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We consider the problem of estimating a nonparametric regression model containing
categorical regressors only. We investigate the theoretical properties of least squares
cross-validated smoothing parameter selection, establish the rate of convergence
(to zero) of the smoothing parameters for relevant regressors, and show that there is a
high probability that the smoothing parameters for irrelevant regressors converge to
their upper bound values, thereby automatically smoothing out the irrelevant regres-
sors. A small-scale simulation study shows that the proposed cross-validation-based
estimator performs well in finite-sample settings.

1. INTRODUCTION

Nonparametric and semiparametric methods have attracted much attention among
econometricians and statisticians in the last two decades. These methods have
been successfully applied to a range of problem domains, including the estimation
of treatment effects (see Hahn, 1998; Hirano, Imbens, and Ridder, 2003) and the
analysis of auctions (see Guerre, Perrigne, and Vuong, 2000; Li, Perrigne, and
Vuong, 2002, 2003) and are also being employed in the financial econometrics
literature (see Hong and Lee, 2003, 2005).

The seminal work of Aitchison and Aitken (1976) has spawned a rich literature
on the kernel smoothing of discrete (categorical) variables. This literature was
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motivated mainly by the need to deal with the “small cell” problem frequently
encountered in the analysis of multivariate discrete data. Examples of this liter-
ature include the work of Titterington (1980), Hall (1981), Wang and van Ryzin
(1981), Bierens (1983), Bowman, Hall, and Titterington (1984), Hall and Wand
(1988), and Grund and Hall (1993), to mention only a few (see also the mono-
graphs by Scott, 1992; Fahrmeir and Tutz, 1994; Simonoff, 1996). A brief survey
of this literature leads one rather quickly to the realization that concern lies al-
most exclusively with the estimation of the (conditional) probability distribution
of the discrete variables. Though it is not uncommon to encounter situations in
which regressors are exclusively discrete (e.g., survey data, medical data, etc.),
much less effort has been devoted to the regression framework when dealing with
discrete regressors.

In this paper we study the theoretical properties of a data-driven least squares
cross-validation (CV) method for selecting the smoothing parameters in a regres-
sion model composed solely of discrete regressors. We point out from the outset
that we are in no way “interpolating” between realizations of discrete random
variables; rather, we are simply smoothing a multivariate mean vector, or, alterna-
tively, one could think of the approach as shrinking a multivariate mean toward a
global mean in the Bayesian sense.

Our analysis is necessarily more complex than that underlying the probabil-
ity distribution framework because of the existence of a random denominator in
the nonparametric kernel estimator of a multivariate mean. We consider a gen-
eral nonparametric regression model in which we allow for the possibility that
some of the discrete regressors have a natural ordering, e.g., preferences (dislike,
indifference, like), health (excellent, good, poor), etc. We shall distinguish be-
tween “relevant” and “irrelevant” regressors, and we derive the convergence rate
of the CV smoothing parameters associated with the relevant regressors. We also
demonstrate theoretically that, when irrelevant regressors are present, the associ-
ated smoothing parameters do not converge to zero; rather, with high probability
they converge to their upper bound values, thereby smoothing out irrelevant re-
gressors. A small-scale simulation study shows that the proposed CV-based esti-
mator performs well in finite-sample settings.

Recently, Li and Racine (2004, 2007), Hall, Racine, and Li (2004), Racine and
Li (2004), and Hall, Li, and Racine (2007) have considered nonparametric estima-
tion of regression functions, conditional density, and distribution functions, and
quantile functions containing a mix of discrete and continuous regressors. The-
oretical results developed in the current paper highlight the fact that regression
models having only discrete regressors are qualitatively different from those con-
taining a mix of discrete and continuous regressors, both in theory and in practice.
In particular, in the mixed regressor case with at least one relevant continuous re-
gressor, irrelevant regressors can be smoothed out with probability approaching
one as the sample size increases. However, in the discrete regressor only case,
although the irrelevant regressors can be smoothed out with a high probability, the
probability is strictly less than one even as the sample size goes to infinity. Also,
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for the discrete regressor only case considered herein, the smoothing parameters
associated with the relevant regressors converge to zero at the rate of n−1 or n−1/2,
where n is the sample size, depending on whether or not there exist irrelevant re-
gressors. This result again differs markedly from the mixed regressor case, where
the presence of irrelevant regressors does not affect the rate of convergence of the
smoothing parameters associated with the relevant regressors. Therefore, the dis-
crete regressor only model necessarily warrants a separate treatment because the
results simply cannot be obtained as a special case of those derived for mixed dis-
crete and continuous regressor models. We hope that the novel results developed
in this paper will prove to be of interest to practitioners and theoreticians alike.

2. KERNEL REGRESSION WITH DISCRETE REGRESSORS:
THE RELEVANT REGRESSOR CASE

Consider a nonparametric regression model given by

Yi = g(Xi )+ui , (1)

where g(·) is an unknown function, Xi is an r -dimensional vector of discrete
regressors, and ui is an error term satisfying E(ui |Xi ) = 0.

We use xs to denote the sth component of x , we assume that xs takes cs different

values in Ds
de f= {0,1, . . . ,cs − 1}, s = 1, . . . ,r , and let cs ≥ 2 be a finite positive

constant. For expositional simplicity we will mainly focus on the case in which
the components of x are unordered discrete regressors,1 and we postpone the
treatment of ordered discrete regressors until Section 3.1.

For an unordered regressor, we suggest using a variant of the Aitchison and
Aitken (1976) kernel function defined as

l(Xis, xs,λs) =
{

1, when Xis = xs,

λs, otherwise.
(2)

Let 1(A) denote the usual indicator function, which assumes the value one if A
holds true, zero otherwise. Using (2), we can construct a product kernel function
given by

L(Xi , x,λ) =
r

∏
s=1

l(Xis, xs,λs) =
r

∏
s=1

λ1(Xis �=xs )
s . (3)

Note that λs = 0 along with the convention 00 = 1 leads to an indicator function,
whereas λs = 1 leads to a uniform weight function. Therefore, the range of λs is
[0,1] for all s = 1, . . . ,r .

We use D to denote the range assumed by Xi . For x ∈D, we estimate the pro-
bability function p(x) by

p̂(x) = 1

n

n

∑
j=1

L(X j , x,λ), (4)
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and we estimate g(x) by

ĝ(x) = n−1 ∑n
j=1 Yj L(X j , x,λ)

p̂(x)
. (5)

Observe that the kernel weight function we use here does not add up to one
when λs �= 0; however, this does not affect the nonparametric estimator ĝ(x)
defined in (5) as the kernel function appears in both the numerator and the de-
nominator of (5) and thus the kernel function can be multiplied by any nonzero
constant, leaving the definition of ĝ(x) intact.

Note that when λs = 0 for all s = 1, . . . ,r , our estimator reverts to the conven-
tional approach whereby one uses a frequency estimator to deal with the discrete
regressors, whereas if λs = 1 for some s, then ĝ(x) becomes unrelated to xs . That
is, xs is smoothed out from the regression model when λs = 1 (it is deemed to be
an “irrelevant” regressor).

We choose λ
de f= (λ1, . . . ,λr ) to minimize2

CV(λ) =
n

∑
i=1

[Yi − ĝ−i (Xi )]
2, (6)

where λ = (λ1, . . . ,λr ),

ĝ−i (Xi ) =
1

n−1 ∑n
j=1, j �=i Yj L(Xi , X j ,λ)

p̂−i (Xi )
(7)

is the leave-one-out kernel estimator of g(Xi ), and

p̂−i (Xi ) = 1

n −1

n

∑
j=1, j �=i

L(Xi , X j ,λ) (8)

is the leave-one-out estimator of p(Xi ). We will use λ̂
de f= (λ̂1, . . . , λ̂r ) to denote

the CV choice of λ that minimizes (6).
First we introduce some notation and provide a definition. Let x−s denote x

with xs excluded; i.e., x−s = (x1, . . . , xs−1, xs+1, . . . , xr ). Let D−s and Ds denote
the supports of x−s and xs , respectively. We say that g(x) is a constant function
with respect to xs if

g(xs, x−s) = g(zs, x−s) for all xs, zs ∈Ds and all x−s ∈D−s .

That is, g(·) does not vary as xs changes. In this case, ideally one should remove
xs from the regression model. In this section we assume that all xs’s are rele-
vant regressors. That is, g(x) is not a constant function with respect to xs for all
s = 1, . . . ,r . We shall make the following assumptions.

Assumption 1.

(a) {Xi ,Yi }n
i=1 are independent and identically distributed (i.i.d.) as (X,Y ).

(b) E(Y 2
i |Xi = x) is bounded for all x ∈D.
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Assumption 2. For all x ∈D, the only values of (λ1, . . . ,λr ) that make
{

∑z∈D
p(z)[g(x)− g(z)]L(x, z,λ)

}2 = 0 are λs = 0 for all s = 1, . . . ,r .

Assumption 1 is quite standard. Assumption 2 implies that g(x) is not a con-
stant function with respect to any component xs ∈ Ds . This is needed to prove
that λ̂ = op(1), which in turn is needed to establish the rate of convergence of λ̂s

(s = 1, . . . ,r ).
Considering the case for which r = 1, then Assumption 2 becomes, for all x ∈D

(x is a scalar because r = 1), ∑z∈D {[g(x)− g(z)] [1(x = z)+λ1(x �= z)]}2 = 0,
which is equivalent to λ2 ∑z∈D[g(x)− g(z)]21(x �= z) = 0 because [g(x)− g(z)]
1(x = z) ≡ 0. However, because g(x) is not a constant function, we know that
∑z∈D[g(x) − g(z)]21(x �= z) > 0. Hence, we must have λ = 0. Thus, Assump-
tion 2 holds true if and only if g(x) is not a constant function when x is a
scalar.

The next theorem provides the rate of convergence of the CV selected smooth-
ing parameters.

THEOREM 2.1. Under Assumptions 1 and 2, we have

λ̂s = Op(n
−1) for s = 1, . . . ,r.

The proof of Theorem 2.1 is given in Appendix A.
Theorem 2.1 shows that, when all of the regressors are relevant, the CV selected

smoothing parameters converge to zero at a fast rate of n−1. It is interesting to note
that the preceding n−1 rate of convergence is faster from the rate obtained by Hall
et al. (2007) when the regression function also contains continuous regressors.3

Therefore, the discrete-regressor-only case must be treated separately because one
cannot obtain the preceding result as a corollary from the mixed discrete and
continuous regressor model case.

From Theorem 2.1 one can easily obtain the following result.

THEOREM 2.2. Under the same conditions as those given in Theorem 2.1,
then

√
n(ĝ(x)− g(x))/

√
�̂(x) → N (0,1) in distribution,

where �̂(x) = σ̂ 2(x)/ p̂(x) and where σ̂ 2(x) = n−1 ∑i [Yi − ĝ(Xi )]2L(Xi , x, λ̂)/
p̂(x) is a consistent estimator of σ 2(x) = E(u2

i |Xi = x).

The proof of Theorem 2.2 is given in Appendix A.
In the next section we discuss the case for which some of the regressors are

irrelevant.
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3. KERNEL REGRESSION WITH DISCRETE REGRESSORS:
THE IRRELEVANT REGRESSOR CASE

In this section we allow for the possibility that some of the regressors are in
fact irrelevant in the sense that they are independent of the dependent variable.
Without loss of generality we assume that the first r1 (1 ≤ r1 < r ) components of
Xi are relevant, whereas the remaining r2 = r − r1 components of Xi are irrele-
vant. Let 
Xi denote the r1-dimensional vector of relevant components of Xi and
let X̃i denote the r2-dimensional vector of irrelevant components. Similar to the
approach taken in Hall et al. (2007) we shall assume that

(Y, 
X) and X̃ are independent of each other. (9)

Assumption (9) is quite strong as it requires independence not only between
X̃ and Y but also between X̃ and 
X . A weaker assumption would be to require
that, conditional on 
X , Y is independent of X̃ (so that X̃ and 
X can be correlated).
Though simulation results reported in Section 4 support this conjecture, at this
time we are unable to relax Assumption (9) theoretically. Therefore, we will im-
pose this condition to prove results stated in Theorems 3.1 and 3.2 that are given
later in this section.

The kernel estimator of g(x) and the definition of the CV objective function are
the same as those given in Section 2. We still use (λ̂1, . . . , λ̂r ) to denote the CV
selected smoothing parameters. In Theorem 3.1 we show that (i) the smoothing
parameters associated with the relevant regressors converge to zero at the rate of
n−1/2, which differs from the n−1 rate of convergence when there do not exist
any irrelevant components, and (ii) the smoothing parameters associated with the
irrelevant components will not converge to zero; rather they have a high probabil-
ity of converging to their upper extreme values so that these irrelevant regressors
are smoothed out with high probability. This stands in stark contrast to the re-
sults for the mixed discrete and continuous regressor case considered in Hall et
al. (2007). Furthermore, there is also a positive probability that these smoothing
parameters do not converge to their upper extreme values even as n → ∞.

Mirroring the notation used for x̄ and x̃ , we shall use L(x̄, z̄, λ̄) = ∏r1
s=1 l(x̄s,

z̄s,λs) and L(x̃, z̃, λ̃) = ∏r
s=r1+1 l(x̃s, z̃s,λs) to denote the kernel functions asso-

ciated with the relevant and the irrelevant covariates, respectively. Also, using p̄(·)
and p̃(·) to denote the marginal probability functions of 
X and X̃ , respectively,
then by independence p(x) = p̄(x̄) p̃(x̃), and using 
D to denote the support of x̄ ,
Assumption 2 is modified as follows.

Assumption 3. For all x ∈ 
D, the only values of λ1, . . . ,λr1 that make{
∑

z̄∈
D
p̄(z̄)[g(x̄)− g(z̄)]L(x̄, z̄, λ̄)

}2

= 0

are λs = 0 for all s = 1, . . . ,r1.
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Assumption 3 ensures that the CV selected smoothing parameters associated
with the relevant regressors will converge to zero, whereas we do not impose any
assumption on the smoothing parameters associated with the irrelevant regressors
except that they assume values in the unit interval [0,1].

