous and discrete explana- 
tory variables (x is a mixed variable), where the dependent variable y can be 
discrete or continuous. 

We first consider the case that y is a discrete variable. In this case, we show 
that the smoothed estimator 5(y, x) reduces to an average estimator. Thus, the 
resulting test statistic only involves summations and hence avoids the need for 
numerical integration. 

Let x = (xC, xd), where x' is a q X 1 continuous variable and xd is an r X 1 
discrete variable. We use 

xi' 
(xi) to denote the sth component of x4 (xf). We 

further assume that xi takes the values in {0,1, ..., c - 1} (it takes c different 
values). 

In constructing the kernel density estimate, we use different kernel functions 
for the discrete and continuous variables. For the discrete variable xd, we use 
the Aitchison and Aitken (1976) kernel: 1(x 

d,x 
, 
As) 

= 1 - As if xi = x), and 
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592 YANQIN FAN ET AL. 

l(x', x', As) 
= 

As/(cs 
- 1) if xi =t xj<. Hence, the product kernel for the dis- 

crete variable is 

r r 

L(xf, 
xi, 

A) = l(xA,x,~) = {A,/(cs 
- 1)}Ni,(x)(l - As)l-Ni,(x) 

s=l s=l 

where 
Nis(x) 

= I(x x~ ), in which I(.) is the usual indicator function and 
Al,...,A, are the smoothing parameters for the discrete components and are 
constrained by 0 

- As (c, - 1)/cs. Note that when As assumes the upper 
extreme value, (cs - 1)/cs, l(xis, x, As = (cs - l)/cs) = 1/cs becomes unrelated 
to (xifd,xf), i.e., the sth component of xd is completely smoothed out when 

s = (Cs - 1)/cs. 
For the continuous component xc, we still use the standard (second-order) 

product kernel function as discussed earlier. Therefore, for the mixed type vari- 
able x = (xc, xd), the kernel function is defined by 

def x I L(x 
, x ), (6) K,, j 

= 
K,(x,,xj) 

=hq 
Wh 

h 
i 

J 

where y = (h, A) -(hi,..., hq, A 
...., 

Ar). 
We now discuss how to estimate p(yi, xi) and p,(xi). Assume that yi is a 

discrete variable; then we estimate p(yi, xi) and pI(xi) by the following leave- 
one-out kernel estimators: 

n 

P-i(yi,xi) 
- 

I(Yi yj)K,(xi, xj ), (7) 
nl jfi 

1 " 

Pl,--i(xi) 

= - 
K,(xi,xj). (8) 

n i:i 

To construct the smoothed estimator of f(y I xi, Oo), we replace Wh(.) in (4) 
by K,(xi,xj) and fw2, h((yi - 

y)/hy) dy by ,yI(yi 
- y). Taking into account 

these modifications, we obtain 

p(yi,xi) = - I(yi 
= 

y)K,(xi,xj)f(y lxj,) nj=1 y 

- 

K,(xi, xj)f(yiIxj, 
0). (9) 

nj=l 

Using ^-i(yi,Xi), pl,-i(xi), and (yi, xi) just introduced, we define our test 
statistic as 

1 

)=n 

n (i 
xxj) 

Tn,'Y 
1 

x 
Ix [I(yi = ) - f(yiIxi,0)] (10) 

n(n - 
1) i=j i=, ilf (yi|xi, ) 
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BOOTSTRAP TEST OF CONDITIONAL DISTRIBUTIONS 593 

Note that the double summation in T, 
y, 

does not include j = i terms because 
we have used the leave-one-out estimators for estimating p(yi, xi) and pI(xi). 
The reason for using these leave-one-out estimators is that, under H0, the asymp- 
totic distribution of 

Tn,, 
will be centered at zero (there is no center term). 

The smoothing parameters h1,..., hq (corresponding to the continuous vari- 
able xc) can be selected by several commonly used procedures, including the 
cross-validation method, the plug-in method, and some ad hoc methods. How- 
ever, for A, ... ,Ar, the plug-in or even an ad hoc formula is not available. 
Hall et al. (2004) have shown that using the cross-validation method to select 
Ai,..., Ar and hi,..., hq has some nice properties: when x4 (x') is a relevant 
variable, the cross-validation method will select a small hs(As) that converges 
to zero at an optimal rate; when xf (xf) is an irrelevant variable,' the cross- 
validation method will select an extremely large value for hs (upper bound value 
for 

As) 
so that the irrelevant variables are (asymptotically) automatically removed 

(smoothed out). Indeed in the problem of nonparametric estimation of a condi- 
tional density, cross-validation comes into its own as a method with no obvious 
peers. Therefore, we will choose A1,..., ., A, hi,..., h by the cross-validation 
method suggested in Hall et al. (2004). 

Let (h, A) = (hi,..., hq, A ,..., Ar). Hall et al. propose choosing (h, A) by 
minimizing the following objective function:2 

1 " nG(x,)m(xT) 2 n 
((xiy,)m(x[) 

CV(h, A) - -i (1) 
n ;=l pl,i(xi)2 ni=1 Pi,-i(xi) 

where 

1x nf 
G -(X)12 E :Ky (xi,xi )Ky(xi,,Xi2)(Yi1 =yi2), 

(nx)== (n - 1) 2 

in which ,_i (xi) and 
p-i(xi, 

yi) are the leave-one-out kernel estimators of pi(xi) 
and p(xi, yi), respectively, and m(xf) is a weight function introduced to deal 
with the small random denominator problem; see Hall et al. (2004). 

We will use h1,..., hq and A1,..., , to denote the resulting smoothing 
parameters. Assuming that all the x variables are relevant variables, Hall et al. 
(2004) showed that h ̂= anln-1/(q+4) + 

op(n-1/(q+4)) 
for s = 1,...,q, and ,^= 

bon-2/(q+4) + Op(n-2/(q+4)) for s = 1,... ,r, where a2 and b1 are some finite 
constants. 

THEOREM 2.1. Under conditions (C1)-(C3) given in the Appendix, we have 
under Ho 

n, 
n(fl h... i,)1/2TV9/n 

- N(0,1) in distribution, , ? " ~ f^q, 
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594 YANQIN FAN ET AL. 

where y = 
(hl,...,hq,jl,'...,Ar) 

and 
V,, = 2[n(n - 

1)]-l 1i j i 
{K,?(xi,x_)[I(yi = ) -f(yixj, )]/f(Yi xi,)}2 is a consistent estimator of 

crO2 = [f W2(v)dv]E[(1 - f(yilxi,Oo))f-l(yi xi,go)Pl(xi)], the asymptotic 
variance of n(hi. .. ..q)'/2T)n,. 

It can be shown that under H1, 
J,,,~ 

diverges to +o0. Hence, the 
J,, 

test is a 
consistent test. Moreover, the J, , 

test can detect local alternatives that approach 
the null at a rate of 

Op(n-1/2(h 
.. .hq)-1/4) = 

Op(n-(1/2)((8+q)/(8+2q))), 
which is 

slower than 
Op(n-'/2) (because hj - Op(n-1/(4+q)) 

for allj = 1,...,q). 
We now briefly discuss the case where the dependent variable y is continu- 

ous. In this case, one can still use Zheng's test statistic given in (5) but with 

W2,h,((y - yj)/hy) and Wh((xc - xf)/h) being replaced by w2,h,((yi - yj)/hy) 
and Kij,, = WA((xf - xf)/h)L(xA,xf, A), respectively, where 

(hy, h,) = 

(h,, 
hl ... 

