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NONPARAMETRIC ESTIMATION OF REGRESSION FUNCTIONS IN THE PRESENCE OF IRRELEVANT
REGRESSORS

Peter Hall, Qi Li, and Jeffrey S. Racine*

Abstract—In this paper we consider a nonparametric regression model
that admits a mix of continuous and discrete regressors, some of which
may in fact be redundant (that is, irrelevant). We show that, asymptoti-
cally, a data-driven least squares cross-validation method can remove
irrelevant regressors. Simulations reveal that this “automatic dimension-
ality reduction” feature is very effective in finite-sample settings.

I. Introduction and Background

Nonparametric kernel methods appeal because they are robust to
functional form specification, though they are often criticized

because they suffer from the curse of dimensionality. If, however,
some regressors are in fact irrelevant, then they should be removed,
producing a lower dimensional model and thereby alleviating the
curse of dimensionality. In order for kernel methods to remove a
regressor, however, oversmoothing must occur and the bandwidth
must not converge to 0 as the sample size increases. If the irrelevant
regressors are independent of both the dependent variable and the
relevant regressors, we can show theoretically that least squares kernel
smoothing of continuous and categorical regressors can (asymptoti-
cally) remove irrelevant regressors, though simulations clearly reveal
that strict independence among the regressors is not necessary. Hall,
Racine, and Li (2004) establish similar results for conditional kernel
density estimation. In this paper we extend Hall et al.’s results to the
regression setting. For related literature on testing for irrelevant
regressors in a nonparametric regression framework, see Fan and Li
(1996) and Lavergne and Vuong (1996), among others. The results
contained in the current paper clearly demonstrate that pretesting is
totally unnecessary when one employs cross-validated bandwidth
selection. We view this as a powerful result that has the potential to
extend the reach of nonparametric methods. The rest of this paper is
organized as follows. Section II presents the main results of the paper
by showing that the cross-validation method has the ability to remove
irrelevant regressors. Simulations are presented in section III. The
appendix provides proofs of results presented in section II.

II. Regression Models Having Irrelevant Regressors

Consider a nonparametric model with both categorical and contin-
uous regressors. Let X i

d be a q � 1 vector of discrete regressors and
let X i

c � �p be the continuous ones. We use X is
d to denote the sth

component of X i
d, assume that X is

d takes cs � 2 different values, and

use �d to denote the support of Xd. We wish to estimate E(Yi�Xi)
nonparametrically, where Xi � (X i

d,X i
c). However, often in applied

settings not all q � p regressors in Xi are relevant. Without loss of
generality, assume that the first p1 (1 � p1 � p) components of Xc and
the first q1 (0 � q1 � q) components of Xd are “relevant” in the sense
defined below.

Let �X consist of the first p1 relevant components of Xc and the first
q1 relevant components of Xd, and let X̃ � X �{ �X} denote the remaining
irrelevant components of X. One way of defining �X to be relevant and
X̃ to be irrelevant is to ask that

� �X, Y� is independent of X̃. (1)

Clearly, condition (1) implies that E(Y�X) � E(Y� �X). A weaker condi-
tion would be to ask that

conditional on �X, the variables X̃ and Y are

independent.
(2)

Though more appealing, condition (2) creates quite difficult technical
hurdles, so we proceed under (1) for our proofs; extensive simulations
reveal that our results clearly hold under (2) (see section III).

We shall assume that the true regression model is given by Yi �
�g( �Xi) � ui where �g( � ) is of unknown form, and where E(ui� �Xi) � 0.
We assume that the relevant regressors are unknown ex ante, hence
one estimates �g( � ) potentially using the superset of regressors X �
( �X,X̃). We use f(x) to denote the joint density function of Xi, and we
use �f(�x) and f̃(x̃) to denote the marginal densities of �Xi and X̃i,
respectively.

For the discrete regressors X i
d, we will first consider the case for

which there is no natural ordering in X i
d. The extension to the case

whereby some of the discrete regressors have natural orderings will be
discussed at the end of this section. For 1 � s � q, we define the
kernel function for discrete regressors as

l�Xis
d ,xs

d,�s� � � 1 if Xis
d � xs

d,
�s if Xis

d � xs
d , (3)

where 0 � �s � 1 is the smoothing parameter for x s
d. Therefore, the

product kernel for xd � (x 1
d, . . . ,x q

d) is given by Kd (xd, X i
d) �

� s � 1
q l(X is

d , x s
d, �s) � � s�1

q � s
I�X is

d �xs
d�, where I(X is

d � x s
d) is an indicator

function that equals 1 when X is
d � x s

d, and 0 otherwise. Note that when
�s � 1, Kd (xd, X i

d) is unrelated to (x s
d,X is

d ) (that is, the sth component
of xd is smoothed out).