The next theorem provides the asymptotic behavior of the CV selected smooth-
ing parameters.

THEOREM 3.1. Assume that r1 ≥ 1 and r2 ≥ 1 (with r = r1 + r2 ≥ 2). Then
under Assumptions 1 and 3 and (9), we have

λ̂s = Op(n
−1/2), for s = 1, . . . ,r1, and

lim
n→∞Pr(λ̂r1+1 = 1, . . . , λ̂r = 1) ≥ α for some α ∈ (0,1).

The proof of Theorem 3.1 is given in Appendix B. We emphasize here that
the rate of λ̂s = Op(n−1/2) (s = 1, . . . ,r1) is sharp. That is, λ̂s goes to zero at
exactly the rate of Op(n−1/2), and it cannot be faster than this rate. In particular,
it cannot reach the Op(n−1) rate that occurs in the case where irrelevant variables
are not present; see the arguments following equation (B.6) in Appendix B for the
underpinnings of this result.

Theorem 3.1 states that the smoothing parameters associated with the relevant
regressors all converge to zero at the rate of n−1/2, whereas the smoothing pa-
rameters for the irrelevant regressors have a positive probability of assuming their
upper bound value of one; that is, there is a positive probability that the irrelevant
regressors will be smoothed out. It is difficult to determine the exact value of α
for the general case because the exact value of α depends on the unknown func-
tions g(·), p(·), and σ 2(·). However, when ui is symmetrically distributed around
zero and is independent of Xi , then it is expected that α > 0.5. Our simulation
shows that there is usually about a 60% chance that λ̂s takes the upper extreme
value one and hence a 40% chance that λ̂s takes values between zero and one, for
s = r1 +1, . . . ,r .

For v̄, x̄ ∈ 
D, define 1s(v̄, x̄) = 1(v̄s �= x̄s)∏r1
t=1,t �=s 1(v̄s = x̄s). Note that 1s

(v̄, x̄) is an indicator function equal to one if v̄ and x̄ only differ in their sth
component, zero otherwise. Also, define νl(x̃) = E[(L(X̃i , X̃ j , λ̃))l |X̃i = x̃]
(l = 1,2).

The asymptotic distribution of ĝ(x) is given by the following theorem.

THEOREM 3.2. Under the same conditions as in Theorem 3.2, we have

√
n

(
ĝ(x)− g(x̄)−

r1

∑
s=1

λ̂s Bs(x̄)

)
/
√

�(x) → N (0,1) in distribution,

where Bs(x̄) = p̄(x̄)−1 ∑v̄∈
D 1s(x̄, v̄)(g(v̄) − g(x̄)) and �(x) = σ 2(x̄)ν2(x̃)/

[ p̄(x̄)ν1(x̃)2]. Moreover, Bs(x̄) can be consistently estimated by B̂s(x̄) = p̂(x̄)−1

∑v̄∈D̄ p̂(v̄)1s(v̄, x̄)(ĝ(v̄) − ĝ(x̄)), and �(x) can be consistently estimated by
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�̂(x) = [n−1 ∑i û2
i L2

i j,λ̂
]/[n−1 ∑i Li j,λ̂]2, ûi = Yi − ĝ(Xi ) and Li j,λ̂ =

L(X j , Xi , λ̂).

The proof of Theorem 3.2 is given in Appendix B.
Note that in computing �̂(x) one does not need to know which variables are

relevant or irrelevant. However, to compute B̂s(x̄), one needs to know the set of
relevant variables (ex post). If the CV method selects λ̂s = 1, then one knows
that the corresponding xs is an irrelevant variable, and if λ̂s is very small, say,
λ̂s = 0.01, then it is highly likely that xs is a relevant variable. For λ̂s values in
the middle of the interval [0,1], it is less clear whether xs should be treated as a
relevant or an irrelevant regressor. In this case one can use the bootstrap testing
procedure proposed by Racine, Hart, and Li (2006) to formally test whether xs is
an irrelevant regressor or not.

Also note that the leading bias term Bs(x̄) does not depend on the irrelevant
regressors x̃ , whereas the leading variance term �(x) depends on x̃ . By Hölder’s
inequality we know that ν2(x̃)/ν1(x̃) ≥ 1. It equals one if and only if λs = 1 for
all s = r1 +1, . . . ,r . However, by Theorem 3.1 we know that the probability that
all irrelevant variables can be smoothed out is strictly less than one. Hence, there
is a positive probability that the asymptotic variance �(x) is larger than for the
case where the irrelevant regressors are removed. That is, there exists a loss in
efficiency as compared to the case where all variables are relevant (the efficiency
loss arises from the presence of the irrelevant variables).

3.1. Ordered Discrete Regressors

We now discuss the case for which some of the discrete regressors have a natural
ordering. For an ordered discrete regressor Xi,s taking cs different values, Aitchi-
son and Aitken (1976) suggest using l(Xis, xs,λs) = (

cs−1
t

)
(1 − λs)

cs−1−tλt
s

when Xis − xs = t , where
(

cs−1
t

) = (cs −1)!/[t!(cs −1− t)!] (t = 0, . . . ,cs −1).
However, when cs ≥ 3, this kernel function suffers from the defect that there does
not exist a value of λs such that l(Xis, xs,λs) equals a constant function. Hence,
even when xs is an irrelevant regressor, one cannot smooth it out. In this paper
we suggest a simple alternative, and for an ordered regressor we suggest using the
following kernel:

l(Xis, xs,λs) =
{

1, if Xis = xs,

λ
|Xis−xs |
s , if Xis �= xs .

(10)

When λs = 0, we get an indicator function, and when λs = 1, we get a uni-
form weight function. Therefore, the range of λs is [0,1]. When λs takes the up-
per bound value of one, xs becomes an irrelevant regressor (i.e., it is completely
smoothed out). When some of the regressors are ordered discrete regressors, we
use the kernel function defined in (10) and modify the definition of 1s(v̄, x̄) so
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that 1s(v̄, x̄) = 1(|v̄s − x̄s | = 1)∏r1
t=1,t �=s 1(v̄s = x̄s) when x̄s is an ordered dis-

crete variable. Then it can then be shown that the conclusions of Theorems 2.1,
2.2, 3.1, and 3.2 remain unchanged. That is, λ̂s = Op(n−1) when there do not
exist irrelevant regressors, and λ̂s = Op(n−1/2) when there exist some irrelevant
regressors but xs is a relevant regressor, whereas λ̂s has a positive probability of
taking the upper extreme value of one when xs is irrelevant.

We now briefly discuss how our approach handles the empty cell problem.
Suppose that Y is medical expenditure and X takes four values {0,1,2,3} corre-
sponding to poor, ordinary, good, and excellent health status for a person.4 Now
suppose that there are no sample realizations for persons having ordinary health
status (i.e., x = 1 is an empty cell). Letting λ be the smoothing parameter, then
our estimator ĝ(1) is given by

ĝ(1) = ∑i Yi L(Xi ,1,λ)

∑i L(Xi ,1,λ)
= ∑|Xi −1|=1 Yiλ+∑|Xi −1|=2 Yiλ

2

∑|Xi −1|=1 λ+∑|Xi −1|=2 λ2 .

Clearly this estimate is a weighted average of the Yi ’s with the weight depending
on the distance |Xi − 1|. Individuals with poor or good health receive weight
λ (they are close to “ordinary” health), whereas those with “excellent” health
receive the smaller weight of λ2. Thus, our smoothing estimator uses data on the
outcomes lying in the “nearby” nonempty cells to impute a value of the unknown
conditional mean g(1) for empty cells, namely, ĝ(1).

We examine the finite-sample performance of the proposed estimator in the
next section.

4. MONTE CARLO SIMULATIONS

In this section we consider three simulation experiments that highlight the be-
havior of the proposed method in finite-sample settings. The first simulation ex-
periment examines properties of the proposed approach, the second examines the
effects of combining an irrelevant and a relevant variable into a single variable,
and the third focuses on the performance of the proposed approach relative to the
conventional frequency estimator and the popular linear parametric model.

4.1. Finite-Sample Performance

For this experiment we simulate data from

Yi = m(Xi ) = β0 +β1 X1i +β2 X2i +β3 X3i +ui , (11)

where β = (β0,β1,β2,β3) = (1,1,0.25,0) and u ∼ N (0,1). Each X ji ∈ {0,1,2}
with unequal probabilities; hence there exist 27 “cells” in this application. Clearly
X1i is relevant (β1 = 1), X3i is irrelevant (β3 = 0), and although X2i is relevant, it
is less important than X1i because its coefficient is much smaller than that for X1i .
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We also vary the degree of correlation among X1, X2, and X3 to determine
whether or not our independence assumption can be weakened, letting the degree
of correlation ρ = ρx1,x2 = ρx1,x3 = ρx2,x3 equal (0.00,0.25,0.50,0.75).

We draw 1,000 Monte Carlo replications, and for each replication we generate
the CV bandwidths via multivariate numerical minimization and then compute the
mean square error (MSE) for three models defined as MSE = n−1 ∑n

i=1(m(Xi )−
m̂(Xi ))

2 where m(Xi ) = β0 +β1 X1i +β X2i +β3 X3i and where m̂(Xi ) represents
a model’s fitted value. We report the median MSEs for the 1,000 replications in
Table 1. The three models are the kernel estimator with CV bandwidths (Ker-
nel), the parametric estimator that relies on knowledge of the underlying model
(Param), and the frequency estimator (Freq). We conduct a range of simulations
that vary with the sample size, n. For the kernel estimator, bandwidth distributions
are summarized in Figure 1 for ρ = 0.5

Table 1 reveals that, on MSE grounds, the proposed approach dominates the fre-
quency approach in finite-sample settings as expected, whereas a correctly speci-
fied parametric model performs the best as expected because it exploits knowledge
of the true data generating process (DGP). Of course, in practice one’s paramet-
ric model may in fact be misspecified, and we shall consider this case in Section
4.3. Finally, it appears that the method performs well even when the degree of
correlation among the regressors is large.

TABLE 1. Median MSE summary for the proposed method
(Kernel), the frequency method (Freq), and the correctly
specified parametric model (Param)

n Kernel Param Freq

ρ = 0.00
100 0.0603 0.0321 0.2267
500 0.0173 0.0068 0.0518
1,000 0.0092 0.0035 0.0267

ρ = 0.25
100 0.0603 0.0321 0.2267
500 0.0167 0.0068 0.0532
1,000 0.0087 0.0033 0.0263

ρ = 0.50
100 0.0599 0.0335 0.2314
500 0.0156 0.0068 0.0530
1,000 0.0083 0.0034 0.0264

ρ = 0.75
100 0.0603 0.0321 0.2267
500 0.0146 0.0069 0.0482
1,000 0.0076 0.0035 0.0258
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FIGURE 1. Histograms of the distribution of λ̂1, λ̂2, and λ̂3 for n = 100,500, and 1,000,
ρ = 0.

Turning to the behavior of the CV bandwidths, Figure 1 graphs the histograms
of λ̂j ( j = 1,2,3) for n from 100 to 1,000 when ρ = 0. A close examination of
Figure 1 reveals that both λ̂1 and λ̂2 converge to zero as n → ∞. In finite-sample
settings λ̂1 tends to take smaller values than λ̂2 because X1i is more important
than X2i in the sense that Xi1 has a larger effect on Yi than X2i , whereas the dis-
tribution of λ̂3 is stable for large values of n and there is a positive probability
that it will not assume its upper bound value, even as n goes to infinity, each
behaving exactly as our theory predicts. We emphasize that the CV method can
not only detect irrelevant regressors by oversmoothing, it can also distinguish
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among more important and less important regressors by applying differential
amounts of smoothing in finite-sample applications. Of course, asymptotically,
λ̂s → 0 for all relevant regressors.

4.2. Finite-Sample Performance Combining Relevant and
Irrelevant Regressors

For this experiment we consider a setting with two discrete binary regressors,
one of which is irrelevant. We compare the proposed approach with that obtained
by creating a single binary regressor from the unique values of the two discrete
binary regressors. We consider two approaches, namely, (i) conduct estimation on
the two binary regressors, one of which is irrelevant, and (ii) conduct estimation
on one regressor formed from the two binary regressors having 22 unique values.
Note that the maximum value for (λ1,λ2) and for (λ) is one.

We consider a range of sample sizes, n = 25,50,75,100. The regressors x1 and
x2 are binomially distributed with Pr[xj = 1] = 0.5, j = 1,2. The disturbance is
N (0,1), and the DGP is given by Yi = Xi1 +ui , i = 1, . . . ,n.

The median values of λ1, λ2, and λ are summarized in Table 2, and the median
MSE values are summarized in Table 3.

It can be seen from examining Table 2 that the median value for the irrelevant
bandwidth equals its maximum value and is thereby totally smoothed out, whereas
that for the single regressor falls in the middle for all sample sizes considered.
Table 3 reveals that the method that appropriately includes two regressors, one rel-
evant and one irrelevant, dominates that which creates a single regressor from the
relevant and irrelevant regressor on MSE grounds for all sample sizes considered.

4.3. Relative Performance of the Proposed Method versus
Parametric Methods

For this experiment we consider two DGPs,

DGP 1: Yi = Xi1 + Xi2 + Xi3 + Xi1 Xi2 + Xi1 Xi3 + Xi2 Xi3 +ui ,

DGP 2: Yi = Xi1 + Xi2 + Xi1 Xi2 +ui ,

TABLE 2. Median bandwidth summary for the method using
two regressors (λ1,λ2) and that using one regressor (λ)

n λ1 λ2 λ

25 0.076 1.000 0.117
50 0.039 1.000 0.058
75 0.026 1.000 0.040
100 0.020 1.000 0.030
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TABLE 3. Median MSE summary for the method using two regres-
sors (MSE(λ1,λ2)) and that using one regressor (MSE(λ))

n MSE(λ1,λ2) MSE(λ)

25 0.0916 0.1378
50 0.0404 0.0675
75 0.0250 0.0455
100 0.0195 0.0362

where X1, X2, X3 ∈ {0,1}, Pr[X j = 1] = 0.5, j = 1,2,3, and u ∼ N (0,1). Note
that, for both DGPs, we have only eight discrete cells, whereas for DGP 2 Xi3 is
irrelevant.