, 
hq, A1, ... , Ar) denote the cross-validation selected smoothing param- 

eters suggested by Hall et al. (2004); i.e., one chooses (hy, h, A) by minimizing 
(11), but now 

G-i(xi) 
is defined as 

1 

y 

" 
i, 

- 
yi2 G-i(xi) - 1)2 K,(xi,xil)K,(xi,xi)2 

2,hY (n 1) 24h 

where W2,hj(v) = h,71 '2(v) and 02(v) f= W2(u)w2(v - u)du is the twofold 
convolution kernel derived from 

w2(-). With a slight abuse of notation, the resulting test statistic becomes 

T'cn• 
n(n - 1) 

x nW2,h• 
K,,ij- 

w2,, 
v h- K, f (y x 

jy0)(dy 

) 

f (i X;i 
0) 

(12) 

where 5 = 
(h•,.,h1...., 

h, 1,..., r) contains the extra smoothing parameter 
h, because yi is continuous. 

The asymptotic distribution of T,1 is given in the following theorem. 

THEOREM 2.2. Under conditions (C1)-(C3) given in the Appendix, we have 
under Ho, 

Jc 
f 

(,h... )1/2T c / - N(0,1) in distribution, 

where Vc = (2z,... hq)/n(n - 1)i•,i KZ,,ij is a consistent esti- 
mator of o-02~ = 2[fW2(v) dv]E[pl(xi)], the asymptotic variance of 
n(fhi...hfi,)1/2Tc. 
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BOOTSTRAP TEST OF CONDITIONAL DISTRIBUTIONS 595 

The proof of Theorem 2.2 is similar to that of Theorem 1 in Zheng (2000) 
and is omitted here. 

2.3. A Parametric Bootstrap Test 

Theorems 2.1 and 2.2 provide, respectively, the asymptotic null distribution of 

J,~, and Jn',. Consequently, one can perform tests for Ho by comparing the 
value of Jn,f (or J~ ~) with its asymptotic critical value. However, it is well 
known that consistent nonparametric tests often suffer from substantial finite- 
sample size distortions. Our simulations reveal that the Jn, (J1, ) shares this 
drawback. To overcome this problem, we propose a bootstrap procedure to 
more accurately approximate the finite-sample null distribution of Jn,5 (Jc,?). It 
involves the following steps. 

Step (i). Generate the ith bootstrap value of the dependent variable y from 
the parametric conditional distribution f(. I xi, 0). Denote this value by y[ 
(i = 1,..., n). We have the complete bootstrap sample {xi, }Y*I. 

Step (ii). Based on the parametric null model, estimate 0 using the bootstrap 
sample. Let 0* denote the resulting estimator. Compute the bootstrap sta- 
tistic J,/, 

(J,•*) 
in the same way as J,, 

(Jn,) 
except that 

{yi}i=l 
and 0 are 

replaced by 
{Y[}i--I 

and 0*, respectively. Note that we use the same cross- 
validation selected smoothing parameter 5 in computing the bootstrap sta- 
tistics. There is no re-cross-validation in computing Ti*, (Tc*). 

Step (iii). Repeat steps (i) and (ii) a large number of times, say, B times, 
and use the empirical distribution of the B bootstrap statistics {JI,}j~=l 
({JC,*,?J1) to approximate the null distribution of J,?, (J~ 9). 

Step (iv). The bootstrap test rejects Ho at significance level a if J,?, (J'1,) 
exceeds the empirical ath percentile of 

{Jn*, }? 
({JCn,*~,} 

). 

The following theorem justifies the asymptotic validity of the bootstrap test. 

THEOREM 2.3. Assume the same conditions as in Theorem 2.1 (Theo- 
rem 2.2) except the null hypothesis. We have 

sup P(J,*, zl{xi, 
Yii=l) -- 

(Z) = o,(1), (13) 
z G 

where D(-) is the cumulative distribution function of a standard normal ran- 
dom variable. 

The proof of Theorem 2.3 is given in the Appendix. 
In words, Theorem 2.3 states that 

Jn, converges to N(0,1) in distribution in 
probability. Other authors show that some bootstrap method works using the 
concept of convergence with probability one, where one states that the left- 
hand side of (13) is o(1) with probability one (i.e., convergence in distribution 
with probability one). Here we choose to use the concept of convergence in 
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596 YANQIN FAN ET AL. 

distribution in probability because our test statistic involves nonparametric esti- 
mation and it is easier to work with "convergence in probability" than "conver- 
gence with probability one." 

Note that Theorem 2.3 holds true regardless of whether the null hypothesis 
is true or not. Therefore, (i) when the null hypothesis is true, the bootstrap pro- 
cedure will lead to (asymptotically) correct size of the test, because J,5, con- 
verges in distribution to the same N(0,1) limiting distribution under Ho; (ii) 
when the null hypothesis is false, because the test statistic 

Tn,, 
will converge to 

+oo in probability, whereas asymptotically the bootstrap critical value is still 
finite (say, the 95th quantile from the N(0, 1) distribution), the bootstrap proce- 
dure leads to a consistent test. 

3. MONTE CARLO SIMULATION RESULTS 

In this section, we present Monte Carlo simulation results to examine the finite- 
sample performance of our J, , (J,C ) test. 

3.1. Discrete Dependent Variable 

In this simulation experiment, the dependent variable y is a {0,1} binary vari- 
able. We use a slightly different notation in this section; x denotes xc and z 
denotes xd. The data generating process (DGP) for the null model is given by 

DGP": yi = 1 if o + xi + 2 i Ui > 0, 

y = 0 otherwise, 

where 
{xzjl}, 

is a random sample from N(0,1), zi takes binary values {0,1} 
with case (i) Pr[zi = 1] = 4 and Pr[zi = 0] = 4 and case (ii) Pr[zi = 1] = 0.8 
and Pr[zi = 0] = 0.2, and the error term {ui} is i.i.d. N(0,1). Moreover, xi, zi, 
and ui are all independent of each other. The true parameters are {13o,311 

= 

{1,1} and /32 = {1, 0.3, 0}; 32 = 0 corresponds to the case that zi is in fact an 
irrelevant variable. This leads to the following null hypothesis: 

Ho:p(y x, z,O) 
= 

yF(o + PIx +p32z) + (1 - y [1 - 
(30o 

+ 11x + 12Z)], 

where 2 (.) is the standard normal cumulative distribution function. The para- 
metric conditional density of the null model is estimated by the maximum like- 
lihood (ML) method. 