For the continuous regressors xc � (x 1
c, . . . ,x p

c) we use the product

kernel given by Kc(xc, X i
c) � �s�1

p hs
	1K �xs

c � Xis
c

hs
�, where K is a

symmetric, univariate density function, and hs is the smoothing
parameter for x s

c. The kernel function for the mixed regressor case x �
(xc, xd) is simply the product of Kc and Kd, that is, �(x, Xi) �
Kc(xc,X i

c)Kd(xd, X i
d). Thus we estimate E(Y�X � x) by

ĝ(x) �

 i � 1

n Y
i
�(x,X

i
)


 i � 1
n �(x,X

i
)

.
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We choose (h,�) � (h1, . . . , hp,�1, . . . ,�q) by minimizing the
cross-validation function given by

CV�h,�� �
1

n�
i�1

n

�Yi � ĝ	i�Xi��
2w�Xi�, (4)

where ĝ	i(Xi) � 
 j�i

n
Yj�(Xi, Xj)/
 j�i

n �(Xi, Xj) is the leave-one-out
kernel estimator of E(Yi�Xi), and 0 � w( � ) � 1 is a weight function
that serves to avoid difficulties caused by dividing by 0, or by the
slower convergence rate arising when Xi lies near the boundary of the
support of X.

Define �2(�x) � E(u i
2� �Xi � �x) and let �c denote the support of w. We

also assume that

the data are i.i.d. and ui has finite moments

of any order; g, f, and �2 have two continuous

derivatives; w is continuous, nonnegative, and has (5)

compact support; f is bounded away from 0 for

x � �xc,xd� � � � �c � �d.

We impose the following conditions on the bandwidth and kernel
functions. Define

H � ��
s�1

p1

hs� �
s�p1�1

p

min�hs, 1�. (6)

Letting 0 �  � 1/(p � 4) and for some constant c � 0,

n	1 � H � n	; n	c � hs � nc for all s �

(7)1, . . . , p; the kernel K is a symmetric,

compactly supported, Hölder-continuous

probability density; and K�0� 	 K��� for all � 	 0.

The above conditions basically ask that each hs does not converge
to 0, or to infinity, too fast, and that nh1 . . . hp1 3 �. It would be
convenient to further assume that hs 3 0 for s � 1, . . . , p1, and that
�s 3 0 for s � 1, . . . , q1, however, for practical reasons we choose
not to assume that the relevant components are known a priori.
Therefore, we shall assume the following condition holds. Defining �� g

(�x) � E�ĝ(x)f̂ (x)]/E[f̂ (x)],1 we assume that

�suppw��� g�x� � �g��x��2w� ��x� �f� �x�d �x,

(8)
a function of h1, . . . , hp1, and �1, . . . , �q1,

vanishes if and only if all of the smoothing

parameters vanish,

where w� (�x) � � f̃(x̃)w(x)dx̃. In the appendix we show that (7) and (8)
imply that as n3 �, h s 3 0 for s � 1, . . . , p1 and �s 3 0 for s �
1, . . . , q1. Therefore, the smoothing parameters associated with the
relevant regressors all vanish asymptotically.

Define an indicator function Is(v d, x d) � I (v s
d � x s

d) � t�s,t�1
q I(v t

d

� x t
d). Note that Is (v d, x d) � 1 if and only if v d and x d differ in their

sth component only. Also define � d �x � 
 x� d � d �x c. Letting ms and

mss denote the first and second derivatives of m(x) with respect to x s
c

(m � �g, �f ), in the appendix we show that the leading term of CV is

� �p1�2� �x�

nh1 . . . hp1
w� x�R̃� x� f̃� x̃�dx 
 ���

s�1

q1

�s �
v� d

�Is�
d,�x d�

� � �g��x c, �v d� � �g��x�� ��x c, �vd�� 

1

2
�2 �

s�1

p1

hs
2

� � �gss��x� �f��x� 
 2 �fs��x� �gs��x���2

�f��x�	1w� ��x�d�x,

(9)

with � � �K�v�2dv,�2 � �K�v�v2dv, and where R̃ (x) � R̃(x,
hp1�1, . . . , hp, �q1�1, . . . , �q) is given by R̃(x) � v2 (x)/[v1(x)]2, where

for j � 1, 2, vj(x) � E ���s�p1�1
p hs

	1 K �Xis
c � xs

c

hs
��s�q1�1

q �s
I �Xis

d �xs
d��j�.

In equation (9) the irrelevant regressor x̃ appears in R̃.
By Hölder’s inequality, R̃(x) � 1 for all choices of x,
hp1�1, . . . , hp, and �q1�1, . . . �q. Also, R̃ 3 1 as hs 3 � (p1 � 1 �
s � p) and �s 3 1 (q1 � 1 � s � q). It can be shown that the only
smoothing parameter values for which R̃(x, hp1�1, . . . , hp, �q1�1, . . . ,
�q) � 1 are hs � � for p1 � 1 � s � p, and �s � 1 for q1 � 1 � s �
q (see Hall, Li, & Racine, 2005). Therefore, in order to minimize
equation (9), the smoothing parameters corresponding to the irrelevant
regressors must all converge to their upper extremities, so that R̃(x)3
1 as n 3 � for all x � �. Thus, the irrelevant components are
asymptotically smoothed out.