For each DGP we construct the proposed nonparametric estimator, the fre-
quency estimator, and the following parametric models:

Model 1: Yi = β1 Xi1 +β2 Xi2 +β3 Xi3 +β4 Xi1 Xi2 +β5 Xi1 Xi3

+β6 Xi2 Xi3 +ui ,

Model 2: Yi = β1 Xi1 +β2 Xi2 +β3 Xi3 +ui .

Note that parametric Model 1 is a correct specification for both DGPs,6 whereas
parametric Model 2 is incorrect for both DGPs in that the interaction terms are
missing.

We draw 1,000 Monte Carlo replications, and for each replication we compute
each model’s MSE. We report the median MSEs in Table 4.

From Table 4 we observe that for DGP 1, the correctly specified parametric
estimator (Model 1) performs best as expected, followed by the kernel smooth-
ing and the frequency estimators. Not surprisingly, all three estimators dominate
the misspecified parametric estimator (Model 2) because they are all consistent
estimators, whereas the misspecified parametric model leads to inconsistent
estimates.

Finally, the bottom block of Table 4 is based on DGP 2, where Xi3 is an ir-
relevant regressor. However, no estimation method takes into account this known
prior information, and all of them estimate a regression model using all three re-
gressors, Xi1, Xi2, Xi3. First we observe that the nonparametric CV-based method
has a smaller MSE than that obtained from the nonparametric frequency method
(a 45% reduction in MSE for n = 100). This is because for DGP2, Xi3 is an irrel-
evant regressor and our CV-based estimator has a high probability of smoothing
out the irrelevant regressor; hence it leads to more efficient estimates (in finite
samples) than the frequency estimator. It is interesting to observe that our non-
parametric CV-based estimator also has a smaller MSE than the correctly spec-
ified parametric estimator (a 36% reduction in MSE for n = 100). By Theorem
3.2 we know that ĝ(x) has the same

√
n rate of convergence as the paramet-

ric estimator. Note that the parametric model estimates six parameters (the β’s)
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TABLE 4. Median MSE summary for the proposed nonparametric
(Kernel), nonparametric frequency (Freq), and parametric models
(Model 1, Model 2)

n Kernel Freq Model 1 Model 2

DGP 1
100 0.073 0.072 0.063 0.218
200 0.037 0.037 0.032 0.204
400 0.018 0.018 0.016 0.195

DGP 2
100 0.041 0.074 0.064 0.093
200 0.020 0.036 0.031 0.078
400 0.010 0.019 0.016 0.070

and the frequency estimator estimates eight different cell means (recall that there
exist eight cells). Our nonparametric estimator ĝ(x) also estimates eight different
cell means; however, if λ̂3 = 1, ĝ(x) will smooth out the irrelevant regressor Xi3
and only estimate four different cell means (corresponding to the discrete cells
arising from the two relevant variables). Our simulations reveal that the proba-
bility that this happens is about 60%. This explains why ĝ(x) can have a smaller
MSE than the estimator based on a correctly (and over) specified linear model.

NOTES

1. Examples of unordered discrete regressors would include different regions, blood types, etc.
2. For related work that uses least squares CV for selecting smoothing parameters in a nonpara-

metric regression model with continuous regressors, see Härdle and Marron (1985) and Härdle, Hall,
and Marron (1988, 1992).

3. In a regression model with mixed continuous and discrete regressors, Hall et al. (2007) show
that λ̂ = Op(n−2/(4+q)), where q is the dimension of the continuous regressors.

4. A more realistic example would include a group of other discrete variables such as gender, race,
etc. Here for simplicity of exposition and to conserve space, we only consider a univariate discrete
variable, namely, the health status of a person.

5. As results were qualitatively similar for ρ �= 0 we do not report those results for space consider-
ations.

6. Here we view an overspecified model as a correct model specification as it leads to consistent
estimation of the conditional mean function. Also note that when the parametric model is overspeci-
fied, so is the nonparametric model.
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APPENDIX A: Proofs of Theorems 2.1 and
2.2—The Relevant Regressor Case

A.1. Preliminaries. The proof of Theorem 2.1 is quite tedious. Therefore, it is neces-
sary to introduce some shorthand notation and preliminary manipulations to simplify the
derivations that follow. For the reader’s convenience we list most of the notation used in
Appendix A here.

1. We will use gi to denote g(xi ) and ĝi to denote ĝ−i (xi ) defined in (7). Similarly, we
let pi = p(xi ) and p̂i = p̂−i (xi ).

2. We define ∑i = ∑n
i=1, ∑∑j �=i = ∑n

i=1 ∑n
j=1, j �=i , ∑∑∑l �= j �=i = ∑n

i=1 ∑n
j=1, j �=i

∑n
l=1,l �=i,l �= j .

3. We use 1s(xi , xj ) to denote an indicator function that equals one if and only if xi
and xj differs only in the sth component, and zero otherwise. That is, 1s(xi , xj ) =
1(xis �= xjs)∏t �=s 1(xit = xjt ).

4. Define pi,0 = 1/(n −1)∑j �=i 1(xj = xi ) and pi,1s = 1/(n −1)∑j �=i 1s(xi , xj ). Note
that pi,0 is the usual (leave-one-out) frequency estimator of pi .

5. We write An = Bn + (s.o.) to denote the fact that Bn is the leading term of An ,
where (s.o.) denotes terms that have orders smaller than Bn . Here Ai = Bi + (s.o.)
always means that n−1 ∑i Ai = n−1 ∑i Bi + (s.o.), and Ai j = Bi j + (s.o.) means

that n−2 ∑i ∑j Ai j = n−2 ∑i ∑j Bi j + (s.o.). Also, we write An ∼ Bn to mean that
An and Bn have the same order of magnitude in probability.

6. For notational simplicity we often ignore the difference between n−1 and (n −1)−1

simply because this will have no effect on the asymptotic analysis.

We also give some results that will be used in our proofs.
Rosenthal’s Inequality. Let p ≥ 2 be a positive constant and let X1, . . . , Xn denote

i.i.d. random variables for which E(Xi ) = 0 and E(|Xi |p) < ∞. Then there exists a positive
constant (which may depend on p) C(p) such that

E

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣
p)

≤ C(p)

⎧⎨⎩ n

∑
i=1

E
(|Xi |p)+

[
n

∑
s=1

E(X2
i )

]p/2
⎫⎬⎭ . (A.1)

Equation (A.1) is widely known as Rosenthal’s inequality (see Rosenthal, 1970).
The H-Decomposition for U-Statistics. Let (n,k) = n!/[k!(n − k!)] denote the number

of combinations obtained by choosing k items from n (distinct) items. Then a general
kth-order U-statistic U(k) is defined by

U(k) = 1

(n,k)
∑

1≤i1<···<ik

Hn(Xi1 , . . . , Xik ),

where Hn(Xi1 , . . . , Xik ) is symmetric in its arguments and E[H2
n (Xi1 , . . . , Xik )] < ∞.

In our proofs we will often use the following H-decomposition for a second-order
U-statistic:

U(2) = θ + 1

n ∑
i

(Hni − θ)+ 2

n(n −1)
∑
i

∑
j>i

[Hn,i j − Hni − Hnj + θ ], (A.2)
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where Hn,i j = Hn(Xi , xj ), Hni = E[Hn,i j |Xi ], and θ = E[Hni j ]. We will also make use
of the H-decomposition for a third-order U-statistic,

U(3) = θ + 1

n ∑
i

(Hni − θ)+ 2

n (n −1)
∑ ∑

j>i
(Hn,i j − Hni − Hnj + θ)

+ 6

n(n −1)(n −2)
∑∑ ∑

l> j>i

× (Hn,i jl − Hn,i j − Hn, jl − Hn,li + Hni + Hnj + Hnl − θ), (A.3)

where Hn,i jl = Hn(Xi , X j , Xl ), Hn,i j = E[Hn,i jl |Xi , X j ], Hni = E[Hn,i j |Xi ], and θ =
E[Hn,i jl ]. For a derivation of the preceding formulas and also an H-decomposition for a
general kth-order U-statistic, see Lee (1990, p. 26).

Before we begin proving Theorem 2.1, we first provide some intermediate steps. Using
(6) and Yi = gi +ui , we have

CV(λ) = n−1 ∑
i

(Yi − ĝi )
2 = n−1 ∑

i
(gi − ĝi )

2 +2n−1 ∑
i

ui (gi − ĝi )+n−1 ∑
i

u2
i

= n−1 ∑
i

(gi − ĝi )
2 p̂2

i / p̂2
i +2n−1 ∑

i
ui (gi − ĝi ) p̂i / p̂i +n−1 ∑

i
u2

i . (A.4)

In what follows, we obtain the leading terms of CV(λ). We use CV0(λ) to denote the
first two terms on the right-hand side of (A.4). Minimizing CV(λ) over λ is equivalent to
minimizing CV0(λ) as n−1 ∑i u2

i does not depend on λ, where

CV0(λ) = n−1 ∑
i

(gi − ĝi )
2 p̂2

i / p̂2
i +2n−1 ∑

i
ui (gi − ĝi ) p̂i / p̂i . (A.5)

Using (7), Yj = gj +uj , and Li j = L(xi , xj ,λ), we have

CV0(λ) = n−3 ∑
i

∑
j �=i

∑
l �=i

(gi −Yj )(gi −Yl )Li j Lil/ p̂2
i

+2n−2 ∑
i

∑
j �=i

ui (gi −Yj )Li j / p̂i

=
{

1

n3 ∑
i

∑
j �=i

∑
l �=i

(gi − gj )(gi − gl )Li j Lil/ p̂2
i

}

+
{

1

n3 ∑
i

∑
j �=i

∑
l �=i

u j ul Li j Lil/ p̂2
i − 2

n2 ∑
i

∑
j �=i

ui u j Li j / p̂i

}

+2

{
n−2 ∑

i
∑
j �=i

ui (gi − gj )Li j / p̂i −n−3 ∑
i

∑
j �=i

∑
l �=i

(gi − gj )ul Li j Lil/ p̂2
i

}

≡ S1 + S2 +2S3, (A.6)

where the definitions of Sj ( j = 1,2,3) should be apparent. Our proofs of Theorem 2.1
will be based on (A.6).
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A.2. Proofs.

Proof of Theorem 2.1. In Lemma A.1 we show that λ̂s = op(1) for all s = 1, . . . ,r .
Given this result, in the proofs of Lemma A.2 and Lemma A.4 later in this section we will
only consider the case in which λs ∈ [0,ηn], where ηn is a positive sequence that converges
to zero as n → ∞.

Lemmas A.2–A.4 hold uniformly in λ ∈ �n = [0,ηn]r . The proof of the uniform rate
of convergence is relatively lengthy. To conserve space, in this paper we only explicitly
prove the uniform rate result for Lemma A.2, and for all the remaining lemmas we omit
the uniform rate arguments because the detailed proofs follow along the same lines.

In Lemma A.2 we prove that

S1 = ∑
x∈D

[
r

∑
s=1

λs

(
∑

z∈D
p(z)1s(x, z)(g(x)− g(z))

)]2

p(x)−1 +op(|λ|2), (A.7)

where 1s(x, z) is an indicator function that equals one if x and z differ only in the sth
component, and zero otherwise, whereas |λ|2 = ∑r

s=1 λ2
s . Furthermore, Lemma A.3 shows

that

S2 = − 1

n

r

∑
s=1

λs [As + Z1n,s ]+op(|λ|2 +n−1|λ|)+ terms unrelated to λ, (A.8)

where As is a positive constant and Z1n,s is a zero mean Op(1) random variable. Finally,
Lemma A.4 shows that

S3 = 1

n

r

∑
s=1

λs Z2n,s +op(n−1|λ|+ |λ|2)+ terms unrelated to λ, (A.9)

where Z2n,s is a zero mean Op(1) random variable.
Therefore, (A.7)–(A.9) lead to

CV0 (λ) = ∑
x∈D

[
r

∑
s=1

λs ∑
z∈D

1s(x, z)p (z)(g (x)− g (z))

]2

p (x)−1

− 1

n

r

∑
s=1

λs
(

As + Zn,s
)+op(n−1|λ|+ |λ|2)+ terms unrelated to λ, (A.10)

where Zn,s = Z1n,s −2Z2n,s is a zero mean Op(1) random variable.
Note that (A.7) can be written as S1 = λ′

(r)�λ(r) +op(|λ|2), where λ(r) = (λ1, . . . ,λr )
′

and � is an r × r matrix with its (s, t)th element given by

�st = ∑
x∈D

∑
z′∈D

∑
z∈D

1s(x, z)1t (x, z′)p(z)p(z′)
(
g(x)− g(z))(g(x)− g(z′)

)
p(x)−1.