The following two alternative DGPs are constructed to examine the power 
of the J, ? test; one has a nonlinear term in the index, and the other has a con- 
ditional heteroskedastic error: 

DGP : yi = 1 if 0 + P xi 2 i 3 X Ui > 0, 

yi = 0 otherwise; 

DGP": yi = 1 if o + xi +2 Zi + Xii 0, 

yi = 0 otherwise, 
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where xi, zi, and ui are all generated in the same way as before. Also, 10o, I, /2 
take the same values as previously, whereas /3 = 1. We use the parametric boot- 
strap described earlier to approximate the null distribution of the test statistic J,, j. 

Our test will be compared with the CK test of Andrews (1997) with test sta- 
tistic (CK,) defined as 

CKn = max x1 
: [I(yi y) - F(yjlxi,zi,')]I(xi 

- 
xj)I(zi z) , (14) 

where F(. 
',', 

0) is the parametric conditional distribution function and 0 is 
the ML estimator of 00. 

The sample sizes considered are n = 100 and 200, the numbers of simula- 
tions are 5,000 for size estimation and 2,000 for power estimation, and the num- 
ber of bootstraps is B = 1,000 for all cases. The simulation results for discrete 
yi with relevant covariates only are reported in Table 1. 

From Table 1 we observe that for different values of /2 (with /2 
= 1, 0.3) 

and different values of Pr(zi = 1) (0.5, 0.8), the performances of the Jn,? and 
Andrews' tests are qualitatively the same. Overall the estimated sizes are quite 
close to their nominal sizes for both tests. The power performances are mixed 
for the two alternative models. For the alternative DGP' with an extra qua- 
dratic term, our test Jn, shows higher power than Andrews' test for the sample 
sizes considered. However, for some cases of DGPa with a heteroskedastic 
error term, Andrews' test is slightly more powerful than ours. The simulation 
results show that our Jn,? test complements Andrews' test. 

Next we consider the case with an irrelevant covariate. We use the same DGP 
as before except that now we choose /2 = 0 so that the binary discrete vari- 
able z becomes an irrelevant covariate. Because this information is unknown a 
priori, we still compute the conditional probability of y conditional on both x 
and z. In this case we expect that the cross-validation method tends to select 
the upper bound value of A 

-= 
so that the irrelevant covariate z is smoothed 

out automatically, resulting in a finite-sample power gain for the Jn, test. 
From Table 2 we observe that the power of the Jn,~ test improves substan- 

tially compared with those reported in Table 1. It is interesting to observe that 
for DGP", the power performance of the Jn, test is quite comparable to that of 
Andrews' test. Thus, the simulation results confirm that our cross-validation- 
based test indeed has the ability to remove irrelevant covariates and enjoys supe- 
rior finite-sample power performance. 

3.2. Continuous Dependent Variable 

In this section we consider the case where both y and x are continuous vari- 
ables, and we compare the finite-sample performance of Zheng's original test 
with our Jn, test. The first DGP we use is the same as that in Zheng. The null 
model is a linear regression model with normal homoskedastic errors: 
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TABLE 1. DGPa: The case of discrete yi with relevant covariates 

Jn, 
?,Andrews 

(1997) 

1% 5% 10% 1% 5% 10% 

a. zi is relevant (/32 = 1) with Pr[z= = ] = 0.5 
DGPo (size) 

N = 100 0.9 4.3 9.2 0.7 4.1 10.1 
N = 200 1.1 5.5 11.2 1.1 4.7 9.5 

DGP" (power) 
N = 100 9.2 31.2 45.2 4.5 18.4 29.4 
N = 200 31.2 57.2 70.8 12.2 34.8 53.2 

DGP' (power) 
N = 100 28.2 48.7 60.4 23.2 51.2 62.4 
N = 200 56.8 77.2 84.4 50.2 78.3 85.7 

b. zi is relevant (132 = 1) with Pr[zi = 1] = 0.8 
DGPo (size) 

N = 100 0.8 5.2 9.5 0.8 4.8 9.4 
N = 200 1.2 5.6 10.0 1.3 5.8 11.0 

DGPf (power) 
N = 100 23.0 46.3 60.3 7.5 27.7 44.2 
N = 200 57.7 80.2 89.8 27.3 66.0 80.5 

DGP' (power) 
N = 100 31.4 55.8 70.9 31.3 55.0 70.0 
N = 200 63.7 82.5 91.7 62.2 83.7 91.5 

c. zi is relevant (/2 = 0.3) with Pr[zi = 1] = 0.8 
DGPo (size) 

N = 100 0.8 5.5 10.7 0.8 5.3 9.8 
N = 200 1.4 5.3 10.0 1.5 6.1 11.2 

DGP" (power) 
N = 100 23.2 51.7 63.2 6.1 20.3 34.2 
N = 200 53.7 75.2 87.5 17.5 46.7 68.8 

DGP" (power) 
N= 100 31.6 59.1 67.5 30.1 54.2 60.8 
N = 200 60.8 78.5 89.1 56.0 76.2 83.7 

DGPb : yi = /o + PIxi + ui, 

where {xi}i=1 is a random sample from N(0,1) and the error term {ui} is i.i.d. 

N(0, o2). Moreover, xi and ui are independent of each other. The true param- 
eters are {/o0,/1,o-} = {1,1,1}. This leads to the following null hypothesis: 

Ho: p(ylx, ) = p[(y - 3o - ix)/o-]/o-, 
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TABLE 2. The case of discrete yi with irrelevant covariates 

Jn,z Andrews (1997) 

1% 5% 10% 1% 5% 10% 

a. zi is irrelevant (32 = 0) with Pr[zi = 1] = 0.5 
DGPo (size) 

N= 100 0.8 5.8 11.5 1.2 5.7 11.2 
N = 200 1.3 5.6 10.9 1.3 5.6 11.0 

DGP' (power) 
N = 100 30.0 53.2 66.4 14.5 28.8 43.6 
N = 200 71.6 89.6 94.4 36.4 70.0 83.2 

DGP" (power) 
N = 100 47.6 71.2 79.2 42.4 60.8 70.2 
N = 200 78.9 89.0 94.7 76.8 88.4 92.4 

b. zi is irrelevant (/32 = 0) with Pr[zi = 1] = 0.8 
DGPo (size) 

N= 100 0.8 5.9 11.2 1.2 5.8 11.5 
N = 200 1.2 5.7 11.0 1.5 5.9 10.8 

DGP' (power) 
N = 100 35.3 61.8 72.3 12.5 27.8 44.0 
N = 200 69.5 90.0 92.0 34.8 68.7 81.5 

DGP" (power) 
N = 100 45.8 70.8 78.8 42.4 60.8 70.2 
N = 200 81.5 93.0 97.0 67.8 85.8 89.8 

where 4(.) is the standard normal density function. The parameter 0 is esti- 
mated by the ML estimation method. 

Two alternative models are considered: one is designed to test misspecifica- 
tion in the regression (DGP'), and the second is to test homoskedasticity of 
the error term 

(DGpb2): 
DGPI: yi = o + P, xi + P x2 

x i, 

DGP : yi = f + P31Xi + Xi Ui, 

where 12 is set to be 1 in the experiment. We also report Andrews' test for 
comparison purposes. The simulation results are reported in Table 3a. 