To analyze the behavior of the smoothing parameters associated
with the relevant regressors, we replace R̃(x) by 1 in equation (9), thus

the first term on the right side of equation (9) becomes �
�p1 �2 ��x�

nh1 . . . hp1

w� (x)d�x. Next, defining as � hsn1/(q1�4) and bs � �sn2/(q1�4), then
equation (9) (with R̃ replaced by 1 as its first term since R̃(x) 3 1)
becomes n	4/(q1�4) �x(a1, . . . , ap1, b1, . . . , bq1), where

�x�a1, . . . ,ap1,b1, . . . ,bq1� � ���
s�1

q1

bs �
v�d

Is� �vd,�xd�� �g��x c, �v d�

� �g��x�� �f ��x c, �v d� 

1

2
�2 �

s�1

p1

� as
2� �gss��x� �f ��x� 
 2 �fs��x� �gs��x���2

�f ��x�	1w� ��x�d�x


� �p�2��x�

a1 . . . ap1
w� ��x�d�x.

(10)

Let a1
0, . . . , a p1

0 , b 1
0, . . . , b q1

0 denote values of a1, . . . , ap1,
b1, . . . , bq1 that minimize �x subject to each of them being nonnega-
tive. We require that

each as
0 is positive and each bs

0 nonnegative,
(11)

all are finite and uniquely defined.

The above analysis leads to the following result.

1 Note that �� g ( �x) does not depend on x̃, nor does it depend on
(hp1�1, . . . ,hp, �q�1, . . . , �q), because the components in the numerator
related to the irrelevant regressors cancel with those in the denominator.
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Theorem 2.1 Assume conditions (1), (5), (7), (8), and (11) hold,
and let ĥ1, . . . , ĥp, �̂1, . . . , �̂q denote the smoothing parameters that
minimize CV. Then

n1/(p1�4)ĥs3 as
0 in probability for 1 � s � p1, P(ĥs � C)3 1 for p1 �

1 � s � p and for all C � 0,
n2/(p1�4)�̂s3 bs

0 in probability for 1 � s � q1, �̂ s3 1 in probability for
q1 � 1 � s � q.

The proof of theorem 2.1 is given in the appendix. Theorem 2.1
states that the cross-validated smoothing parameters will behave so
that the smoothing parameters for the irrelevant components converge
in probability to the upper extremities of their respective ranges.
Therefore, all irrelevant regressors are (asymptotically) automatically
smoothed out. Next we present the asymptotic normality result for
ĝ(x).

Theorem 2.2 Under the same conditions as in theorem 2.1, and
letting x be an interior point to � � �c � �d with f (x) � 0, then

�nĥ1 . . . ĥp1�
1/ 2� ĝ� x� � �g� �x� � �

s�1

q1

B1s� �x�̂�s
2

� �
s�1

p1

B2s� �x�ĥs
2	 3 N�0,���x�� in distribution,

(12)

where B1s( �x) � 
v�
d Is( �vd, �x d) ( �g (�x c, �v d) 	 �g( �x)) �f ( �x c, �v d) �f(�x)	1, B2s( �x) �

1

2
�2� �gss��x� 
 2

�fs��x� �gs� �x�

f��x�
�, and �(�x) � �p1�2(�x)/ �f(�x) are terms related

to the asymptotic bias and variance, respectively.
Theorem 2.2 follows from theorem 2.1 and its proof is therefore

omitted.
Until now we have considered only the case for which the discrete

regressors are unordered. If, however, some of the discrete regressors
are ordered, one should use alternative kernel functions that reflect
this fact. In this case we suggest the use of the following simple kernel

function for ordered regressors defined by K d�x s
d, v s

d� � � s
�x s

d	v s
d�. The

range of �s is [0,1]. Again, when �s � 1, K d(x s
d, v s

d) � 1 for all values
of x s

d, v s
d � � d, and x s

d is completely smoothed out from the regression
function.

III. Finite-Sample Behavior

We now assess the effectiveness of our cross-validatory approach.
We consider three models: (i) a parametric model (P); (ii) a nonpara-
metric frequency model having cross-validated bandwidths for the
continuous regressors (NP CV-FR); (iii) the proposed nonparametric
cross-validated method (NP CV).