Assumption 2 is equivalent to the assumption that � is a positive definite matrix.
Thus, from (A.10) we have

∂CV0(λ)

λ(r)
= 2�λ(r) −n−1[A + Zn]+ (s.o.)

set= 0, (A.11)
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where A = (A1, . . . , Ar )′ and Zn = (Zn,1, . . . , Zn,r )
′. Equation (A.11) leads to λ̂(r) =

Op(n−1). n

Proof of Theorem 2.2. We write ĝ(x)−g(x) = [ĝ(x)−g(x)] p̂(x)/ p̂(x) = m̂(x)/ p̂(x),
where m̂(x) = [ĝ(x)− g(x)] p̂(x). The expansion of L(xi , x, λ̂) that follows is also used
frequently in the proof, namely,

L(xi , x, λ̂) = 1(xi = x)+
r

∑
s=1

λ̂s1s(xi , x)+ Op

(
r

∑
s=1

λ̂2
s

)
. (A.12)

Using this expansion it is easy to see that

m̂(x) = m̃(x)+
r

∑
s=1

λ̂s

[
n−1 ∑

i
Yi 1s(xi , x)

]
+ Op(n−2) = m̃(x)+ Op(n−1),

because λ̂s = Op(n−1) by Theorem 2.1, where m̃(x) = n−1 ∑i (Yi − g(x))1(xi = x).
Similarly, one can show that p̂(x) = n−1 ∑i 1(xi = x)+ Op(n−1). Hence we have

ĝ(x) = g̃(x)+ Op(n−1), (A.13)

where g̃(x) is the frequency estimator of g(x), i.e., g̃(x) is obtained from ĝ(x) by replac-
ing λs by 0 for all s = 1, . . . ,r . It is established that

√
n(g̃(x)− g(x)) → N (0,�(x)) in

distribution, where �(x) = σ 2(x)/p(x). Also, it is straightforward to show that σ̂ 2(x) =
σ 2(x) + op(1) and p̂(x) = p(x) + op(1) (the proofs for these are omitted here). Hence,
�̂(x) = �(x)+op(1). These results, together with (A.13), prove Theorem 2.2. n

Before we prove Lemmas A.2–A.4 that are used in the proof of Theorem 2.1, we need
to resolve a technical difficulty in handling Sl (l = 1,2,3) that arises from the presence of
the random denominator p̂i = p̂−i (xi ). We will use the following identity to handle the
random denominator:

1

p̂i
= 1

pi
+ (pi − p̂i )

p2
i

+ (pi − p̂i )
2

p2
i p̂i

. (A.14)

Recalling that pi,0 = (n −1)−1 ∑j �=i 1(xj = xi ) and pi,1s = (n −1)−1 ∑j �=i 1s(xj , xi ),
we have uniformly in 1 ≤ i ≤ n

pi − p̂i = pi − 1

n −1 ∑
j �=i

Li j = pi − 1

n −1

× ∑
j �=i

[
1(xj = xi )+

r

∑
s=1

λs1s(xj , xi )+ O(|λ|2)

]

= (pi − pi,0)−
r

∑
s=1

λs pi,1s + Op(|λ|2) = Op(n−1/2)+ Op(|λ|), (A.15)

the last equality following because max1≤i≤n |pi − pi,0| ≤ supx∈D |p(x) − n−1 ∑i 1
(xi = x)| + O(n−1) = Op(n−1/2) (because D is a finite set) and max1≤i≤n |pi,1s | =
Op(1).
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Substituting (A.15) into (A.14), we get uniformly in 1 ≤ i ≤ n

1

p̂i
= 1

pi
+ (pi − pi,0)

p2
i

−
r

∑
s=1

λs
pi,1s

p2
i

+ Op(n−1)+ Op(n−1/2|λ|+ |λ|2). (A.16)

Note that in (A.16), the Op(n−1) term comes from (pi − p̃i,0)2/p3
i , which is unrelated

to λ.
From (A.16), we also obtain uniformly in 1 ≤ i ≤ n,

1

p̂2
i

= 1

p2
i

+2
(pi − pi,0)

p3
i

−2
r

∑
s=1

λs
pi,1s

p3
i

+ Op(n−1)+ Op(n−1/2|λ|+ |λ|2), (A.17)

where again the Op(n−1) is unrelated to λ.
Both (A.16) and (A.17) will be used to handle the random denominator in the proofs

that follow.
The next lemma shows that the CV selected smoothing parameters all converge to zero

in probability.

LEMMA A.1. λ̂s = op(1) for all s = 1, . . . ,r .

Proof. When we choose λs = 0 for all s = 1, . . . ,r , it can be shown that CV0(0) = op(1).
Because λ̂ minimizes CV0(λ), it can be shown that CV0(λ̂) ≤ CV0(0). From the expression
of CV0(λ) given in (A.6), we know that CV0(λ) = S1(λ)+op(1) uniformly in λ ∈ [0,1]r

because both S2(λ) and S3(λ) contain ui , which has zero mean, which necessarily makes
S2(λ) = op(1) and S3(λ) = op(1), both uniformly in λ ∈ [0,1]r . Thus, we have CV0(λ̂) =
S1(λ̂)+ op(1) ≤ CV0(0) = op(1). Also, because S1(λ̂) ≥ 0, we know that it must be true
that

S1(λ̂) = op(1). (A.18)

In what follows we consider a generic λ ∈ [0,1]r . We expand S1(λ) as

S1(λ) = n−3 ∑
i

∑
j �=i

∑
l �=i

(gi − gj )(gi − gl )Li j Lil/ p̂2
i

= n−3 ∑∑ ∑
l �= j �=i

(gi − gj )(gi − gl )Li j Lil/ p̂2
i +n−3 ∑ ∑

j �=i
(gi − gj )

2L2
i j / p̂2

i

= n−3 ∑∑ ∑
l �= j �=i

(gi − gj )(gi − gl )Li j Lil/ p̂2
i +op (1)

≡ An(λ)+op (1) uniformly in λ ∈ [0,1]r , (A.19)

where An(λ) = n−3 ∑∑∑l �= j �=i (gi − gj )(gi − gl )Li j Lil/ p̂2
i . It can be shown that

max1≤i≤n | p̂i − piλ| = op(1) uniformly in λ ∈ [0,1]r , where piλ = E[ p̂i |xi ]. Hence, the
leading term of An(λ) is A1n(λ), where A1n(λ) is obtained from An(λ) by replacing 1/ p̂2

i
by 1/p2

iλ, i.e., A1n(λ) = n−3 ∑∑∑l �= j �=i (gi − gj )(gi − gl )Li j Lil/p2
iλ. Obviously, A1n
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can be written as a third-order U-statistic, and by the U-statistic H-decomposition (eqn.
(A.3)) we know that

A1n(λ) = E(A1n(λ))+op (1) uniformly in λ ∈ [0,1]r . (A.20)

Now,

E(A1n(λ)) = E{[E[(gi − gj )Li j /piλ|xi ]]2}+o(1)

= ∑
x∈D

p(x)

{
∑

z∈D
p(z) [g(x)− g(z)] L(x, z,λ)/p(x,λ)

}2

+o(1) (A.21)

uniformly in λ ∈ [0,1]r , where p(x,λ) = E[ p̂i |xi = x].
Equations (A.19) and (A.20) and An(λ) = A1n(λ)+op(1) imply that

S1(λ) = E[A1n(λ)]+op(1) (A.22)

uniformly in λ ∈ [0,1]r . Replacing λ by λ̂ in (A.22) and also using (A.18) and (A.21) we
obtain

S1(λ̂) = ∑
x∈D

p(x)

{
∑

z∈D
p(z) [g(x)− g(z)] L(x, z, λ̂)/p(x, λ̂)

}2

+op(1) = op(1).

(A.23)

Equation (A.23) implies that

∑
x∈D

p(x)

{
∑

z∈D
p(z) [g(x)− g(z)] L(x, z, λ̂)/p(x, λ̂)

}2

= op(1). (A.24)

Because p(x)/p(x, λ̂)2 is bounded from both above and below by some positive con-
stants, then (A.24) is equivalent to{

∑
z∈D

p(z) [g(x)− g(z)] L(x, z, λ̂)

}2

= op(1) for all x ∈D. (A.25)

Equation (A.25) and Assumption 2 imply that λ̂s = op(1) for all s = 1, . . . ,r . Recall

that Assumption 2 states that, for all x ∈D,
{

∑z∈D p(z) [g(x)− g(z)] L(x, z,λ)
}2 = 0 if

and only if λs = 0 for all s = 1, . . . ,r . It can be shown that if one (or some) of the λ̂s does
not converge to zero in probability, then the left-hand side of (A.25) is not op(1), which
contradicts (A.25). Hence, we must have λ̂s = op(1) for all s = 1, . . . ,r for (A.25) to hold.
Thus, the CV selected smoothing parameters must all converge to zero in probability. n

We are now ready to state and prove Lemmas A.2–A.4. Given the result of Lemma
A.1, in the proofs of Lemmas A.2–A.4 we will give Sl (l = 1,2,3) expansions in terms of
powers of λs (s = 1, . . . ,r ).

LEMMA A.2. S1 = ∑x∈D[∑r
s=1 λs(∑z∈D 1s(x, z)p(z)(g(x) − g(z)))]2 p(x)−1 + op

(|λ|2).
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Proof. Define S0
1 the same way as S1 except that p̂−2

i is replaced by p−2
i . That is,

S0
1

de f= 1

n3 ∑ ∑
i �= j

(gi − gj )
2L2

i j /p2
i

+ 1

n3 ∑∑ ∑
i �= j �=l

(gi − gj )(gi − gl )Li j Lil/p2
i = S1a + S1b.

Here S1b can be written as a third-order U-statistic, and S1b = n−3 ∑∑∑i �= j �=l Qi jl ,

where Q(xi , xj , xl ) is a symmetrized version of (gi − gj )(gi − gl )Li j Lil/p2
i . Also, define

Qi j ≡ E
(

Qi jl |xi , xj
)

and Qi ≡ E
(

Qi jl |xi
)
. Then by the U-statistic H-decomposition we

have

S1b = EQi + 1

n ∑
i

(Qi −EQi )+ 2

n (n −1)
∑ ∑

j>i
(Qi j − Qi − Qj +EQi )

+ 6

n (n −1)(n −2)
∑∑ ∑

l> j>i

× (Qi jl − Qi j − Qjl − Qli + Qi + Qj + Ql −EQi )

≡ J0 + J1 + J2 + J3, (A.26)

where J0 = EQi and the definition of Jl (l = 1,2,3) should be apparent.
Using (A.12) and noting that (gi − gj )1(xj = xi ) = 0, we obtain

E[(gi − gj )L ji |xj = x] =
r

∑
s=1

λs ∑
z∈D

1s(x, z)p(z)(g(x)− g(z))+ O(|λ|2). (A.27)

Hence, we have

J0 = EQi = E(Qi jk) = E[
{

E[(gi − gj )L ji |xi ]
}2

/p2
i ]

= ∑
x∈D

p(x)

[
r

∑
s=1

λs ∑
z∈D

1s(x, z)p (z)(g (x)− g (z))

]2/
p(x)2 +o(|λ|2)

= ∑
x∈D

[
r

∑
s=1

λs ∑
z∈D

1s(x, z)p(z)(g(x)− g(z))

]2

p(x)−1 +o(|λ|2) (A.28)

uniformly in x ∈D and λ.
Next, we consider J1. The term Qi ≡ E

(
Qi jl |xi

)
has the same order as |λ|2 because

E[(gi − gj )(gi − gl )L ji Lli /p2
i |xi ] = {E[(gi − gj )L ji |xi ]}2/p2

i = O(|λ|2).

Hence E(Qk
i ) = O(|λ|2k), and by Rosenthal’s inequality of (A.1) we know that

E|J1|2k ≤ n−2kCk(nk |λ|4k +n|λ|4k) = O(n−k |λ|4k).

Therefore, by Markov’s inequality, we have for 0 < δ < 1
2 and for all k > 0,

Pr(|J1| > n−δ |λ|2) ≤ E[|J1|2k ]

n−2δk |λ|4k
= O(n−(1−2δ)k) = O(n−C ), (A.29)
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where C ≥ (1 − 2δk) and C can be arbitrarily large because k is allowed to be arbitrarily
large. Then the same result holds uniformly in any set of λ with size no larger than a
polynomial in n (i.e., size no larger than O(na) for some a > 0). If Mn ∈ �n = [0,η)n]r

is any such set of values of λ (the size of Mn is no larger than O(na)), it follows that

Pr

(
max
λ∈Mn

|J1| > n−δ |λ|2
)

≤ O(na) max
λ∈Mn

P(|J1| > n−δ |λ|2) = O(n−(C−a)) = O(n−b)

(A.30)

for some b > 0 (b = C −a, C can be arbitrarily large). Furthermore, the function L(., .,λ)
is a polynomial function in λ and hence is Hölder continuous in λ. Therefore, taking a
polynomially fine mesh of λ over [0,ηn]r , following the standard arguments as used in
Masry (1996) for establishing the uniform consistency of nonparametric estimators, we
deduce that (A.30) continues to hold if Mn is replaced by �n = [0,ηn]r , i.e.,

Pr

(
sup

λ∈�n

|J1| > n−δ |λ|2
)

= O(n−b) (A.31)

for some b > 0, which implies that

J1 = op(|λ|2) uniformly in λ ∈ [0,ηn]r . (A.32)

Next, we consider J2. Note that Qi j has the same order as

E[(gi − gj )(gi − gl )L ji Lli /p2
i |xi , xj ] ∼ O(|λ|)(gi − gj )L ji .

Hence, E(Qk
i j ) = O(|λ|2k). We need to evaluate E(J 2k

2 ). Note that J2 = 2n−2 ∑i ∑j>i

Hi j contains two summations, where Hi j = Qi j − Qi − Qj + E Qi . Thus, E(J 2k
2 ) =

22kn−4k ∑i1 ∑j1>i1 · · ·∑i2k ∑j2k>i2k E[Hi1 j1 · · ·Hi2k j2k ], which contains 4k summations.

Also, because E[Hi j |xi ] = 0, the nonzero terms in E(J 2k
2 ) must have the property that

each summation index is equal to at least another summation index. Thus, the nonzero
terms can at most contain 2k summations (each summation index is paired with and only
with another one), the next nonzero term contains 2k − 1 summations, etc., whereas the
last nonzero term (having the smallest number of summations) has two summations.