We observe from Table 3a that the parametric bootstrap method successfully 
overcomes the size distortion of Zheng's test. The estimated sizes of the boot- 
strap test are all close to their nominal values, whereas Zheng's test based on 
the asymptotic normal approximation is significantly undersized. For the alter- 
natives DGPb and DGpb, we observe that the bootstrap test J, is much more 
powerful than Zheng's test. There are two reasons for this: the first is that the 
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TABLE 3. DGPb: The case of continuous yi 

Jc, 
Zheng (2000) Andrews (1997) 

1% 5% 10% 1% 5% 10% 1% 5% 10% 

a. Continuous variable case without irrelevant covariates (/32 
= 1) 

DGPb (size) 
N = 50 1.4 5.2 10.5 1.3 1.9 2.7 0.8 4.5 9.0 
N = 100 1.2 5.5 10.9 1.5 2.7 3.9 0.9 4.2 10.6 
N = 200 0.9 4.5 8.9 1.7 2.5 4.0 1.2 4.0 9.8 

DGPb (power) 
N = 50 84.8 96.0 98.4 56.3 75.6 84.0 72.7 92.2 96.7 
N = 100 99.6 99.8 100.0 93.3 96.9 97.5 96.5 99.0 100 
N = 200 100 100 100.0 100 100 100 99.7 100 100 

DGPb (power) 
N = 50 48.0 73.2 82.4 28.4 44.3 56.8 19.8 29.0 35.8 
N= 100 96.4 100 100 81.0 88.8 91.2 25.0 41.8 58.0 
N = 200 100 100 100 96.3 96.6 96.7 32.0 51.3 69.6 

b. Continuous variable case with an irrelevant covariate (/32 
= 0) 

DGP' (size) 
N = 100 0.07 4.8 10.0 1.6 4.2 5.8 0.05 3.0 6.5 
N = 200 0.08 4.9 9.6 2.4 3.8 6.4 0.06 3.1 6.9 

DGPf (power) 
N = 50 36.4 71.0 83.0 25.6 36.4 43.4 20.8 38.2 57.6 
N = 100 75.2 93.6 97.8 50.4 65.4 71.8 41.2 65.0 78.4 

DGP' (power) 
N = 50 73.4 93.6 97.8 50.4 65.2 71.8 24.8 39.0 48.7 
N = 100 97.6 99.6 100 87.2 93.2 95.8 35.0 46.8 68.0 

bootstrap test corrects the undersize problem of Zheng's test and hence improves 
the finite-sample power performance; the second reason is that we use the data- 
driven cross-validation method to select the smoothing parameters that lead to 

optimal smoothing in estimating the unknown conditional density functions, 
whereas Zheng suggested using some ad hoc method to select the smoothing 
parameters. It turns out that the use of optimal smoothing also enhances the 

finite-sample power of the test. For DGpb, Andrews' test has similar power 
as the 

J,,/ 
test, whereas for DGPb, Andrews' test is less powerful than the 

Jn, test. 
Finally we consider a case that there exists an irrelevant continuous variable. 

We will use basically the same setup as in DGPb except that we set /32 = 0 
now. Therefore, x2i becomes an irrelevant variable. However, this informa- 
tion is not used in the estimation. That is, all estimation methods still use the 
full data set {yO, xi, x2i}=1. Because our cross-validation-based Jn,, has the 
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advantage of (asymptotically) removing the irrelevant variable x2, we expect 
that the 

J,, 
test will enjoy further power gains. The simulation results are 

reported in Table 3b. 
From Table 3b we observe that the Jn, test has good estimated sizes. Zheng's 

test still underestimates the sizes at the 5% and 10% levels. Andrews' test is 
also somewhat undersized when an irrelevant variable exists. From the esti- 
mated power results, we see substantial power gain of the Jn, test over Zheng's 
test. Essentially, Zheng's test is based on a two-dimensional nonparametric con- 
ditional density estimate because the smoothing parameters in Zheng's test are 
selected by some ad hoc rules that cannot detect the irrelevant variable x2, 
whereas our 

J,,^ 
test estimates, asymptotically, a one-dimensional conditional 

density function because X2i will be smoothed out asymptotically. The 
J,, 

test 
is also more powerful than Andrews' test for this DGP (when there is an irrel- 
evant continuous variable). Of course here we only report a limited simulation 
result, from the local power analysis; we expect that there exist data generating 
processes for which Andrews' test will be more powerful than the J,, test. Our 
simulation results show that the J, - test can serve as a useful complement 
to Andrews' test when one is interested in testing a parametric conditional 
distribution. 

4. CONCLUSIONS 

This paper proposes a kernel-based bootstrap test for parametric conditional 
distribution functions. We separately consider the case where y is a discrete 
variable and where y is a continuous variable. In either case, the conditional 
variables can contain both discrete and continuous variables. By automatically 
smoothing both the discrete and continuous variables via the method of cross- 
validation, our test has the advantage of automatically removing irrelevant 
variables from the estimate of the conditional density function and, as a conse- 
quence, enjoys substantial power gains in finite-sample applications, as con- 
firmed by our simulation results. The test is potentially applicable in a wide 
variety of applications and should prove useful to applied researchers. 

NOTES 

1. We say that xs is an irrelevant variable if p (y x) is independent of x,. 
2. Hall et al. (2004) show that, up to an additive constant term that does not depend on 

(h, A), CV(h, A) is a consistent estimator of the weighted integrated squared error: f{jI(y x) - 
p(y x)}2pI(x)w(xc) dxdy, where f dxdy = 

,xd 
fdxc dy if y is a continuous variable and f dxdy = 

,xd d,y 
f dxc if y is a discrete variable. 
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APPENDIX 

We first state conditions that are used to prove Theorem 2.1. 

(C1) {yi, xi }i are i.i.d. data with a joint density p(y, x). The first-order derivatives 
of p (.,.) with respect to its continuous arguments are uniformly bounded. The marginal 
density pl(x) of xi and its first-order derivatives with respect to its continuous argu- 
ments are uniformly bounded. 
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(C2) (i) The parameter space 0 is a compact and convex subset of Rk. Let 
1" 

II denote 
the euclidean norm of .; then f(y I x, Oo)-1, I(f(y I x, 8))/a II, I1(a2 logf(y I x, 6))/0a0o' |, and 1(a8 logf(y I x, 6))/90 X (a logf(y Ix, 6))/80'11 are all bounded by a nonnegative func- 
tion b(x, y) with f b(x, y)S < co (s = 1,2), where f denotes integration for the continu- 
ous variable and summation for the discrete variable. (ii) 0 - 00 = 

Op(n-1/2) 
under Ho. 

(C3) w (.) is a nonnegative, bounded, symmetric function with f w(v) dv = 1 and 
f w(v)v2 dv = c(< oo). 