For i � 1, . . . , n we generate the following random variables: (zi1,
zi2) � {0, 1}, Pr [zi1 � 1] � 0.69, Pr[zi2 � 1] � 0.73, xi1 � N(0, 1),
xi2 � N(0, 1), and ui � N(0, 1). The regressors x1i, x2i, z1i, z2i vary in
their degree of correlation, � � {0.0, 0.75}, while the regressors and
ui are independent of one another. However, not all the regressors are
relevant, as we generate yi according to yi � zi1 � xi1 � i, i �
1,2, . . . , n, so that z2 and x2 are irrelevant. Note that, when � � 0, the
relevant and irrelevant regressors are correlated. Simulation results
clearly demonstrate that cross-validation does indeed smooth out
irrelevant regressors regardless of whether they are independent (� �
0) or correlated (� � 0) with the relevant regressors. We consider
samples of size n1 � 100 and 250, then evaluate a model’s perfor-
mance on independent data drawn from the same DGP of size n2 �
1,000. Predictive performance is computed as PMSE � n2

	1 
i(ŷi 	
yi)2.

We consider two parametric models, both of which include qua-
dratic terms in x1 and x2 along with interaction terms, one having
interaction terms of order two (P int(2)) and the other of order three (P
int(3)). The nonparametric model is a local constant one with a
Gaussian kernel for the continuous regressors and the kernel for the
discrete regressors given in section II. All models therefore include the
same conditioning information, (zi1,zi2,xi1,xi2). PMSE results are pre-
sented in table 1.

Table 1 reveals that, in finite-sample settings, the proposed non-
parametric approach (NP CV) not only has better out-of-sample
performance than the cross-validated frequency approach (NP CV-
FR), it is also capable of outperforming parametric models containing
irrelevant regressors. Next we consider the behavior of the cross-
validated bandwidths summarized in table 2.

Table 2 reveals that cross-validation indeed displays a tendency to
“smooth out” or remove irrelevant regressors. The irrelevant discrete
regressor is smoothed out when its bandwidth �̂z2 takes on its upper

TABLE 1.—OUT-OF-SAMPLE PREDICTED PMSE PERFORMANCE MEDIAN [5TH PERCENTILE, AND 95TH PERCENTILE] OF PMSE

n1 NP CV NP CV-FR P int(2) P int(3)

� � 0.00

100 1.14 [1.02, 1.31] 1.23 [1.09, 1.44] 1.52 [1.19, 2.09] 15.00 [3.94, 61.26]
250 1.07 [0.98, 1.15] 1.11 [1.01, 1.21] 1.13 [1.02, 1.24] 1.69 [1.27, 2.65]

� � 0.75

100 1.13 [1.01, 1.29] 1.17 [1.04, 1.34] 1.47 [1.14, 2.52] 33.42 [3.64, 1055.68]
250 1.06 [0.98, 1.15] 1.09 [1.00, 1.18] 1.12 [1.02, 1.25] 1.71 [1.22, 3.79]

TABLE 2.—SUMMARY OF CROSS-VALIDATED BANDWIDTHS FOR THE NP CV ESTIMATOR MEDIAN, [10TH PERCENTILE, 90TH PERCENTILE] OF �̂, ĥ.

n1 �̂z1
�̂z2

ĥx1
ĥx2

� � 0.00

100 0.05 [0.00, 0.14] 1.00 [0.13, 1.00] 0.39 [0.24, 0.50] 3,072,495.00 [0.76, 20,670,300.00]
250 0.03 [0.00, 0.06] 1.00 [0.21, 1.00] 0.33 [0.23, 0.40] 1,633,310.00 [0.87, 11,928,360.00]

� � 0.75

100 0.00 [0.00, 0.28] 1.00 [0.05, 1.00] 0.36 [0.21, 0.49] 1,938,935.00 [0.52, 12,731,400.00]
250 0.00 [0.00, 0.03] 1.00 [0.15, 1.00] 0.30 [0.20, 0.37] 700,582.50 [0.61, 7,030,172.00]
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bound value of 1, while the irrelevant continuous regressor is effec-
tively smoothed out when its bandwidth ĥx2 exceeds just a few
standard deviations of the data. Note that the median value of �̂z2 is
indeed 1 for all sample sizes considered, while that for �̂x2 is orders of
magnitude larger than the standard deviation of x2 (�x2

� 1). Simu-
lation results with higher nonparametric dimensions are qualitatively
similar and are available from the authors upon request.

APPENDIX

PROOF OF THEOREM 2.1

In this appendix we provide a sketch of the proof of theorem 2.1. A
more detailed proof is given in Hall et al. (2005).

Step (i): Preparations. Letting gi � �g( �xi), ĝ	i � ĝ	i(xi ), f̂	i � f̂	i(xi),
and wi � w(xi), we have

CV�h,�� �
1

n �
i�1

n

� gi � ĝ	i�
2wi 


2

n �
i�1

n

ui� gi � ĝ	i�wi

(A1)



1

n �
i�1

n

ui
2wi.