More specifically, let us consider the case of k = 2. In this case E(J 2k
2 ) = E(J 4

2 ) =
16n−8 ∑i1 ∑j1>i1 . . .∑i4 ∑j4>i4 E[Hi1 j1 . . .Hi4 j4 ] contains 8 summations. However, if one
of the indexes, say, i1, differs from all other indexes, i.e., i1 �= il for all l �= 1, and i1 �= jl
for l = 1, . . . ,4, then E[Hi1 j1 |xj1 , xi2 , xj2 , . . . , xj4 ] = 0, which leads to E(J 4

2 ) = 0 (for this

case) by the law of iterated expectations. Therefore, for E(J 4
2 ) to be nonzero, all subscript

indexes must pair with at least another index. Then we have the following case, situation
(a), where the eight indexes take four different values, i.e., each index pairs with one and
only one other index, one such case being i1 = i3, i2 = i4, j1 = j3, and j2 = j4, which
gives E[H2

i1 j1
H2

i2 j2
]. Obviously, all cases in situation (a) have the same order. If we let

C2,1 (which also includes the factor 16) denote the number of cases in situation (a), then we
have E(J 4

2 )(a) ∼ C2,1n−8 ∑i1 ∑j1>i1 ∑i2 ∑j2>i2 E[H2
i1 j1
H2

i2 j2
]. On the other hand

we could encounter situation (b), where the eight indexes take three different values, one
such case being i1 = i2 = i3 = i4, j3 = j1, j4 = j2, which corresponds to E[H2

i1 j1
H2

i1 j2
].
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We use C2,2 to denote other cases for situation (b), all such cases having the same order
so that we have E(J 4

2 )(b) ∼ C2,2n−8 ∑i1 ∑j1>i1 ∑j2>i1 E[H2
i1 j1
H2

i1 j2
]. Or, we could en-

counter situation (c), where the eight indexes take two different values. There is only one
such case, i.e., i1 = i2 = i3 = i4 and j1 = j2 = j3 = j4, which leads to E[H4

i1 j1
]. Finally,

by noting that E(Hk
i j ) ∼ E(Qk

i j ) = O(|λ|2k), we have

E(J 4
2 ) = E(J 4

2 )(a) +E(J 4
2 )(a) +E(J 4

2 )(a) ∼ n−8{C2,1n4|λ|8 +C2,2n3|λ|8 +n2|λ|8}
= O(n−4|λ|8).

Therefore, for a general positive integer k ≥ 2, using E(Qk
i j ) = O(|λ|2k), similar to the

case for which k = 2, one can show that

E |J2|2k ≤ n−4k{Ck,1n2k |λ|4k +Ck,2n(2k−1)|λ|4k +·· ·+n2|λ|4k} = O(n−2k |λ|4k).

(A.33)

Hence, by Markov’s inequality, we know that this leads to Pr(J2 > n−δ |λ|2) =
O(n−(2−2δ)k) = O(n−C ) (for some δ ∈ (0,1) and for all C > 0). Then by using the same
arguments as those leading to (A.31), we get

Pr

(
sup

λ∈�n

|J2| > n−δ |λ|2
)

= O(n−b), (A.34)

for some b > 0, which implies that

J2 = op(|λ|2) uniformly in λ. (A.35)

The term J3 is a third-order U-statistic. The kth-order moment of Qi jl has the same

order as the kth moment of the unsymmetrized quantity (gi −gj )Li j (gi −gl )Lil/p2
i . Thus,

E(Qk
i jl ) ∼ E[(gi − gj )(gi − gl )L ji Lli /p2

i ]k = O(|λ|2k).

The term J 2k
3 contains 6k summations. However, for E(J 2k

3 ) to be nonzero, each sum-
mation index must be equal to at least another summation index. Hence, we have

E
∣∣∣J 2k

3

∣∣∣ ≤ n−6kCk(n3k |λ|4k +·· ·+n3|λ|4k) = O(n−3k |λ|4k). (A.36)

By comparing (A.36) with (A.33), we know that J3 has an order smaller than that of J2.
Hence,

J3 = op(|λ|2) uniformly in λ ∈ �n . (A.37)

Summarizing (A.28) to (A.37), we have shown that

S1b = ∑
x∈D

[
r

∑
s=1

λs ∑
z∈D

1s(x, z)p(z)(g(x)− g(z))

]2

p(x)−1 +o(|λ|2) (A.38)

uniformly in λ ∈ �n .
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Now we consider S1a , where

S1a = 2

n(n −1)2

n

∑
i

n

∑
j>i

(gi − gj )
2L2

j i

[
1

p2
i

+ 1

p2
j

]
. (A.39)

By using the U -statistic H -decomposition, it is easy to see that the leading term of S1a
is E[S1a] = n−1E[(gi − gj )

2L2
j i /p2

i ] = O(n−1|λ|2) = o(|λ|2). Hence, S1a = o(|λ|2) uni-
formly in λ.

By (A.38) and (A.39) we have

S0
1 = ∑

x∈D

[
r

∑
s=1

λs ∑
z

1s(x, z)p(x)(g(x)− g(z))

]2

p(x)−1 +o(|λ|2) (A.40)

uniformly in λ.
Define �p,i (xi ) ≡ p̂i − pi and m̂1,i (x) = 1/(n − 1)∑j �=i (g(x) − g(xj ))L(xj , x,λ).

Then∣∣∣S1 − S0
1

∣∣∣ =
∣∣∣∣∣ 1

n

n

∑
i=1

m̂2
1,i (xi )

(
1

p̂2
i

− 1

p2
i

)∣∣∣∣∣ ≤ C sup
1≤i≤n

m̂2
1,i (xi ) sup

1≤i≤n

∣∣�p,i (xi )
∣∣ . (A.41)

Now,

E(m̂1,i (x)) = E((g(x)−g(xj ))L(xj , x,λ)) ∼ O(|λ|), uniformly in x ∈D and λ. (A.42)

We write

m̂1,i (x)−E(m̂1,i (x)) = 1

n −1 ∑
j �=i

[
(g(x)− g(xj ))L(xj , x)

−E((g(x)− g(xj ))L(xj , x))
]

≡ 1

n −1 ∑
j �=i

[
Vj −E(Vj )

]
, (A.43)

where Vj ≡ (g(x)− g(xj ))L(xj , x). It is easy to show that E(V k
j ) ∼ O(|λ|k). By Rosen-

thal’s inequality, we have

E
∣∣m̂1,i (x)−E(m̂1,i (x))

∣∣2k ≤ Ckn−2k(nk |λ|2k +n|λ|2k) ∼ O(n−k |λ|2k).

By Markov’s inequality, we have

Pr
(∣∣m̂1,i (x)−E(m̂1,i (x))

∣∣ > n−δ |λ|
)

= O(n−(1−2δ)k), for some 0 < δ < 1/2.

Using the same arguments as those leading to (A.34), we have for some δ ∈ (0,1/2) and
any C > 0,

Pr

(
sup
λ

∣∣m̂1,i (x)−E(m̂1,i (x))
∣∣ > n−δ |λ|

)
≤ const.n−(1−2δ)k = O(n−C ),

which implies that



26 DESHENG OUYANG ET AL.

sup
λ

∣∣m̂1,i (x)−E(m̂1,i (x))
∣∣ = op(|λ|) uniformly in x ∈D. (A.44)

By (A.42) and (A.44), we have

m̂1,i (x) = Op(|λ|) uniformly in x ∈ D and λ ∈ �n . (A.45)

Recalling that �p,i (xi ) = p̂i − pi , then by the same arguments that lead to (A.45), we
have that

sup
i,λ,xi

∣∣�p,i (xi )
∣∣ ≤ max

λ,x∈D | p̂(x)−E p̂(x)|+ max
λ,x∈D |E[ p̂(x)]− p(x)|

= Op(n−1/2)+ Op(|λ|) = op(1). (A.46)

By (A.45) and (A.46) we have∣∣∣S1 − S0
1

∣∣∣ ≤ C sup
1≤i≤n

m̂2
1,i (xi ) sup

1≤i≤n

∣∣�p,i (xi )
∣∣ = op(|λ|2). (A.47)

By (A.40) and (A.47) we have

S1 = ∑
x∈D

[
r

∑
s=1

λs ∑
z∈D

1s(x, z)p(z)(g(x)− g(z))

]2

p(x)−1 +op(|λ|2) (A.48)

uniformly in λ. n

LEMMA A.3. S2 = −n−1 ∑r
s=1 λs As +n−1 ∑r

s=1 λs Z1n,s +op(|λ|2 +|λ|n−1)+ terms
unrelated to λ, where As > 0 is a positive constant and Z1n,s is a zero mean Op(1) random
variable defined in the proof that follows.

Proof.

S2 = n−3 ∑ ∑
j �=i

u2
j L2

i j / p̂2
i +n−3 ∑∑ ∑

i �= j �=l
u j ul Li j Lil/ p̂2

i −2n−2 ∑ ∑
j �=i

ui u j Li j / p̂i

≡ S2a + S2b −2S2c.

Using (A.17) and noting that L2
i j,λ = O(|λ|2) if xj �= xi , we have

S2a = n−3 ∑ ∑
j �=i

1(xj = xi )u
2
j / p̂2

i + Op(n−1|λ|2)

= n−3 ∑ ∑
j �=i

1(xj = xi )u
2
j

[
1/p2

i +2(pi − pi,0)/p3
i −2

r

∑
s=1

λs pi,1s/p3
i

]

+ O(n−3/2|λ|+n−1/2|λ|2)

= − 1

n

r

∑
s=1

λs2n−2 ∑ ∑
j �=i

1(xj = xi )u
2
j pi,1s/p3

i

+ Op(n−3/2|λ|+n−1/2|λ|2)+ terms unrelated to λ,
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≡ −n−1
r

∑
s=1

λs As + O(n−3/2|λ|+n−1/2|λ|2)+ terms unrelated to λ,

where As = 2E[1(xj = xi )u
2
j pi,1s/p2

i ] is a positive constant and we have used the fact that

2n−2 ∑ ∑
j �=i

1(xj = xi )u
2
j pi,1s/p3

i = As + Op(n−1/2). (A.49)

Equation (A.49) follows from the U -statistic H -decomposition because 2n−2 ∑∑j �=i

1(xj = xi )u
2
j pi,1s/p3

i can be written as a second-order U -statistic.
Using (A.17) and (A.12) we have

S2b = n−3 ∑∑ ∑
i �= j �=l

u j ul

[
1(xj = xi )+

r

∑
s=1

λs1s(xj , xi )

]

×
[

1(xl = xi )+
r

∑
t=1

λt 1t (xl , xi )

][
1/p2

i +2(pi − pi,0)/p3
i −2

r

∑
s=1

λs pi,1s/p3
i

]

+ Op(n−1|λ|2)

= n−1
r

∑
s=1

λs2n−2 ∑∑ ∑
i �= j �=l

u j ul

[
1(xj = xi )1s(xl , xi )+1(xl = xi )1s(xj , xi )

−2×1(xj = xi )1(xl = xi )pi,1s p−1
i

]/
p2

i

+ Op(n−3/2|λ|+n−1/2|λ|2)+ terms unrelated to λ

= n−1
r

∑
s=1

λs Z3n,s + Op(n−3/2|λ|+n−1/2|λ|2)+ terms unrelated to λ,

where Z3n,s equals

2

n2 ∑∑ ∑
i �= j �=l

u j ul

p2
i

[
1(xj = xi )1s(xl , xi )+1(xl = xi )1s(xj , xi )

−2×1(xj = xi )1(xl = xi )× pi,1s

pi

]
.

It is easy to see that Z3n,s is a zero mean Op(1) random variable by showing that
E(Z2

3n,s) = O(1) (this follows from the fact that E(ui1 ui2 ui3 ui4 |xi1 , xi2 , xi3 , xi4) = 0 un-
less i1, i2, i3, i4 take on no more than two different values). In the preceding derivation we
have also used the fact that pi − pi,0 = Op(n−1/2).

Again, using (A.16) and (A.12) and letting ζn = n−1|λ|2 +n−3/2|λ|+ terms unrelated
to λ, we have

S2c = n−2 ∑ ∑
j �=i

ui u j

[
1(xj = xi )+

r

∑
s=1

λs1s(xj , xi )

]
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×
[

1/pi + (pi − pi,0)/p2
i −

r

∑
s=1

λs pi,1s/p2
i

]
+ Op(ζn)

= n−1
r

∑
s=1

λsn−1 ∑ ∑
j �=i

ui u j [1s(xj , xi )/pi −1(xj = xi )pi,1s/p2
i ]+ Op(ζn)

= n−1
r

∑
s=1

λs Z4n,s + Op(n−1|λ|2 +n−3/2|λ|)+ terms unrelated to λ,

where Z4n,s = n−1 ∑∑j �=i ui u j [1s(xj , xi )/pi −1(xj = xi )pi,1s/p2
i ]. It is easy to see that

Z4n,s is a zero mean Op(1) random variable. Note that the term associated with pi − pi,0
is of order Op(n−3/2|λ|) because max1≤i≤n |pi − pi,0| = Op(n−1/2).

Summarizing the preceding discussion we have shown that

S2 = S2a + S2b −2S2c

= −n−1
r

∑
s=1

λs As +n−1
r

∑
s=1

λs Z1n,s

+ Op(n−1|λ|2 +n−3/2|λ|)+ terms unrelated to λ, (A.50)

where Z1n,s = Z3n,s −2Z4n,s is a zero mean Op(1) random variable. n

LEMMA A.4.

S3 = n−1
r

∑
s=1

λs Z2n,s +op(|λ|2 +n−1|λ|),

where Z2n,s is a zero mean Op(1) random variable defined in the proof that follows.

Proof.

S3 = n−2 ∑
i

∑
j �=i

ui (gi − gj )Li j / p̂i −n−3 ∑∑ ∑
i �= j �=l

(gi − gj )ul Li j Lil/ p̂2
i

−n−3 ∑
i

∑
j �=i

(gi − gj )uj L2
i j / p̂2

i ≡ S3a − S3b − S3c.

As we will see subsequently, there are some subtle cancellations between S3a and S3b
that are the key to establishing Lemma A.4.

Letting ζn = |λ|2n−1/2 +|λ|n−3/2+ terms unrelated to λ, then using (A.16) and noting
that (gi − gj )1(xj = xi ) = 0, we have

S3a = n−2 ∑ ∑
j �=i

ui (gi − gj )

[
0+

r

∑
s=1

λs1s(xj , xi )

]
[1/pi + (pi − pi,0)/p2

i ]+ Op(ζn)

=
r

∑
s=1

λsn−2 ∑ ∑
j �=i

1s(xj , xi )ui (gi − gj )/pi
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+
r

∑
s=1

λsn−2 ∑ ∑
j �=i

1s(xj , xi )ui (gi − gj )(pi − pi,0)/p2
i + Op(ζn)

= S3a,1 + S3a,2 + Op(ζn), (A.51)

where the definitions of S3a,1 and S3a,2 should be apparent. The zero term appearing in
the first equality comes from the fact that (gi − gj )1(xj = xi ) = 0.