The preceding conditions are basically the same as those used in Zheng (2000). 
We give the central limit theorem (CLT) of Hall (1984, Thm. 3.1) for degenerate 

U-statistics as a lemma here. 
LEMMA A.1. Let 

2 n n 
n= (n EH1 (z=,z1) n (n - 1) i=1j>i 

be a second-order U-statistic, where 
{zi}n=1 

is i.i.d. Suppose E[H,(zi,zj)lzi] = 0 
(for i * j, U, is a degenerate U-statistic) and define Gn(Zl,Z2) 

= E[Hn(Z3,Z1) 

Hn(z3,Z2)IZ1,Z2]. If 

E [G (zi, Zj)] 
+ 

n-'E[H'(zi, zj)] --- 0 as n -- co, (A.1) 
{E[H,2(zi, zj)]}2 

then S 
{ 2E[H(zi, z in distribut)] 

Un1 2 N(O, 1) in distribution. 
I n 

In the proof presented subsequently, we will replace hI, ... hq, A1l ... , , by 
their nonstochastic leading terms: (h, ...., hq) 

= (aon-1/(q+4)... aon-1/(q+4)) and 

(A...Ar) 
= 

(bn-2/(q+4)... bn-2/(q+4)). 
This will greatly simplify the arguments 

in the proof. By the stochastic equicontinuity result of Ichimura (2000) (see Lemma 
A.4, which follows), we know that the conclusion holds provided hs - hs = 

op(hs) (s = 1,..., q) and As 
- 

As 
= op(As) (s = 1,..., r), which are true by Theorem 3.1 of 

Hall et al. (2004). 
Using the shorthand notations Iij = I(yi = y1),j f(yi xi, 0), fi = f(yi Ixi, 0o), fi = 

f(yilxj, O), j 
= f(yi Ixj, 6o), and the identity 

1 1 fi-, (fi -)2 
- + + (A.2) 
ff f 2 fi2f 

we can write T,,,. = T,il + T2 +T3n, where 

1 K 

n(n-1) i f A 

1 K 
Tn n (n - 1) i j ji fi2 

Tn3 ij j 
2 1 Kfi 
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Let fi') = [(ala/)f(yi Ixj, 0)]o o 
and /4(2) = 

[(f2/1Oa0,)f(y Ixj, O0)]l=1 , 
where 6 is 

between the line segment of 0 and 00. By Taylor expansion, we have 

1 K 1 
Ki T,, 

, 
= 

n( - 1 
U../ / 

f[- i- 
- -00) 

n(n-1)i f i fn(n-1) i p f 

1 K 
+ ( ( - 

o)' ,- 
f'2)(- - 00) 

-=Tnl• 
+ 

T,,2(0 
- 00) + (o - 

0o)T•..3(B^ 

- 00), 
where the definitions of 

T,,,j 
(j = 1,2,3) should be apparent. 

The term T,1,1 can be written as a second-order U-statistic (zi = (xi, Yi)): 

2 

-n 

1, 1 
n1 

i 

H , ( Zj), n(n - 1) j> 
where 

H, (zjz (zj~) { 
i" ['i - fij ] + K 

}'ij--fji] (2)f f f1 
2fI 

\ 

- 
{()J,(z, z) +Jln(zj, Zi)}. 

It is easy to check that 

E[J,(zi, zj)lzi] = E{K, ij [Iij -f(yi xj)]fi-' Izi} 

= fi- {E[Kg,, ijlijzi] - E[K,,ij f(y IXj)lzi]} 

= f-l { f p(y,x)K,,i idxj -f KY,,ij1(xj)f(yilxj) 
dxj 

= f 
K,,i[p(yi, 

x>) - Pl(x)f(yj Ix)]}dx} =0 

because p(yi, xj) - p,(xj)f(y I xj) = 0. 

Similarly, 

E[J,(zj, zi)lzi] = 
E{KY,,ij[I 

-i f]fj ' zi} = E[KY,ijlijfj' I-zi] - 
E[KY,,ijfiffj' 

zi 

= 
fp(yj,xj)KY,ijijf(yjxj)- dxj 

- ) 
fK,,fijf'fji dxj 

yj 

(becausefifl'p(yi, xj) = pl(xj)) 

= 
fKI,ij[P(yi, xj)f(Yi I Xj)-1 -p,(x)]dxj 

= 0 

(because E f(y Ixi) =1 and 
p(yi,xj)f(yi xj) 

= 
p,(xj)). yj 

This content downloaded  on Wed, 20 Feb 2013 21:12:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


BOOTSTRAP TEST OF CONDITIONAL DISTRIBUTIONS 605 

Thus, E[Hn(zi, zj)lzi] = 0 and Tn,1M is a degenerate U-statistic. 

E[Hn(zi,zj)2] 
= E[Jn(zi,Zj)2]= E[K2ij(i -fi)2i2] 

= E{E[Kg,(ij(Iij +fi2 - 2Iij fi)/fi2zi,xj]} 

= E [K if +f - 
2ffi )/fi] = E[K2,ijfi( fij)/fi2] 

= - f 
ff),i,( -fi)/i-p(y,Xi (y,xj) dxf dxf 

Yi Yj Xd Xjd 

Yi Yj 
X, 

"+- 
Kf 

2fgji(1 
- 

fj)fp(i-2p(,i, 
j, 

dx 
j) 
dx f 

Yi 
YjXid 

Xjd*Xx 

= (hi...hq )-{ f W2(v) dvl E[(1- 
f)filpP(xi)] 

+ Op(ln) 

=(h ...h ) o[() 
2+ Op 

(n) , 

where r,7 = = _1 h2 ?+ 
•.=1Aj, 

we have used = p(yj, xi) = pl(xi), Ky, ij = Wh, ijL, ij, 
and LA, i = O(Y2=, 1,) if xf 4 xf. 

Therefore, we have 

d12 2(hi...hq) 
V, ,y E{[n(n - 1)(h...hq)]/2Tn2 E[H(, = +(1). 

n(n - 1) j 

(A.3) 

Equation (A.3) implies that {E[H,2(zi,zj)]}-' = O(hl...hq). Similarly, one can 
show that E[H,4(zi,zj)] = O((hl... hq)-3). Define G,(z1,Z2) = 

E[Hn,(Z3,Z2) 

Hn(Z3,Z l)lZ,Z2]. 
One can show that 

E[G2(zi,zj)] 

= O((h... hq)-l). Thus, equa- 
tion (A.1) becomes 

O((hl...hq)2){O((h,...hq)-1) 
+ 

n-lO((hl...hq)-3)} 

= 
O((hl... 

h,) + n-1(h,... h,)-I) = 
o(1). 

Thus by Lemma A.1 we know that 

n(hl... hq)1/2Tnl,1 
/Vn 

-> N(0,1) in distribution. (A.4) 
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606 YANQIN FAN ET AL. 

Define 

2(h, ...hq,)( )2 (A.5) 
, n(n - 1) (A.5) 

where H,,(zi, zj) is defined in the same way as H,(zi, zj) except that 0o is replaced by 0. 