The third term on the right side of equation (A1) does not depend on
(h, �). It can be shown that the second term has an order smaller than the
first term (see Hall et al., 2005). Therefore, the first term is the leading
term of CV. Define m̂1,	i (xi) � (n 	1)	1 
j�i

n [ �g(�xj) 	 �g(�xi)]�(xj, xi) and
let m̂2,	i (xi) � (n 	 1)	1 
 j�i

n uj�(xj, xi). Then the first term of equation
(A1) can be written as

1

n �
i�1

n

m̂1,	i
2 wi/ f̂ 	i

2 

1

n �
i�1

n

m̂2,	i
2 wi/ f̂ 	i

2 

2

n �
i�1

n

m̂1,	im̂2,	iwi/ f̂ 	i
2


 S1 
 S2 
 2S3,
(A2)

where the definition of Sj ( j � 1, 2, 3) should be apparent. Define

�n � � �
s�1

p1

hs
2 
 �

s�1

q1

�s� 2

. (A3)

In steps (ii) to (iv) below we show that

S1 � ���
s�1

q1

�s �
v�d

�Is� �vd, �xd�� �g� �xc, �vd� � �g� �x�� �f� �xc, �vd��

�
1

2
�2 �

s�1

p1

hs
2�gss��x���x� 
 2 �fs��x�gs��x���2

(A4)

� �f��x�	1w� ��x�d�x 
 op��n�,

S2 � � �p1�� 2� �x�

nh1 . . . hp1
w� x�R̃� x� f̃� �x�dx 
 op��nH�	1�, (A5)

S3 � op��n 
 �nH�	1�, (A6)

where the op( � ) terms are all uniform in (h, �) such that

n	1 � H � n	,n	c � hs � nc for all s

� 1, . . . , q, and �s � �0,1� for 1 � s � q,
(A7)

for some � �0,
1

4 
 p�. Therefore, the leading term of CV is given by

equation (9), obtained from the leading terms of S1 and S2.
Letting �f (xi) � E(f̂	i(xi)�xi), then for integers k � 1, define Hk � E

(�(xi, xj)k)/(E[�f (xi)])k. It can easily be shown that Hk is bounded below
and above by some constants multiplying H	(k	1):

c	1H	�k	1� � Hk � cH	�k	1�, (A8)

for some c � 1, where H � h1 . . . hp1 � s�p1�1
p min (hs, 1) as defined in

condition (6).
Step (ii): Proof of equation (A4). Recall that �f,i � �f (xi) �

E(f̂	i(xi)�xi), and define S 1
0 by replacing f̂	i by �f,i in S1, that is, S 1

0 � n	1



i�1
n m̂1,	i

2 wi /�f,i
2 . We will show that equation (A4) holds true with S1

replaced by S 1
0, and that S1 	 S 1

0 � op(�n � (nH)	1) uniformly in (h, �).

Letting �ij � �(xi, xj), we write S 1
0 � G1 � G2, where G1 �

1

n(n	1)2


i 
j�i (gj 	 gi)2 � ij
2wi/� f,i

2 , and G2 �
1

n(n	1)2

 
 
l�j�i (gj 	 gi)�ij(gl 	

gi)�ilwi/� f,i
2 .

We first consider G2, which can be written as a third-order U-statistic.
Define Qijl as the symmetrized version of (gi 	 gj)(gi 	 gl)�ij�ilwi/� f,i

2

(symmetric in i,j,l), let Qij � E(Qijl�xi, xj), and let Qi � E(Qij�xi). Then by
the U-statistic Hoeffding-decomposition

G2 � EQ1 

3

n �
i�1

n

�Qi � EQ1� 

6

n�n � 1� �
i

�
j�i

�Qij � Qi � Qj

� EQ1] 

6

n�n � 1��n � 2����
l�j�i

�Qijl � Qij � Qil � Qjl

� Q�Qj 
 Ql � EQ1] 
 J0 
 J1 
 J2 
 J3,

where the definition of Jj (j � 0, . . . ,3) should be apparent.
In step (v) below we shall show that hs for s � 1, . . . ,p1 and �s for s �

1, . . . ,q1 all converge to 0 as n 3 �. Therefore, by a Taylor expansion
argument, it can be shown that

E�� gj � gi��Kij�xi � x� � ��2

2 �
s�1

p1

� �gss� �x� �f� �x� 
 2 �gs� �x� �fs� �x��hs
2


 �
�vd

�sIs� �vd, �xd�� �g� �xc, �vd� � �g� �x�� �f� �xc, �vd���1� x� 
 o��n
1/ 2�

uniformly in x � S, with (h, �) as prescribed by condition (A7), and where
�n is defined in equation (A3). Therefore

J0 � ���2

2 �
s�1

p1

� �gss� �x� �f� �x� 
 2 �gs� �x� �fs� �x��hs
2 
 �

v� d

�sIs� �vd, �xd�

� � �g� �xc, �vd� � �g� �x�� �f� �xc, �vd�� 2

w� � �x�� �x�	1d �x 
 o��n�,
(A9)

where in the above we have also used �f (x) � �f (�x)v1(x) � Op(�n
1/2)

uniformly in x � �, (h, �).
Next, we consider J1. Noting that E(Q i

�) � O (� n
�), then by Rosenthal’s

inequality, we have

E�J1�2� � n	2�Ck�n��n
2� 
 n�n

2�� � O�n	��n
2��, (A10)

where C� is a constant. Using Markov’s inequality one can show that
equation (A10) implies that J1 � op(�n) uniformly in (h, �).