Next, we consider S3b. Again noting that (gi − gj )1(xj = xi ) = 0 and using (A.17), we
have

S3b = n−3 ∑∑ ∑
i �= j �=l

ul (gi − gj )

[
0+

r

∑
s=1

λs1s(xj , xi )

]

× [1(xl = xi )][1/p2
i +2(pi − pi,0)/p3

i ]+ Op(n−1/2|λ|2 +n−3/2|λ|)

=
r

∑
s=1

λsn−3 ∑∑ ∑
l �= j �=i

1s(xj , xi )1(xl = xi )ul (gi − gj )/p2
i

+2
r

∑
s=1

λsn−3 ∑∑ ∑
l �= j �=i

1s(xj , xi )1(xl = xi )ul (gi − gj )(pi − pi,0)/p3
i

+ Op(n−1/2|λ|2 +n−3/2|λ|)

≡ S3b,1 +2S3b,2 + Op(n−1/2|λ|2 +n−3/2|λ|), (A.52)

where the definitions of S3b,1 and S3b,2 should be apparent.
Note that max1≤i≤n |pi − pi,0| ≤ maxx∈D |p(x) − n−1 ∑n

j=1 1(xj = 1)| + O(n−1) =
Op(n−1/2) because the supportD only contains finitely many x . Using this result it is easy
to see that both S3a,2 and S3b,2 are of order Op(|λ|n−1). Although S3a,1 and S3b,1 are
both of order Op(|λ|n−1/2), we will show subsequently that S3a,1 − S3b,1 = Op(|λ|n−1).
To show this, we need to rewrite S3b,1 in a form similar to S3a,1,

S3b,1 =
r

∑
s=1

λsn−3 ∑
i

∑
j �=i

∑
l �=i,l �= j

1s(xj , xi )1(xl = xi )ul (gi − gj )/p2
i

=
r

∑
s=1

λsn−3∑
i

∑
j �=i

∑
l �=i,l �= j

1s(xj , xl )1(xl = xi )ul (gl − gj )/p2
l (because xl = xi )

=
r

∑
s=1

λr n−2 ∑
j

∑
l �= j

[
1s(xj , xl )ul (gl − gj )/p2

l

][
n−1 ∑

i �= j,i �=l
1(xl = xi )

]

=
r

∑
s=1

λsn−2 ∑
j

∑
l �= j

1s(xj , xl )ul (gl − gj )p∗
l,0/p2

l
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(p∗
l,0

de f= n−1 ∑n
i=1,i �= j,i �=l 1(xl = xi ))

=
r

∑
s=1

λsn−2 ∑
j

∑
i �= j

1s(xj , xi )ui (gi − gj )pi,0/p2
i + Op(|λ|n−3/2), (A.53)

where the second equality is the key step. There we used gl = gi , pl = pi because xl = xi
as a result of the restriction 1(xl = xi ). The third equality simply reorders the summa-
tions. The fourth equality follows from the definition of p∗

l,0, and in the last equality we

used max1≤l≤n |pl,0 − p∗
l,0| = Op(n−1) (pl,0 = n−1 ∑i=1,i �=l 1(xl = xi )) and we changed

summation indexes from ( j, l) to ( j, i).
Note that both S3a,1 and S3b,1 are of order Op(|λ|n−1/2), but we have (using (A.53))

S3a,1 − S3b,1 = n−1
r

∑
s=1

λs

{
n−1 ∑ ∑

j �=i
1s(xj , xi )ui (gi − gj )(pi − pi,0)/p2

i

}

+ Op(n−3/2|λ|)

≡ S3a,2 + Op(n−3/2|λ|), (A.54)

which is of the order of Op(|λ|n−1) because it is easy to show that E[S2
3a,2] = O(|λ|2n−2),

which follows from the facts that ui has zero mean and that max1≤i≤n |pi,0 − pi | =
Op(n−1/2).

Finally, noting that (gi − gj )1(xj = xi ) = 0, and that 1(xj �= xi )L2
i j = O(|λ|2), we have

S3c = n−3 ∑ ∑
j �=i

1(xj �= xi )(gi − gj )uj L2
i j / p̂2

i = O(n−1|λ|2). (A.55)

Now, combining (A.51), (A.52), (A.54), and (A.55), we obtain

S3 = S3a − S3b − S3c = (S3a,1 − S3b,1)+S3a,2 −2S3b,2 + Op(|λ|2n−1/2 +|λ|n−3/2)

= 2S3a,2 −2S3b,2 + Op(|λ|2n−1/2 +|λ|n−3/2)

= n−1
r

∑
s=1

λs

{
2

n ∑ ∑
j �=i

1s(xj , xi )(gi − gj )(pi − pi,0)/p2
i

×
[

ui − 1

n ∑
l �=i,l �= j

1(xl = xi )ul/pi

]}
+ Op(ζn)

≡ n−1
r

∑
s=1

λs Z2n,s + Op(|λ|2n−1/2 +|λ|n−3/2), (A.56)

where Z2n,s = 2
n ∑∑j �=i 1s(xj , xi )(gi −gj )(pi − pi,0)/p2

i [ui − (1/n)∑l �=i,l �= j 1(xl = xi )

ul/pi ] and ζn = n−1/2|λ|2 +n−3/2|λ|. Using max1≤i≤n |pi,0 − pi | = O(n−1/2), it is easy
to see that Z2n,s is a zero mean Op(1) random variable. n
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APPENDIX B: Proofs of Theorems 3.1 and
3.2—The Irrelevant Regressor Case

Proof of Theorem 3.1. As outlined in Appendix A, we have CV(λ) = CV0(λ)+ a term
unrelated to λ, where CV0(λ) = S1 + S2 + 2S3, with the definitions of the Sj ’s given in
(A.6). Now, we assume that x = (x̄, x̃), where x̄ contains the first relevant r1 components
of x and x̃ contains the last r2 = r − r1 irrelevant components of x ; g(x) = g(x̄) so that x̃
are irrelevant regressors.

In Lemma B.1 we show that λ̂s = op(1) for s = 1, . . . ,r1. Given this result, in the proofs
of Lemmas B.2 and B.4 in this Appendix we will only consider the case in which λ̄ =
(λ1, . . . ,λr1) ∈ [0,ηn]r1 , where ηn is a positive sequence that converges to zero as n → ∞.
Lemmas B.2–B.4 hold uniformly in λ̄ ∈ �̄n = [0,ηn]r1 .

Letting |λ̄| =
√

∑r1
s=1 λ2

s , then by Lemmas B.2–B.4, we have

S1 = ∑
x∈D

⎡⎣ r1

∑
s=1

λ̄s ∑
z̄∈
D

1s(x̄, z̄) p̄(z̄)(g(x̄)− g(z̄))

⎤⎦2

p̃ (x̃) p̄(x̄)−1 +op(|λ̄|2), (B.1)

S2 = n−1 B(λ̃)+n−1Z1n(λ̃)+op(n−1/2|λ̄|+ |λ̄|2), (B.2)

where B(λ̃) equals a positive constant times E{L̃2
i j /[E(L̃i j |x̃i )]

2}, where L̃i j = L(x̃i , x̃ j ,

λ̃). Hence, B(λ̃) is positive and finite for all values of λ̃. The expression Z1n(λ̃) = n−1

∑∑j �=i [ui uj 1(x̄ j = x̄i )/ p̄2
i ] θi j (λ̃) is a zero mean Op(1) random variable, with θi j (λ̃) =

E

{
L̃il L̃ jl

[E(L̃il |x̃l )]2
|x̃i , x̃ j

}
. Furthermore,

S3 = n−1/2
r1

∑
s=1

λ̄sZ2n,s(λ̃)+ Op(n−1/2|λ̄|2 +n−1|λ̄|+n−3/2), (B.3)

where Z2n,s(λ̃) is a zero mean Op(1) random variable defined in Lemma B.4.
Similar to the proof of Theorem 2.1, one can write (B.1) as S1 = λ̄′

(r1)
�̄λ̄(r1), where

λ̄(r1) = (λ̄1, . . . , λ̄r1)
′ and �̄ is an r1 ×r1 positive definite matrix defined similarly to � in

Appendix A but with r replaced by r1. Then combining (B.1)–(B.3), we obtain

CV0(λ) = S1 + S2 +2S3

= λ̄′
(r1)

�̄λ̄(r1) +n−1 B(λ̃)+n−1Z1n(λ̃)+2n−1/2
r1

∑
s=1

λ̄sZ2n,s(λ̃)

+op(|λ̄|2 +n−1|λ̄|+n−3/2)+ terms unrelated to λ. (B.4)

Taking the derivative of CV0(λ) with respect to λ̄(r1) gives

∂ CV0(λ)

∂ λ̄(r1)
= 2�r̄(r1) +n−1/2Z2n + (s.o.)

set= 0, (B.5)

where Zn = (Z2n,1, . . . ,Z2n,r1)
′.
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By noting that, for any values of (λ̃1, . . . , λ̃r2),Z2n,s is an Op(1) random variable, (B.5)
leads to

λ̄(r1) = n−1/2[2�̄]−1Z2n + (s.o.) = Op(n−1/2). (B.6)

From Lemma B.4 we know that (where ν̃i = E(L̃i j |x̃i ))

Z2n,s(λ̃) = n−3/2 ∑ ∑
j �=i

ui (gi − gj )1s(x̄ j , x̄i )
1

p̄i

×
[

L̃i j

ν̃i
− 1

p̄i n ∑
l �= j,l �=i

1(x̄l = x̄i )L̃li L̃l j /ν̃
2
l

]
,

which has zero mean and an asymptotic finite positive variance. This, together with the fact
that �̄−1 is positive definite and finite, implies that λ̄(r1) converges to zero in probability

at an exact rate of Op(n−1/2) (i.e., it cannot go to zero at a rate faster than Op(n−1/2)).
(Note that when there do not exist irrelevant variables, ν̃i = E(L̃i j |x̃i ) reduces to 1 (we re-

place L̃i j by 1 if there are no irrelevant variables). In this case 1− (1/ p̄i n)∑l �= j,l �=i 1(x̄l =
x̄i ) = Op(n−1/2). Hence, Z2n,s = Op(n−1/2) and λ̄ becomes Op(n−1) as stated in
Theorem 2.1.)

Substituting (B.6) back into CV0(λ) yields a concentrated objective function, which we
denote as C̃V0(λ̃). It is easy to see that C̃V0(λ̃) takes the following form:

C̃V0(λ̃) = n−1{B(λ̃)+Xn(λ̃)}+ terms unrelated to λ̃, (B.7)

where Xn(λ̃) =Z1n(λ̃)+2
√

n ∑r1
s=1 λ̄sZ2n,s(λ̃) is a zero mean Op(1) random variable. In

fact, Xn(λ̃) is a zero mean U-process indexed by λ̃. By Lemma B.5 we know that the first
term on the right-hand side of (B.7) has a unique minimization point at λ̃s = 1 for all s =
1, . . . ,r2. The second term is a zero mean U-process given by n−1 ∑∑j �=i ui u j Ai j Bi j (λ̃),

where Ai j = A(x̄i , x̄ j ) is a bounded function of (x̄i , x̄ j ) and where Bi j (λ̃) is a bounded

function of (x̃i , x̃ j ) and λ̃. Then it is easy to see that, asymptotically, this second term is

minimized at λ̃s = 1 for all s = 1, . . . ,r2 with positive probability, say, δ ∈ (0,1). The
value of δ will depend on the distribution of xi and ui and can be difficult to compute
exactly. Because the first term on the right-hand side of (B.7) is minimized at λ̃s = 1 (with
probability one) for all s = 1, . . . ,r1, then 0̃(λ̃) is minimized at λ̃s = 1 (for s = 1, . . . ,r1)
with probability α ∈ (0,1) with α > δ.

Hence, we have

lim
n→∞Pr(λ̃1 = 1, . . . , λ̃r2 = 1) ≥ α (B.8)

for some α ∈ (0,1).
It does not seem to be possible to determine the value of α exactly for the general case.

However, because the first term on the right-hand side of (B.7) is uniquely minimized at
λ̃s = 1 for s = 1, . . . ,r2 and the other terms have zero means, this suggests that it is likely
that α ∈ (1/2,1). Indeed our simulations show that α is between 0.6 and 0.65 for a variety
of DGPs. n
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Proof of Theorem 3.2. We write ĝ(x)−g(x̄) = (ĝ(x)−g(x̄)) p̂(x)/ p̂(x) ≡ m̂(x)/ p̂(x),
where

m̂(x) = (ĝ(x)− g(x̄)) p̂(x) = n−1 ∑
i

[Yi − g(x̄)]Lxi ,x,λ

= n−1 ∑
i

[g(x̄i )− g(x̄)]Lxi ,x,λn−1 +∑
i

ui Lxi ,x,λ

≡ m̂1(x)+ m̂2(x)

and where Lxi ,x,λ ≡ L(xi , x,λ) and the definitions of m̂1(x) and m̂2(x) should be
apparent.

We have the following decomposition for Lxi ,x,λ:

L(xi , x, λ̂) =
[

1(xi = x)+
r1

∑
s=1

λ̂s1s(x̄i , x̄)+ Op(|λ̄|2)

]
Lx̃i ,x̃,λ̃, (B.9)

where Lx̃i ,x̃,λ̃ = ∏r
s=r1+1 l(xis , xs ,λs) and |λ̄|2 = ∑r1

s=1 λ̂2
s = Op(n−1).

Using (B.9) we can write m̂1(x) as

m̂1(x) = n−1 ∑
i

[
g(x̄i )− g(x̄)

][
1(x̄i = x̄)+

r1

∑
s=1

λ̂s1s(x̄i , x̄)+ Op(|λ̄|2)

]
Lx̃i ,x̃,λ̃

=
r1

∑
s=1

λ̂s Gs(x)+ Op(n−1), (B.10)

because [g(x̄i ) − g(x̄)]1(x̄i = x̄) ≡ 0 where Gs(x) = n−1 ∑i [g(x̄i ) − g(x̄)]1s(x̄is , x̄)
Lx̃i ,x̃,λ̃.