Applying Lemma 3.1 of Powell, Stock, and Stoker (1989) or Lemma 1 of Zheng (2000), 
it is straightforward to show that 

V,,, 
- V,,,, = o,(l). Thus, we have 

n(h, ... hq)1/2, 

2Tn1,1~n7 

N(0,1) in distribution. (A.6) 

Applying Taylor expansion to Tn2, i.e., using 
fj- 

= 
fi + flj(6 - 0o) and f - = 

f( I- o) + (2)( - 0o)'Jj2(0 - 80), we obtain 

1 K. i 
Tn- [i 

-jfi]( •- 
0) n (n - 1) 

i 

j i f(2 

+s ~(0 
2n(n - 1)p 

fi2 -Tn2,1 (0 - 00) (0 - 00)'Tn2,2(0 - 00), (A.7) 

where T2,l = 1/(n(n - 1)) jiK,(I 
- 

fij)f(l)/f2 
and Tn2,2 = 1/(2n(n - 1)) 

Ei 
Ejli(Ky, ijfi2)[(ji _fi 

(2) + (f1l))l(,1)] 

Lemma A.2, which follows, shows that Tnl,2 
= 

Op(n-1/2) 
and Tn2,1 = Op(nr-1/2), and 

Lemma A.3 shows that T,1,3 = Op(l), Tn2,2 
= 

Op(l), and T,3 = 
Op(n-1). 

These results 

together with 0 - Bo = 
Op(n-1/2) 

lead to 

T,+, = 
Tnl,l 

+ 
Op(n-1). (A.8) 

Expressions (A.6) and (A.8) together complete the proof of Theorem 2.1. 

LEMMA A.2. 

(i) Tnl,2 
= 

O,(n-1/2 
(ii) Tn2,1 

= Op(n-1/2 

Proof of (i). 

Tn , 2 - K,,,y fI)/ i 

. 
n(n - 1) ji 

First note that E[Tnl,2] = 0 because 

E[Ky,fijjijfi] =- E{K, ijE(fij'/filxi,xj)} 

= E Kvi -j ,f(yixj,O) - E KY, ij [1] = 0. 

Hence, 

E{[Tn,212} 
= 

n2n 1)K JI- E[K,'fy 1 
, 

n2 - i jii i' j', i' 
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BOOTSTRAP TEST OF CONDITIONAL DISTRIBUTIONS 607 

The preceding expression is zero if i,j, i',j' all take different values (because 
E[Kij)/fi] = 0). Therefore, for E{[Tn1,2]2} to be nonzero, we must have either 

(i) i, j, i ',j' take three different values or (ii) i,j, i',j' take two different values. For these 
two cases it is easy to show that 

1 
E{[Tn1,2,(i)] 

2 
=2 O(n') = O(n-1) 

E{[Tn1,2,(ii)]2 = (n 1)O(n2(h... h,)-') = o(n-) 

Hence, E{[Tn1,2]2} = O(n-1), and consequently, T,1,2 = O,(n-1/2 

Proof of (ii). 

1 1 

Tn2,1- 

= Ky, i_()ij 
- 
- ) =fi,()(fiA i, ), n(n - 1) i ' In(n - 1 jii 

where 

Aln(zi,zj) 
= K, ijfi1)(I1 -fij)/lfi - 

A1,1(zi, z1) - Aln,2(Zi, Zj). 

E[An,I(zi,zj)lzi,xj] 
= 

E[K, ijf(1)Iflzi,zj] = K,fijj(yi 
= 

yi)f(yIxj)lf 
Yi= K 

=K7,,ijfj?')f (Yi Ixj)/fi =Aln,2(zi9 zj). 

Hence, E [Aln(zi, zj)] 
= 

E[AIn,1(zi,zj)] 
- E[Aln,2(Zi, Zj)] = 0. 

One can write Tn2,1 = [2/n(n - 1)] ilj>i Vln(Zi,Zj) as a second-order U-statistic, 
where Vln(zi, zj) 

= 
(')[AIn(zi,Zj) + 

Aln(zj, Zi)]. 

(1) 
E[VWn(Zizj)lzi] " 

- 

2{E[Ain(zi,zj)lzi] 

+ 

E[Aln(zjzi)lzi]} 

(2) 
= 0 + 

E[KgyJfjf)(I -+fji)/fj/zi] 

( 2) J1 1 = 
2• Kyijfj (Iij 

- 
fji)P(y1,xj)fj dxj 

= 

fKy,ijfi(1)p (xj) dxj 
- 

Kf2Ky,ij 
fjipI(x) dxj 

= 

fi(1)pl(xi)- 

G 
Ifji )fjipl(xi) 

+ (s.o.) 

21) 

.(2) f(1 

(= 2)pi(xi)[fi) 
- E(fj 

)Ixi)] 
+ (s.o.) 

()- pl(Xi)[iu) 
- 

E(fi()I|xi)] 
+ (s.o.) =- vi + (s.o.), 
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608 YANQIN FAN ET AL. 

where in the preceding expression, Ai = Bi + (s.o.) means that JiAi = liBi + Op(ZiBi), 
i.e., JiBi is the leading term of JAi. Here 

vii 
= 

(1)pl(xi)[fi() 
- E(fi() I xi)], and we 

have used E[ fj') Ixi] = E[ fi(1) xi] = - y f(ylxi)2 
Using the H-decomposition, we have 

2 

Tn02,1= - 
0+ E- 

_E[H,,(Zi, 
zj)lZi] 

+ (s.o.) n i 

2 
= - 1 v, + (s.o.) = 0,(n-1/2) because E(vi) = 0. 

n i 

LEMMA A.3. 

(i) Tnl,3 = O(l). 

(ii) Tr2,2 = Op(l). 
(iii) Tn3 = Op(n-'). 

Proof of (i). Here T,1l,3 = [1/2n(n - 1)]i • i K,,j2)li. 
By assumption (C2) 

(b(.,.) is the bound function for f(2)(.)): 

E[||Tnl,3 
|]- CE[Ky, ijb(xi, yj)] 

= C 
KffK,ib(yi,xj)p(yi,xi)PI(xj)dxidxj 

= 
CE WvffW(v)L(x", x/,A)b(yi,x[ + hv, x') 

dXjd 

X p(yi,xi)p (xc + hv, xf) dxc dv 

= C 1: yi f b(yi,xi)P(yi,xi)pi(xi) dxC +op(1) 
= CE[p i)b(yxxi) + o() (1), 

= CE[pI(xi)b(yi, xi)] + o(1) = 0(1), 

which implies that Tn1,3 
= 

Op(1). 

Proof of (ii). It is similar to the proof of (i) and is thus omitted here. 

Proof of (iii). Using j - fi = 
f(1)(yiIxi,x)(0 

- 00), where 0 is between the line 
segment of 0 and 0o, we have T,,3 = (0 - 0)'Tn3,1(0 - 00), where 

Tn3,1 1 
n(n - 1) i ji 

- 1 K_,,,[IE, -I 
g 

f]f (fi(0)'I/(fi3) + (s..) 
n (n - 

1)j i ( 

Tn3,1,0 + (S.O.). 
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BOOTSTRAP TEST OF CONDITIONAL DISTRIBUTIONS 609 

It is easy to show that E[| T3n,1,o|] = 0(1). Hence, T3n,1,0 = Op(l), which implies 

T3n,l = Op(1) and T3n = Op(n-1) because 0 - -o = Op(n-1/2). 

LEMMA A.4. (Ichimura). 