For J2, by noting that E(Q ij
�) � O(� n

�/2Hk) and applying Rosenthal’s
inequality, we obtain
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E�J2�2� � C�n	4��n2��n
�H2

�� 
 �s.o.� � O�n	2��n
�H2

��

� O��n
�n	��nH�	��,

(A11)

where the last equality follows from equation (A8) and (s.o.) denotes
smaller-order terms. By Markov’s inequality, it follows that J2 � op
((nH)	1) uniformly in (h, �).

J3 is a third-order U-statistic. By noting that E(Q ijl
� ) � O (� n

�/2H �
2), it is

easy to show that J3 has an order smaller than that of J2.
We now consider G1. Define �ij � (1/2) [wi/� f,i

2 � wj/� f,j
2 ] (gj	gi)2�ij

2,
�i � E[�ij�xi]. Then

G1 �
1

n � 1�E�1 

2

n �
i�1

n

��i � E�1� 

2

n�n � 1� � �
j�i

��ij � �i

� �j 
 E�1�� � G1,0 
 G1,1 
 G1,2.

Then by exactly the same arguments as in the analysis for G2 above, one
can easily show that

G1,0 �
1

n � 1
E�ij � O�n	1�n

1/ 2H2
1� � O��n

1/ 2�nH�	1� � o��nH�	1�

uniformly in (h, �).
Noting that E[� i

�] � O (� n
�/2H2�), by Rosenthal’s inequality we obtain

E�G1,1�2� � C�n	4k�n��n
�H4

� 
 n�n
�H4�� � O��n

�n	3�H4
��

� O��n
��nH�	3��

by equation (A8). From this, and using Markov’s inequality, it can be
shown that G1,1 � op ((nH)	1) uniformly in (h, �). Similarly, one can show,
that G1,2 � op ((nH)	1) uniformly in (h, �).

Summarizing the above we have shown that S1
0 � G1 � G2 � J0 � op

(�n � (nH)	1), where J0 is given in equation (A9). Thus, we have shown
that equation (A4) holds true with S1 replaced by S 1

0.
It remains to be shown that S1 	 S 1

0 � op(�n � (nH)	1). Defining
�f,	i � E[ f̂	i(xi)�xi], then by Rosenthal’s inequality, we have

E���f,	i� x�

�f,i� x�
� 2�� � C� n	2��n�H2

� 
 nH2�� � O��nH�	��, (A12)

where we have used H2 � O(H	1) by equation (A8). By equation (A12)

and Markov’s inequality, one can show that �
�f,	i�x�

�f�x�
� � o((nH)	1/3). By

exactly the same arguments one can show that sup �m̂1	i(x)	Em̂1,	i(x)� �
O((nH)	1/3). Also, a simple Taylor expansion yields sup1�,i�n,x,h,�
�Em̂1,	i(x)� � O(� n

1/2). Therefore,

sup�m̂1,	i�x�� � sup�Em̂1,	i�x�� 
 sup�m̂1,	i � Em̂1,	i�x�� �

O��n
1/ 2 
 �nH�	1/3�.

(A13)

Combining the above results we have shown that

S1 � S1
0 �

1

n�
i

m̂1,	i
2 wi� 1

f̂ 	i
2 �

1

�f,i
2 � � Csup�m̂1,	i�x��2sup�

�f,	i�x�

�f,i�x�
�

� op��n 
 �nH�	1�.

Step (iii): Proof of equation (A5). Define S 2
0 by replacing f̂	i by �f,i

in S2. We will show that equation (A5) holds true with S2 being replaced by
S 2

0, and that S2 	 S 2
0 � op(�n�(nH)	1) uniformly in (h, �). Now,

S2
0 � n	1 �

i

m̂2,	i
2 wi/�f,i

2 � �n�n � 1�2�	1 �
i

�
j�i

uj
2�xi, xj

2 wi/�f,i
2


 �n�n � 1�	2�	1 �
i

�
j�i

�
l�i,l�j

ujul�xi, xj�xi, xlwi/�f,i
2 
 D1 
 D2.