It is easy to show that E[Gs(x)] = E{[g(x̄i ) − g(x̄)]1s(x̄is , x̄)}E[Lx̃i ,x̃,λ̃] = ∑v̄∈D̄
p̄(v̄)[g(v̄)− g(x̄)]1s(v̄, x̄)ν1(x̃). Also, var(Gs(x)) = O(n−1). Hence,

Gs(x) = E[Gs(x)]+ Op(n−1/2) = Bs(x̄) p̄(x̄)ν1(x̃)+ Op(n−1/2),

where Bs(x̄) = p̄(x̄)−1 ∑v̄∈D̄ p̄(v̄)[g(v̄)− g(x̄)]1s(v̄, x̄). This result, together with λ̂s =
Op(n−1/2) for s = 1, . . . ,r1, yields

m̂1(x) = p̄(x̄)ν1(x̃)
r1

∑
s=1

λ̂s Bs(x̄)+ Op(n−1). (B.11)

Next, we consider m̂2(x). Using (B.9) we can write m̂2(x) as
m̂2(x) = n−1 ∑i ui 1(x̄i = x̄)L̃ x̃i ,x̃,λ̃+ Op(n−1) ≡ m̂2,0(x)+ Op(n−1). Obviously E[m̂2,0
(x)] = 0, and its variance is given by

var(m̂2,0(x)) = n−1E[u2
i 1(x̄i = x̄)]E[L̃2

i j ] = n−1σ 2(x̄) p̄(x̄)ν2(x̃). Hence, by the
Lindeberg central limit theorem, we have

√
nm̂2(x) = √

nm̂2,0(x)+ Op(n−1/2)
d→ N (0,σ 2(x̄) p̄(x̄)ν2(x̃)). (B.12)
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Combining (B.11) and (B.12) we have

√
n[m̂(x)−

r1

∑
s=1

λ̂s Bs(x̄) p̄(x̄)ν1(x̃)]
d→ N (0,σ 2(x̄) p̄(x̄)ν2(x̃)). (B.13)

Equations (B.16) and (B.13) lead to

√
n

[
ĝ(x)− g(x)−

r1

∑
s=1

λ̂s Bs(x̄)

]
=

√
n [m̂(x)−∑r1

s=1 λ̂s Bs(x̄) p̄(x̄)ν1(x̃)]

p̄(x̄)ν1(x̃)
+ Op(n−1/2)

d→ N

(
0,

σ 2(x̄)ν2(x̃)

p̄(x̄)ν1(x̃)2

)
.

n

We are now ready to state and prove Lemmas B.1–B.4. We first provide some results
that are needed to handle the random denominator, p̂i .

Define μ(x) = E[ p̂(xi )|xi = x] and recall that νl (x̃) = E[(L̃i j )
l |x̃i = x̃] (for l = 1,2).

Then it is obvious that E[ p̂(x)−μ(x)] = 0 and that var( p̂(x)−μ(x)) = O(n−1). Hence

p̂(x)−μ(x) = Op(n−1/2). (B.14)

Also, it is easy to show that, for all x ∈D,

μ(x) = E[
Li j |x̄i = x̄] E[L̃i j |x̃i = x̃] = [ p̄(x)+ O(|λ̄|)]ν1(x̃), (B.15)

where 
Li j = L(x̄i , x̄ j , λ̄) and L̃i j = L(x̃i , x̃ j , λ̃).
Combining (B.14) and (B.15) we know that

p̂(x) = p̄(x̄)ν1(x̃)+ Op(|λ̄|)+ Op(n−1/2). (B.16)

From (B.16) we have, uniformly in xi and λ,

1

p̂i
= 1

p̄i ν̃i
+ Op(n−1/2 +|λ̄|), (B.17)

where p̄i = p̄(x̄i ) and ν̃i = ν(x̃i ), and

1

p̂2
i

= 1

p̄2
i ν̃2

i

+ Op(n−1/2 +|λ̄|). (B.18)

Similar to the proof of Lemma A.1 one can show that λ̂s = op(1) for s = 1, . . . ,r1, which
is stated in Lemma B.1, which follows.

LEMMA B.1. λ̂s = op(1) for all s = 1, . . . ,r1.

Proof. The arguments are similar to the ones used in the proof of Lemma A.1. We
use 0m to denote a row vector of zeros of dimension 1 × m. When we choose λs = 0
for all s = 1, . . . ,r1, we know that CV0(0r1 , λ̃) = op(1) for any value of λ̃ = (λ̃1, . . . , λ̃r2)

because gi −gj = g(x̄i )−g(x̄ j ), which does not depend on x̃i and x̃ j . Because λ̂ minimizes
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CV0(λ), and from CV0(λ̂) ≤ CV0(0r ), CV0(λ) = S1 + op(1) (S2 and S3 are both op(1)
because they contain ui ) and S1 ≥ 0, we know that it must be true that

S1(λ̂) = op(1). (B.19)

Now consider a generic λ ∈ [0,1]r . It can be seen that

S1(λ) = n−3 ∑∑ ∑
l �= j �=i

(gi − gj )(gi − gl )Li j Lil/ p̂2
i

+n−3 ∑∑ ∑
j �=i

(gi − gj )
2L2

i j / p̂2
i

= n−3 ∑∑ ∑
l �= j �=i

(gi − gj )(gi − gl )Li j Lil/ p̂2
i + Op(n−1) ≡ An(λ)+op(1),

(B.20)

uniformly in λ ∈ [0,1]r , where

An(λ) = n−3 ∑∑ ∑
l �= j �=i

(gi − gj )(gi − gl )Li j Lil/ p̂2
i .

Define piλ = E( p̂i |xi ) and define A1n(λ) by replacing 1/ p̂2
i by 1/p2

iλ in An(λ);

i.e., A1n(λ) = n−3 ∑∑∑l �= j �=i (gi − gj )(gi − gl )Li j Lil/p2
iλ. Then it can be shown that

An(λ) = A1n(λ)+op(1) uniformly in λ ∈ [0,1]r . The term A1n can be written as a third-
order U-statistic, and by the H-decomposition of U-statistics we know that, uniformly in
λ ∈ [0,1]r ,

A1n(λ) = E(A1n(λ))+op(1). (B.21)

It can also be seen that

E(A1n(λ)) = E
{[

E
[
(gi − gj )
Li j |x̄i

]]2 [E(L̃i j |x̃i )]
2/p2

iλ

}
+o(1)

= ∑
x∈D

p(x)

⎧⎨⎩ ∑
z̄∈
D

p̄(z̄) [g(x̄)− g(z̄)] L(x̄, z̄, λ̄)

⎫⎬⎭
2

/ p̄(x̄, λ̄)2 +o(1), (B.22)

where p̄(x̄, λ̄) = E[L̄i j |x̄i = x̄] and we used the fact that piλ = E[L̄i j |x̄i ]E[L̃i j |x̃i ] so that

[E(L̃i j |x̃i )]
2/p2

iλ = 1/ p̄(x̄, λ̄)2. Similar to the arguments used in the proof of Lemma A.1,
the preceding results imply that

∑
x∈D

p(x)

⎧⎨⎩ ∑
z̄∈D̄

p̄(z̄)[g(x̄)− g(z̄)]L(x̄, z̄, λ̄)

⎫⎬⎭
2

/ p̄(x̄, λ̄)2 = op(1), (B.23)

with λ̄ being selected by the CV method. Equation (B.23) is equivalent to, for all x̄ ∈ D̄,⎧⎨⎩ ∑
z̄∈D̄

p̄(z̄) [g(x̄)− g(z̄)] L(x̄, z̄, λ̄)

⎫⎬⎭
2

=op(1) with λ̄ selected by the CV method.

(B.24)
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Equation (B.24) and Assumption 3 imply that the CV selected smoothing parameters for
the relevant variables all converge to zero in probability, i.e., λ̂s = op(1) for s = 1, . . . ,r1.

n

We are now ready to prove Lemmas B.2–B.4.

LEMMA B.2.

S1 = ∑
x∈D

⎡⎣ r1

∑
s=1

λ̄s ∑
z̄∈D̄

1s(x̄, z̄) p̄(z̄)(g(x̄)− g(z̄))

⎤⎦2

p̃(x̃) p̄(x̄)−1 +op(λ̄2).

Proof. Define S0
1 the same way as S1 but with p̂−2

i replaced by ( p̄i ν̃i )
−2. Then

S0
1 = 1

n(n −1)2 ∑
i

∑
j �=i

(gi − gj )
2L2

j i /( p̄i ν̃i )
2

+ 1

n(n −1)(n −2)
∑
i

∑
j �=i

∑
l �=i,l �= j

(gi − gj )(gi − gl )L ji Lli /( p̄i ν̃i )
2

≡ S1a + S1b. (B.25)

The proof is similar to the proof of Lemma A.2. Here S1b can be written as a third-order
U -statistic, and one can show that the leading term of S1b is E[S1b]. It can be seen that

E[S1b] = E
{[

E
[
(gi − gj )
Li j |x̄i

]
/ p̄i

]2
}

E
{[

E(L̃i j |x̃i )/ν̃i
]2
}

= E
{[[

E((gi − gj )
Li j |x̄i )
]
/ p̄i

]2
}

= ∑
x∈D

⎡⎣ r1

∑
s=1

λ̄s ∑
z̄∈
D

1s(x̄, z̄) p̄(z̄)(g(x̄)− g(z̄))

⎤⎦2

p̃(x̃) p̄(x̄)−1 +op(|λ̄|2), (B.26)

where the second equality follows from the fact that E[L̃i j |x̃i ] = ν̃i (so that it cancels 1/ν̃i )
and the third equality follows exactly the same derivation as in the proof of Lemma A.2 as
it is unrelated to λ̃.

Thus, we have shown that the leading term of S1b is unrelated to λ̃. Hence,

S1b = ∑
x∈D

⎡⎣ r1

∑
s=1

λ̄s ∑
z̄∈
D

1s(x̄, z̄) p̄(z̄)(g(x̄)− g(z̄))

⎤⎦2

p̃ (x̃) p̄(x̄)−1 +op(|λ̄|2). (B.27)

Now consider S1a , where

S1a = 1

n(n −1)2

n

∑
i=1

n

∑
j �=i

(gi − gj )
2L2

j i /( p̄i ν̃i )
2. (B.28)

It is easy to see that the leading term of S1a is E[S1a] = O(n−1|λ̄|2) uniformly in λ̄.
Thus, we have S1a = op(|λ̄|2).
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Summarizing (B.25), (B.27), and (B.28) we have shown that

S0
1 = S1a + S1b = ∑

x∈D

⎡⎣ r1

∑
s=1

λ̄s

⎛⎝ ∑
z̄∈D̄

1s(z̄, x̄) p̄(z̄)(g(x̄)− g(z̄))

⎞⎠⎤⎦2

p̃(x̃) p̄(x̄)−1

+o(λ̄2) uniformly in λ̄. (B.29)

Define m̂1,i = (n − 1)−1 ∑j �=i [g(xj ) − g(x)]L(xi , x,λ) and �i (xi ) ≡ p̂i − pi . Then

similar to the proof of Lemma A.2, one can show that m̂1,i (x) = Op(|λ̄|2) and �i (x) =
op(1), where both are uniform in x and λ̄.

Using (B.18) and by arguments similar to those used in the proof of Lemma A.2, we
have∣∣∣S1 − S0

1

∣∣∣ ≤ C sup
1≤i≤n

m̂2
1,i (xi ) sup

1≤i≤n
|�i (xi )| = op(λ̄2) (B.30)

uniformly in λ̄.
By (B.29) and (B.30), we obtain

S1 = ∑
x∈D

⎡⎣ r1

∑
s=1

λs ∑
z̄∈D̄

1s(z̄, x̄) p̄(z̄)(g(x̄)− g(z̄))

⎤⎦2

p̃(x̃) p̄(x̄)−1 +op(|λ̄|2). (B.31)

n

LEMMA B.3. S2 = n−1 B(λ) + n−1Z1n(λ̃) + op(|λ̄|2 + |λ̄|n−1/2) + terms unrelated

to λ, where B(λ̃) = E{u2
j 1(x̄ j = x̄i )L̃2

i j /[ p̄2
i ν̃2

i ]} is positive and finite and where Z1n(λ̃) =
n−1 ∑∑j �=i [ui uj 1(x̄ j = x̄i )/ p̄2

i ]θi j (λ̃) is a zero mean Op(1) random variable with θi j

(λ̃) = E[L̃il L̃ jl/ν̃
2
l |x̃i , x̃ j ].

Proof. Similar to the proof of Lemma A.3, we have

S2 = n−3 ∑ ∑
j �=i

u2
j L2

i j / p̂2
i +n−3 ∑∑ ∑

i �= j �=l
u j ul Li j Lil/ p̂2

i

−2n−2 ∑ ∑
j �=i

ui u j Li j / p̂i ≡ S2a + S2b − S2c.

By (B.18) and noting that 
Li j = 1(x̄ j = x̄i )+ O(|λ̄|), we have

S2a = n−3 ∑ ∑
j �=i

u2
j 1(x̄ j = x̄i )L̃2

i j / p̂2
i + Op(n−1|λ̄|)

= n−3 ∑ ∑
j �=i

u2
j 1(x̄ j = x̄i )L̃2

i j /[ p̄2
i ν̃2

i ]+ Op(n−1|λ̄|)

= n−1 B(λ̃)+ Op(n−3/2 +n−1|λ̄|), (B.32)

where B(λ̃) = E{u2
j 1(x̄ j = x̄i )L̃2

i j /[ p̄2
i ν̃2

i ]} is positive and finite and in the last equality

we have used the fact that n−2 ∑∑j �=i u2
j 1(x̄ j = x̄i )L̃i j /[ p̄2

i ν̃2
i ] = B(λ̃) + Op(n−1/2),
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which follows from the U -statistic H -decomposition. Note that we can also write B(λ) =
B0 B1(λ̃), where B0 = E[σ 2(x̄i )1(xj = xi )/ p̄2

i ] is a positive constant and B1(λ̃) = E{L̃2
i j /

ν̃2
i }.