J,? 
- 

Jn,• 
= 

Op(1), 
where y = (hl,..., hq, Ai,..., Ar) with hs = an-1/(q+4) (s = ,...,q) As = bn-2/(q+4) 

(s = 1,...,r), and a > 0 and 
b? > 

0 are uniquely defined constants as given in Hall 
et al. (2004). 

Ichimura (2000) has proved a general result that includes Lemma A.4 as a special 
case. Here, we provide an alternative proof for Lemma A.4 using a simple tightness 
argument (e.g., Mammen, 1992). Our proof consists of two parts: (i) (nhl, ..., iq)1/2 
Tn,p - (nhl,..., hq)1/2Tn,y = op(1) under Ho; (ii) Vn,p - 

Vn,• 

= Op(1). Because the proofs 
are similar, we only provide the proof for (i). 

Proof of (i). Writing ~s = asn-1/(q+4) and As = bsn-2/(q+4), by Theorem 3.1 of Hall 
et al. (2004), we know that h,1/h? - 1 - 0 and As,/A? - 1 - 0 (in probability). This 

implies that is -- a? and bs - b? in probability. Let C = 
F=l[al,az,] x 

H 
r=l[bit, 

b2t], where ajs and bt (j = 1,2) are some positive constants with als < ao < 
a2s (s = 1,...,q) and bl, < b? < b2t (t = 1,..., r). Denote c = (al,...aq, bl,..., b), 

Co = (a?,..., a, b,..., b), ? = (ai,...,ay,bi,...,br). Then Lemma A.5, which 
follows, shows that 

An(c) n(hi...hq)1/2Tn,y (with h = asn-1/(q+4) and As = 

bn-2/(q+4)) is tight in c E C. 
Define Bn(c) = An(c) - 

An(co). 
Then (i) becomes Bn(o) = o,(l); i.e., we want to 

show that, for all e > 0 

lim Pr[I B,()| < E] = 1. (A.9) 
n--4oo 

For any 8 > 0, denote the 8-ball centered at co by Co = {c: |Ic - coil < 8}, where 
II" II 

denotes the euclidean norm of a vector. By Lemma A.5 we know that 
An(.) 

is tight. By 
the Arzela-Ascoli theorem (see Billingsley, 1968, Thm. 8.2, p. 55) we know that tight- 
ness implies the following stochastic equicontinuous condition: for all E > 0, 71I > 0, 
there exist a 8 (0 < 6 < 1) and an N1 such that 

Pr[ sup IA,(c') - A(c) > e] < 71 (A.10) 
I c'-c 11<8 

for all n 
- 

N1 . 
Expression (A.10) implies that 

Pr[I B,(c)| > e, E C] 
- 

5 Pr sup I 
Bn(c)l 

> E 1<1 (A.11) 
cE C,5 

for all n 
- 

N1. 
Also, from -+ co in probability we know that for all -r2 > 0, and for the 8 given 

previously, there exists an N2 such that 

Pr[c^ ( C] -Pr[ll|| 
- col > Si < 72 (A.12) 

for all n > N2. 
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610 YANQIN FAN ET AL. 

Therefore, 

Pr[ I B,()l > E] = Pr[l B,,(A) > , EE C + Pr[ B (c^) > E, ? ( Ca ] (A.13) 

<T7I + T72 

for all n > max{N1,N2} by (A.11) and (A.12), where we have also used the fact that 
{ B,(^)| > e, C 8 C,} is a subset of {1 G C6}. 

Equation (A.13) is equivalent to (A.9). This completes the proof of (i). 0 

LEMMA A.5. Let A,(c) = n(h.. h.h)/2Tn,y, where y = (h, A), h, = 
asn-1/(q+4) 

As = bsn-2/(q+4), C = (a l..aq, b, b,..., br), cs E [Cs, C2s] with 0 < Cs1 < 
C2s s< 

(s = 1...,q + r). 
Then the stochastic process A,(c) indexed by c is tight under the sup-norm. 

Proof. Write Ky,ij as (hi...hq,)-'Kc,ij with hs = asnl/(q+4) and As = bsn-2/(q+4) 
where K,,ij = W((Xj - Xi)/h)L(Xj, Xd, A). Also, denote by 8 = q/(4 + q), C, = 

(al,...,aq)' and C2 = 
(bl,...,br)', CI = l ,as and C2 = = b. Then we have 

(hi...h,)-'Kc, ij = C, n 
Wc,ijLc2,ii. 

Also note that ILc',ij - 
Lc2,ij <- 

'=i bs - b'| 
- r||C2 - C'1; we have 

(h' ... h')/j2K 
,' 

- (h, ... hq)'/2KyjI 
= 

(h'. h')-1/2K' - (h.h)-2Kc, j 

= in{(C)-'Wc;,ijLcj - Cl'1 WiLc2,ij} 

= In (C)-' W;, i[Lc, ij - 
L2, 

+ [(C)- 'Wc;i - C' W,,ij]Lc2,ij 
1 

1DC(h'...hq)-' 

Wc,~iJ -C2 (h. .h)- 
C - 

CX 

,(A.14) 

where D, > 0 is a finite constant. In the last equality we used 
ILc2,i I 1 and assump- 

tion (C3). Also, we replaced one of the (C')-1/2 by •-1/2 
because as E [C1, C2s] are 

all bounded from above and below. The difference can be absorbed into D1. 
By noting that A,(c') - 

An(c) 
is a degenerate U-statistic, and using (A.14), we have 

E {[A,,(c') - A,(c)]2} 

= E{(Ii- fij)2f-2 [(h ... 
h)-/2K',i 

- (h, ... h)-1/2Kci ]2 

SE{[(h'...h')-1/2Ki - (hi... hq)-/2Kij ]2} 

<4E (h ..."h, 
I 
)-W2 

- xi 22 

+ (h I ... hq) 'G 
X x i 

|| C' 1|2 

?4D,{[f f(xi)f(xi 
+ hu)W2(v) 

dxid] 
C 

-C212 

+ 
[fff(xi)f(xi 

+ w)G(w)2 dx dw] 
C, 

- C, 12 

<4D,supxf((x){ W2(v) dv] C-C 12 fG(w)2dw] CC, 2 

-< D C' -C 2, (A.15) 
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BOOTSTRAP TEST OF CONDITIONAL DISTRIBUTIONS 611 

where in the preceding expression A - B means A and B having the same order of 
magnitude and D is a finite positive constant. Therefore, An(.) (hence, Bn(.)) 

is tight by 
Theorem 3.1 of Ossiander (1987). 0 

Proof of Theorem 2.3. We will provide a proof for the discrete dependent variable 
case. The continuous case is similar. To prove (13), similar to the decomposition of 

Tn,,, we decompose T*,, as TT, = + TJ, + T, T*, where the definitions of 
Tnj 

are 
similar to those of 

Tjn 
with the proper changes; i.e., yi, 0, y need to be changed to 

y *, 0*, . We further decompose T,1 to T,, = T1>,, + 
T,(,2* 

- n) + (* - 0)1,3(0* - 6), 
where the definitions of T*,,j are similar to Tnl,j with the proper changes (j = 1,2,3). 