Note that D2 can be written as a third-order U-statistic. Let �ijl denote
the symmetrized version of ujul�xi,xj�xi,xlwi/� f,i

2 , and define �ij �
E[�ijl�zi, zj], zi � (xi, ui). Then by the U-statistic Hoeffding decomposition,
we have

D2
0 �

6

n�n � 1� �
i

�
j�i

�ij 

6

n�n � 1��n � 2� � � �
l�j�i

� ��ijl � �ij � �il � �jl� 
 D2,1 
 D2,2.

Here, D2,1 is a second-order degenerate U-statistic, hence it is easy to
show that E[�ij

�] � O(H�). By the same arguments used in the proof of
step (v) (a), it can be shown that

E�D2,1�2� � n	4�C��n2�H2
�� 
 �s.o.� � O�n	2�H2

�� � O�n	��nH�	��.

(A14)

By equation (A14) and the Markov’s inequality, one obtains that D2,1 �
op((nH)	1) uniformly in (h, �).

Note that D2,2 is a third-order U-statistic, and it is easy to show that
E[V ijl

� ] � O (H �
2). By Rosenthal’s inequality we know that

E�D2,2�2� � n	6�C��n3�H2
2�� 
 �s.o.� � O�n	��nH�	2��,

where (s.o.) denotes smaller-order terms (smaller than O(n	�(nH)	2�)).
We observe that D2,2 has an order smaller than that of D2,1. Therefore, we
have shown that D2 � op ((nH)	1) uniformly in (h, �).

We now consider D1. Define Vij � (1/2) [u j
2wi/� f,i

2 � u i
2wj/� f,j

2 ] �xi,
xj

2

and Vi � E(Vij�xi, ui). Then D1 �
1

n � 1
{EV1 �

2

n

i�1

n [Vi 	 EV1] �

2

n�n � 1�

 
j�i [Vkij 	 Vi 	 Vj � EV1]} � B0 � B1 � B2.

We first consider B0 � (n 	 1)	1 E(Vij) � (n 	 1)	1 E
{w(xi)� f,i

	2E[�2(�xj)�ij
2 xi]}. Applying a Taylor expansion we have

E��2� xj��ij
2 �xi � x� � �p1�2� �x� �f� �x��2� x��h1 . . . hp1�

	1


 O��n
1/ 2�h1 . . . hp1�

	1�

uniformly in (x,h, �). Therefore, using (n 	 1)	1 � n	1 � O(n	2), we have

B0 � �p1�nh1 . . . hp1�
	1��2� �x�w� x���2� x�/

�1� x�2� f̃� �x�dx 
 o��nH�	1�
(A15)

uniformly in (x, h, �).
For B1, noting that E(V i

2) � O(H4), by Rosenthal’s inequality we have

E�B1�2� � C�n	4��n�H4
� 
 nH2�� � O�n � 3�H4

�� � O��nH� � 3��,

where the last equality follows from H� � O (H	(�	1)) by equation (A8).
It follows by Markov’s inequality that B1 � op((nH)	1) uniformly in (h, �).

Noting that nB2 is a second-order degenerate U-statistic, and that
E(V ij

2) � O(H4), we have

E�B2�2� � C�n	6��n2kH4
�� 
 �s.o.� � O�n	4kH4

�� � O�n	��nH�	3��.

We observe that B2 has an order smaller than that of B1. Summarizing
the above we have shown that

S2
0 �

�p1

nh1 . . . hp1
��2� �x�w� x���2� x�/�1� x�2� �f� �x�dx


 op��nH�	1� uniformly in �h, ��.
(A16)

Finally, following the same proof as for sup1�i�n,� �
�f,	i�x�

�f�x�
� �

op((nH)	1/3), one can show that sup1�i�n,� �
m̂2,	i�x�

�f�x�
� � op ((nH)	1/3), where
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� � (x,h, �), the supremum is over x � S, and (h, �) is given in condition
(A7). Therefore, we have uniformly in (h, �), that

�S2 � S2
0� � C� sup

1�i�n,�

�m̂2,	i�x�

�f�x� �	2

sup
1�i�n,�

�
�f,	i�x�

�f�x�
� � op��nH�	1�.

Step (iv): Proof that S3 � op (�n � (nH)	1) uniformly in (h,�) as
prescribed in condition (A7). Define S 3

0 by replacing f̂	i by �f,i in S3, that
is, S 3

0 � n	1 
i m̂1,	im̂2,	iwi/� f,i
2 � n	3 
i 
j�i uj(gi 	 gj)�xi,xj

2 wi /
�f,i

2 � n	3
 
 
l�j�i uj(gi 	 gj)�xi,xj
�xi,xl

wi /� f,i
2 � M1 � M2.

M2 can be written as a third-order U-statistic. Letting �ijl denote the
symmetrized version of uj(gi 	 gl)�xi,xj

�xi,xl
wi/� f,i

2 , �ij � E[�ijl�zj, zl], and
�i � E[�ij�zi], then (note that E�i � 0)

M2 �
3

n�
i�1

n

�i 

6

n�n � 1� � �
j�i

��ij � �i � �j�



6

n�n � 1��n � 2� � � �
l�j�i

��ijl � �ij � �il � �jl 
 �i


 �j 
 �l� 
 G1 
 G2 
 G3.