Next, we consider S2b. Note that S2b = Op(n−1) because uj (ul ) has zero mean. Letting

S0
2b denote S2b but with p̂−2

i replaced by ( p̄i ν̃i )
−2, by (B.18) we know that

S2b = S0
2b + Op(n−3/2 +n−1|λ|), (B.33)

where

S0
2b = n−3 ∑∑ ∑

i �= j �=l
u j ul1(xj = xi )1(xl = xi )L̃i j L̃il/[ p̄2

i ν̃2
i ]+ Op(n−1|λ|)

≡ S0
2b,1 + Op(n−1|λ|),

where S0
2b,1 = n−3 ∑∑∑i �= j �=l u j ul 1(xj = xi )1(xl = xi )L̃i j L̃il/[ p̄2

i ν̃2
i ].

Now, S0
2b,1 can be written as a third-order U -statistic. Let Qi jl denote the symmetrized

version of uj ul1(xj = xi )1(xl = xi )/( p̄2
i ν̃2

i ) and define Qi j = E[Qi jl |xi , xj ]. Then it

is easy to show that Qi j = (1/3)ui uj E[1(xl = xi )1(xl = xj )/ p̄2
l |x̄i , x̄ j ]E[L̃il L̃ jl/ν̃

2
l |x̃i ,

x̃ j ] = (1/3)ui uj [1(xj = xi )/ p̄i ]E[L̃il L̃ jl/ν̃
2
l |x̃i , x̃ j ]. By the U -statistic H -decomposition

we have

S0
2b,1 = 2

n(n −1)
∑ ∑

j>i
Qi j + 6

n(n −1)(n −2)
∑∑ ∑

l> j>i
[Qi jl −Qi j −Qil −Qjl ]

= 2

n(n −1)
∑ ∑

j>i
Qi j + Op(n−2)

= (2/3)n−2 ∑ ∑
j>i

ui u j [1(x̄ j = x̄i )/ p̄i ]E[L̃il L̃ jl/ν̃
2
l |x̃i , x̃ j ]+ Op(n−1|λ̄|+n−2)

= n−1Z1n(λ̃)+ Op(n−1|λ̄|+n−2), (B.34)

where Z1n(λ̃) = (2/3)n−1 ∑∑j>i ui u j [1(x̄ j = x̄i )/ p̄i ]E[L̃il L̃ jl/ν̃
2
l |x̃i , x̃ j ]. It is easy to

see that Z1n is a zero mean Op(1) random variable.
Finally, it is easy to see that S2c = n−3 ∑∑j>i ui u j Li j / p̂i = Op(n−2). Summarizing

the preceding results, we have shown that

S2 = n−1 B(λ̃)+n−1Z1n(λ̃)+ Op(n−1|λ̄|+n−2). (B.35)

n

LEMMA B.4.

S3 = n−1/2
r1

∑
s=1

λ̄sZ2n,s(λ̃)+op(|λ̄|2 +n−1/2|λ̄|),

where Z2n,s(λ̃) = n−3/2 ∑∑j �=i [ui (gi − gj )1s(x̄ j , x̄i )/ p̄i ][(L̃i j /νi ) − (1/ p̄i n)∑l �= j,l �=i

1(x̄l = x̄i )L̃li L̃l j /ν̃
2
l ] is a zero mean Op(1) random variable.
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Proof.

S3 = n−2 ∑
i

∑
j �=i

ui (gi − gj )Li j / p̂i −n−3 ∑∑ ∑
i �= j �=l

(gi − gj )ul Li j Lil/ p̂2
i

−n−3 ∑
i

∑
j �=i

(gi − gj )uj L2
i j / p̂2

i ≡ S3a − S3b − S3c.

Noting that (gi − gj )1(x̄ j = x̄i ) ≡ 0 (because gi − gj = 0 if x̄ j = x̄i ) and using (B.17),
we have

S3a = n−2 ∑ ∑
j �=i

ui (gi − gj )

[
0+

r1

∑
s=1

λ̄s1s(x̄ j , x̄i )

]
L̃i j / p̂i + Op(n−1/2|λ̄|2)

= n−1/2
r1

∑
s=1

λ̄sn−3/2 ∑
i

∑
j �=i

1s(x̄ j , x̄i )ui (gi − gj )L̃i j /[ p̄i ν̃i ]+ Op(|λ̄|2n−1/2)

+ Op(|λ̄|n−1/2 +n−1|λ̄|)

= n−1/2
r1

∑
s=1

λ̄sZ3n,s(λ̃)+ Op(|λ̄|2n−1/2 +|λ̄|n−1), (B.36)

where the zero in the first equality comes from (gi − gj )1(x̄ j = x̄i ) = 0, the second equal-

ity uses (B.17), and Z3n,s(λ̃) = n−3/2 ∑i ∑j �=i 1s(x̄ j , x̄i )ui (gi − gj )L̃i j /[ p̄i ν̃i ], which is
obviously a zero mean Op(1) random variable.

Next, we consider S3b, and again ||x̄ j − x̄i || ≥ 1, for otherwise S3b = 0. Using (B.18),
we have

S3b = n−3
r1

∑
s=1

λ̄s ∑∑ ∑
l �= j �=i

1s(x̄ j , x̄i )1(x̄l = x̄i )ul (gi − gj )L̃i j L̃il/ p̂2
i

+ Op(n−1/2|λ̄|2)

= n−3
r1

∑
s=1

λ̄s ∑∑ ∑
l �= j �=i

1s(x̄ j , x̄i )1(x̄l = x̄i )ul (gi − gj )L̃i j L̃il/[ p̄2
i ν̃2

i ]

+ Op(n−1/2|λ̄|2 +n−1|λ̄|)

= n−1/2
r1

∑
s=1

λ̄sZ4n,s(λ̃)+ Op(|λ̄|2n−1/2)+|λ̄|n−1), (B.37)

where Z4n,s = n−5/2 ∑∑∑l �= j �=i 1s(x̄ j , x̄i )1(x̄l = x̄i )ul (gi − gj )/[ p̄2
i ν̃2

i ] is a zero mean
Op(1) random variable.

Note that unlike the case for which all regressors are relevant, here there are no cancel-
lations. Therefore, the leading term is of order n−1/2|λ̄| rather than n−1|λ̄|. To elaborate
further on this point, we use S3b,L to denote the leading term of S3b, i.e.,
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S3b,L = n−3
r1

∑
s=1

λ̄s ∑∑ ∑
l �= j �=i

1s(x̄ j , x̄i )1(x̄l = x̄i )ul (gi − gj )L̃i j L̃il/[ p̄2
i ν̃2

i ]. (B.38)

Subsequently we will show that the leading term of S3b will not cancel the leading term
of S3a when there exist irrelevant regressors. First note that

1(x̄l = x̄i )1s(x̄ j , x̄i )(gi − gj )/ p̄2
i = 1(x̄l − x̄i )1s(x̄ j , x̄l )(gl − gj )/ p̄2

l , (B.39)

because x̄i = x̄l (because of 1(x̄l = x̄i )).
Using (B.39) S3b,L can be written as

S3b,L = n−2
r1

∑
s=1

λ̄s ∑
l

∑
j �=l

[ul (gl − gj )1s(x̄ j , x̄l )/ p̄2
l ][n−1 ∑

i �= j,l
1(x̄l = x̄i )L̃i j L̃il/ν̃

2
i ]

= n−2
r1

∑
s=1

λ̄s ∑
l

∑
j �=l

[ul (gl − gj )1s(x̄ j , x̄l )/ p̄2
l ]E

[
1(x̄l = x̄i )|x̄l

]
×E[L̃i j L̃il/ν̃

2
i |x̃ j , x̃l ]+ Op(n−1|λ|)

= n−2
r1

∑
s=1

λ̄s ∑
l

∑
j �=l

[ul (gl − gj )1s(x̄ j , x̄l )/ p̄l ]E[L̃i j L̃il/ν̃
2
i |x̃ j , x̃l ]+ Op(n−1|λ|)

= n−2
r1

∑
s=1

λ̄s ∑
i

∑
j �=i

[ui (gi − gj )1s(x̄ j , x̄i )/ p̄i ]E[L̃l j L̃li /ν̃
2
l |x̃ j , x̃i ]+ Op(n−1|λ|)

≡ S3b,1 + Op(n−1|λ|), (B.40)

where the definition of S3b,1 should be apparent. In the third equality we used E[1(x̄l =
x̄i )|x̄l ] = p̄l , and the fourth equality follows by interchanging index i with l.

From (B.36) we know that the leading term of S3a is

S3a,1
de f= n−2

r1

∑
s=1

λ̄s ∑
i

∑
j �=i

1s(x̄i , x̄ j )ui (gi − gj )L̃i j /( p̄i ν̃i ). (B.41)

Now, (B.40) and (B.41) lead to

S3a,1 − S3b,1 = n−2
r1

∑
s=1

λ̄s ∑
i

∑
j �=i

[
1s(x̄i , x̄ j )ui (gi − gj )/ p̄i

]

×
[

L̃i j

ν̃i
−E

(
L̃il L̃ jl

ν̃2
l

|x̃i , x̃ j

)]
. (B.42)

Obviously, in the absence of the irrelevant regressors, we will have L̃i j = 1 and ν̃i = 1;
hence (B.42) vanishes as we have seen previously in Appendix A. However, now with the
existence of the irrelevant regressors, it is easy to show that S3a,1 −S3b,1 does not vanish in
general. To see this, consider the simple case where x̃i is a binary variable taking values in
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{0,1}. Let Cn
de f= (L̃i j /ν̃i )− E((L̃il L̃ jl/ν̃

2
l )|x̃i , x̃ j ). Without the irrelevant variable x̃ , we

have L̃i j = 1 and ν̃i = 1 so that Cn = 0. However, when there exists an irrelevant variable
x̃ , Cn does not vanish. To see this, it is straightforward to show that

E(Cn |x̃i = 0) = E(L̃i j /ν̃i |x̃i = 0)−E

(
L̃il

ν̃l
|x̃i = 0

)
= 1− ∑

x̃l∈{0,1}
p̃(x̃l )

[
L̃il

ν̃l

]

= 1− p̃(0)

p̃(0)+ λ̃ p̃(1)
− p̃(1)λ̃

p̃(1)+ λ̃ p̃(0)
= λ̃(λ̃−1) p̃(1)2

[ p̃(0)+ λ̃ p̃(1)][ p̃(1)+ λ̃ p̃(0)]
,

(B.43)

where p̃(0) = p̃(x̃l = 0), p̃(1) = p̃(x̃l = 1), and we used ν̃(x̃i = 0) = p̃(0)+ λ̃ p̃(1) and
ν̃(x̃i = 1) = p̃(1) + λ̃ p̃(0). Equation (B.43) implies that S3a,1 − S3b,1 = Op(n−1/2|λ̄|),
which is the same order as S3a,1 or S3b,1. In particular, S3a,1 −S3b,1 �= Op(n−1|λ̄). Hence,
the leading terms from S3a and S3b no longer cancel when there exist irrelevant regressors.

Finally from (gi − gj )1(x̄ j = x̄i ) = 0 and 1(x̄ j �= x̄i )L̄i j = O(|λ̄|2), it is easy to see that

S3c = Op(n−3/2|λ̄|2). (B.44)

Now, combining (B.36), (B.37), and (B.44), we obtain

S3 = n−1/2
r1

∑
s=1

λ̄sZ2n,s(λ̃)+ Op(|λ̄|2n−1/2 +|λ̄|n−1), (B.45)

where Z2n,s(λ̃) =Z3n,s(λ̃)−Z4n,s(λ̃) is a zero mean Op(1) random variable. n
Note that the preceding result differs from the case where all regressors are relevant.

Because of the existence of irrelevant regressors, the leading terms in Z3n,s and Z4n,s

do not cancel. Therefore, the leading term of S3 is of order Op(n−1/2|λ̄|) rather than
Op(n−1|λ|). This is the key reason why λ̂s = Op(n−1/2) (for s = 1, . . . ,r1) rather than
Op(n−1) when there exist irrelevant regressors.

LEMMA B.5. B(λ̃) has a unique minimization point at λ̃s = 1 for all s = 1, . . . ,r2.

Proof. Because B(λ̃) equals a positive constant times B1(λ̃), it suffices to prove the
result for B1(λ̃) = E{E(L̃2

i j |x̃i )/[E(L̃i j |x̃i )]
2}. We know that B1(λ̃) ≥ 1 by the Cauchy

inequality. When λ̃s = 1 for all s = 1, . . . ,r2, we have L̃i j ≡ 1, and hence B1(·) = 1,

reaching its minimum value. To see that this is the unique minimization value of B1(λ̃),
we show that if B1(λ̃) = 1, then one must have that λ̃s = 1 for all s = 1, . . . ,r2. Note that
B1(λ̃) = 1 is equivalent to E[L̃2

i j |x̃i ] = [E(L̃i j |x̃i )]
2, or

var(L̃i j |x̃i ) = E

{[
L̃i j −E(L̃i j |x̃i )

]2 |x̃i

}
= 0,

which implies that

L̃i j −E(L̃i j |x̃i ) ≡ 0. (B.46)
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Equation (B.46) implies that, for any given x̃i , L̃i j does not depend on x̃ j . Now,

L̃i j =
r2

∏
s=1

[1(x̃is = x̃ js)+ λ̃s1(x̃is �= x̃ js)]

=
r2

∏
s=1

{1(x̃is = x̃ js)+ λ̃s [1−1(x̃is = x̃ js)]}

=
r2

∏
s=1

[(1− λ̃s)1(x̃is = x̃ js)+ λ̃s ]. (B.47)

From (B.47) we know that if L̃i j does not depend on x̃ js , then we must have λ̃s = 1
(s = 1, . . . ,r2). n