The term T,,,1 can be written as a second-order U-statistic (zi = (x , y* ) = (xi, yi)): 

2 

n(n- 1) i 
j>i 

where 

H*(z*)= G 
* [1i -] + j- f] n (1 

K K 

(12) 
withff* = f(y| xi,0),fij = 

f(y*Ixj,6), 
and 

I0 
I(y = yjf). 

It is easy to check that 

E*[J,*(z, z9)Iz*] = 

K,ij1fi*-lE*{[I5 -f(y*lxj)]Iz*} 

= 
fi*-K•,ij 

f(Y;Ix, 
))I(y = y) -f(ylx, 

) 

= filK,,{f(y*x,) 
- f(y*x,)} = O. 

Similarly, 
=? 

?, ij I 

,Y, 

* 

, 
0,--'1j, 

- 11 0 

E*[J,*(z,zi)Izi] 
= 

K5,jE*{[IiJ 
fp]fjal 

z/} 
= 

K5,1,{E*[Iif1* lz]-E*[fjf,*-Izl]} 
= K5,i (y* = yf- f*(yx,) 

= 
K,i{1 

- 1} = 0. 
!.Y; 

y 

Hence, E* [H,*(z*, zf) z* ] = 0. Thus, conditional on the random sample {xi, 
yj-I1, 

1"T,, 
is a degenerate U-statistic. 

Denote U,*ij = [2/(n(n - 1))]H,*(z*,zf) and define U, = [2/(n(n - 1))] 

,i 
1>i H,*(z*, zf) - T*,,,. We apply the CLT of de Jong (1996) for generalized 

quadratic forms to derive the asymptotic distribution of UUJ,{xi, yi}= 
. The reason for 

using de Jong's central CLT instead of the one in Hall (1984) is that in the bootstrap 
world, the function H,*(z*, zf) depends on i and j, because z* = (xi, y*). By de Jong 
(1996, Prop. 3.2) we know that U*/S* -- N(0,1) in distribution in probability if 

GI, GI, 
and 

Gtv 
are all o(S*4), where S,2 = E*[U,*2], G, = 

,i CJ>i [U,*i] 
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612 YANQIN FAN ET AL. 

(U*2U*2 * *2 (U*2 E *2 

G1 
H=i l>i l>j>i[E*(U*2Ui) + E*(U ,ji +,jl E, + E*(U )], and G 

( i) i j>i 
Js 

t>s E*(U*2s 
,U*2 *2 U2 )2 

Now, 

E*[H,*2(zi 
, Z)] = 

E*[J,2(zi ,Zj )] 
= K E*[(i - *i)2/f,2 

= K ij E*{fi2 E*[(IiJ fi2 - 2I•f ) Yi]} 

= K 
E*{fi*-2(f +f2 - 2f2 )} 

= KE*{[(1 f)]/f*2} = {[(1 *2 
-K2,ijE *{[ fij (1 I *)]/fi*2}[ 

Hence, S,2 = [4/n2(n 1)2]i j>i E*[H,(zg,zfj*)2] 
= [4/n2(n _ 1)2] 

i j>i Kii 
,:y{[ 

fiJ(1 - fJ)]/f*2}. By using a proof similar to the proof of 
Lemma A.4, one can show that S,2 has the same order as 

S,2 
where 

Sn2 
is the same as 

S,2 except that ^ is replaced by y. Hence we only need to establish the order of S*2 

Because discrete regressors do not affect its order, for clarity, we will establish the order 
of S, 2 for the case with continuous regressors only. We have 

*.xi xi f(yi* Ixi, 00)[I -f(yi* Ixi, 00)] 
E|3 

5 
--2(h/1h, 

] 
)-2 E W2 

"" 
n) 

. h f 2 
(y xi, 0o) 

X p, (xi)p, (xj)dxi dxj + o(1)] 

SFf[1 - f(y ] x,X0)]p(xi) n h yIxW2(u) du I xi oo dxi + o(1) 
Sn-2( [C o(1)], 

= n-2hihI... h,)-' [C + o(1)], 

where C > 0 is a constant, which implies that (S,2)-1 = 
Op(n2( 

h,... hq)). Hence, 

1/S$2 
= Op(n2(hi,...hq)) and 1/S,4 = 

Op(n4(h, 
...hh)2). 

Next, E*[H,4(z, )= E[J,*4(z ,z )] = 

K4.j.E*[(Ij 
- fi*)/f4]. Similar to S,*2 

one can show that 

16 16 
G 4n 1)4 

(-) E* U 4, ]= 4 1 
KijE [(Ij ij 

I i>i n (n.. j>i 

=oP(n-6(hl ... 
hq)-3)1 

given that n-8 
,i 

Xj>i K? 
,, 

= Op(n-6( 
h...hq.)-. From the preceding calculation it should be apparent that the probability orders of 

G7 , 
Gt/, 

and 
Gz* 

are solely determined by the factor of n's and (hIl... hp,)'s through 

K/j, 
?. Therefore, tedious but straightforward calculations show that 
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Gj~ n, Ya Y [KI KiK +K K,9 +K K Ks ]= O,(n-5(nh ...q)-2 
i j>i s>j>i 

G,~ n-8 
[Ksi,?Ksj,• 

Ki, 
K,j,] 

= OP(n-4 ..q)-l). 
i j>i s t>s 

Therefore, G*/S,4 = op(1) for all k = I,IH, IV, and we know that 

U,/S, -> N(0,1) in distribution in probability. (A.16) 

Next, define 

V 

d* de 

{ 

-ql2 

2(h,...hq) 
V,* 

f E*{[n(n - 
1)(0,...hq)]1/2T1,12 E*[H2(,Z) n(n - 1) i jai 

and 

def 
2(h ... )2( 

Zj*) , - n(n - 1) 
? 

ji 
n 

where H,(z*, z ) is defined in the same way as H,(z*, zf ) except that 6 is replaced by 
0*. Similar to the analysis of 

S.2, 
one can show that V,* - V,* = o,(1) and that V,*> - 

(n2 ... hq)S;2 = Op(1). 
These results together with (A.16) lead to 

n(1'" *.h q)1/2Tnl,1/*[ 

-4 N(0,1) in distribution in probability. 

The analysis of T,1,2, Tn,,3, T22, and T,*3 is similar to that of their counterparts in the 
proof of Theorem 2.1. One can show that T,**,i is the leading term of T*. For example, 
in Lemma A.2(i) we have shown that T,,1,2 = Op(n-1/2) by proving that 

E[T2,2] 
= 

O(n-1). By similar arguments one can show that E* [T2]2 = 
Op(n-1). 

The details are 
omitted here to save space. Therefore, we conclude that n(hi... hi)l/2Tn*/f5 

has 

the same asymptotic distribution as that of n(Ah...h)1/2Tn1, 1/ . Hence, 

n(Al 

... 
q)L /2TI*/ 

-7n 

- N(O, 1) in distribution in probability. 

Because N(O, 1) is a continuous distribution, by Polyd's theorem (Bhattacharya and Rao, 
1986), we obtain Theorem 2.3. N 
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