By noting that the kth moment of �i has the same order as the kth
moment of �n

1/2 ui, we have, for k � 2, E[� i
k] � O (� n

k/2). Then, by
Rosenthal’s inequality,

E�G1�2k � Ckn
	2k�nk�n

k 
 n�n
k� � O��n

kn	k�. (A17)

By Markov’s inequality, for � � (0, /2) and for all C � 0, we have

P��G1� 	 n	��n
1/ 2�nH�	1/ 2� � Ckn

2�k�nH�kn	k

� O�n	�	2��k� � O�n	C�
(A18)

uniformly in (h, �) because (nH) � n1	 by condition (A7).
Result (A18) implies that G1 � op(� n

1/2(nH)	1/2) � op(�n � (nH)	1)
uniformly in (h, �).

For G2, noting that the kth moment of �ij has the same order as the kth
moment of � n

1/2ui(gj 	 gi)�ij/�f,i, we obtain E[� ij
k] � O (� n

k/2 Hk). There-
fore, by exactly the same arguments used to prove step (v) (a), we have

E�G2�2k � Ckn
	4k�n2k�n

kH2
k� 
 �s.o.� � O��n

kn	2kH2
k�

� O��n
kn	k�nH�	k�.

(A19)

By Markov’s inequality one can show using equation (A19) that G2 �
op ((nH)	1) uniformly in (h, �).

For G3, arguments similar to those used above lead to

E�G3�2k � Ckn
	6k�n3k�n

kH2
2k� 
 �s.o.� � O��n

kn	3kH2
2k�

� O��n
kn	k�nH�	2k�.

(A20)

Comparing (A20) with (A19) we know that G3 has an order smaller
than that of G2. Therefore, we have shown that G2 � G3 � op (�n �
(nH)	1) uniformly in (h, �).

Next, we consider M1. Defining Rij � (1/2) [uj(gj 	 gi)wi/� f,i
2 � �i(gi 	

gj)wj/�f,j
2] �ij and Ri � E[Rij�xi, ui], then M1 �

1

n	1
(
2

n

i � 1

n Ri �
2

n(n	1)


i � 1
n [Rij 	 Ri 	 Rj]). Using Rosenthal’s and Markov’s inequalities, it can

be shown that M1 � op (�n) uniformly in (h, �). Therefore, we have

S3
0 � M1 
 M2 � op��n 
 �nH�	1� uniformly in �h,��.

Finally, we have, uniformly in (h, �), that

�S3 � S3
0� � C� sup�m̂1,	i�x�

�f�x�
���sup�m̂2,	i�x�

�f�x�
���sup��f,	i�x�

�f�x�
��

� op��nH�	1�,

where the supremum is over 1 � i � n, x � S. This completes the proof
of step (iv).

Step (v). Here we show that the cross-validated smoothing parameters
associated with the relevant regressors all converge to 0 in probability.
Since E(ui�{xj}j � 1

n) � 0, obviously, the only possible non op (1) term in
CV that is related to (h, �) is S1 defined in equation (A2). Moreover, it can

be shown that S2 � G2 � op(1), where G2 �
1

n�n � 1�2 
 
 
l�j�i (gi 	

gj)�ij(gi 	 gl)�ilwi/� f,i
2 . Furthermore, it is easy to show that G2 � E(G2) �

op(1) uniformly in (h, �). By the independence of (�xi, ui) with �xi, we have

E�G2� � � � �g� �x� � �� g� �x��2w� � �x� �f� �x�d �x,

where w� (x�) is defined below assumption (8). Hence, we have shown that

S1 � � � �g� �x� � �� g� �x��2w� � �x� �f� �x�d �x 
 O��nH�	1� . (A21)

If the smoothing parameters h1, . . . , hp1, �1, . . . , �q1, along with
remaining smoothing parameters, minimize CV, but do not all converge in
probability to 0, then, by assumption (8), S1 does not converge to 0, which
implies that the probability that the minimum of S1, over the smoothing
parameters, exceeds � (for some � � 0). However, choosing h1, . . . ,hp1 to
be of size n	1/(p1�4), and �1, . . . , �q1 to be of size n	2/( p1�4), letting
hp1�1, . . . , hp diverge to infinity, and letting �q1�1, . . . , �q1 converge to 1,
one can easily show that S1 converges in probability to 0. This contradicts
the result obtained in the previous paragraph, and thus demonstrates that

at the minimum of CV �the equivalent of S1�, the smoothing
parameters h1, . . . , hp1, �1, . . . , �q1, for the relevant components
of X, all converge in probability to 0.
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