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In this article, we consider the nonparametric estimation of average treatment effects when there

exist mixed categorical and continuous covariates. One distinguishing feature of the approach

presented herein is the use of kernel smoothing for both the continuous and the discrete covariates.

This approach, together with the cross-validation method. which we use for selecting the smoothing

parameters, has the ability to automatically remove irrelevant covariates. We establish the asymp-

totic distribution of the proposed average treatment effects estimator with data-driven smoothing

parameters. Simulation results show that the proposed method is capable of performing much better

than the conventional kernel approach whereby one splits the sample into subsamples corresponding

to ‘‘discrete cells.’’ An empirical application to a controversial study that examines the efficacy of

right heart catheterization on medical outcomes reveals that our proposed nonparametric estimator

overturns the controversial findings of Connors et al. (1996), suggesting that their findings may be an

artifact of an incorrectly specified parametric model.

KEY WORDS: Asymptotic normality; Average treatment effect; Bootstrap; Discrete covariates; Kernel

smoothing.

1. INTRODUCTION

The measurement of average treatment effects (ATEs), ini-
tially confined to the assessment of dose-response relationships
in medical settings, is today widely used across a range of
disciplines. Assessing human-capital losses arising from war
(Ichino and Winter-Ebmer 1998) and the effectiveness of job
training programs (Lechner 1999) are but two examples of the
wide range of potential applications.

Perhaps the most widespread approach toward the mea-
surement of treatment effects involves estimation of a ‘‘pro-
pensity score’’ (i.e., the conditional probability of receiving
treatment). Estimation of the propensity score was originally
undertaken with parametric index models such as the Logit or
Probit. Recently, there has been a surge in the literature on
semiparametric and nonparametric estimation of treatment
effects (Hahn 1998; Hirano et al. 2003). The advantage of
pursuing a nonparametric approach in this setting is rather
obvious, because misspecification of the propensity score
may impact significantly upon the magnitude and even the sign
of the estimated treatment effect. In many settings, mis-
measurement induced by misspecification can be extremely
costly—envision for a moment the societal cost of incorrectly
concluding that a novel and beneficial cancer treatment, in fact,
causes harm.

Datasets used to assess treatment effects frequently contain a
preponderance of categorical data (in the typical medical study,
it is common to encounter categorical data types exclusively).
Though the appeal of robust nonparametric methods is obvious
in this setting, conventional nonparametric approaches split the

sample into ‘‘cells’’ in the presence of categorical covariates,
resulting in a loss of efficiency (we shall refer to this conven-
tional nonparametric approach as a ‘‘frequency-based’’ method
for what follows). It is not uncommon to encounter situations
in which the number of cells is comparable to or even exceeds
the sample size. In such cases, the frequency-based kernel
approach becomes infeasible. In addition to these issues,
another undesirable side-effect of frequency-based methods is
a loss of power for tests of whether a treatment effect differs
from that of no effect. However, strong theoretical and practical
reasons support the application of kernel smoothing methods
to a mix of continuous and discrete (i.e., nominal and ordinal
categorical) data types, where both the continuous and the
discrete data are smoothed in a particular fashion. These
recently developed cross-validated kernel smoothing methods
not only admit both categorical and continuous covariates, but
can also automatically detect and remove irrelevant covariates
(asymptotically). Such approaches lead to feasible and efficient
nonparametric estimation when confronted with a mix of cat-
egorical and continuous data, and can be used to construct tests
that do not suffer from power loss exhibited by the conven-
tional kernel approach that arises from sample splitting. Note
that Hahn’s (1998) and Hirano, Imbens and Ridder’s (2003)
ATE estimators are based on nonparametric series estimation
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methods. All series-based nonparametric estimators use the
indicator function/frequency method to handle the presence of
discrete covariates. In finite-sample applications, this may
become infeasible if the number of ‘‘discrete cells’’ is not
substantially smaller than the sample size.

In this article, we propose a kernel-based nonparametric
method for measuring and testing for the presence of treatment
effects that is ideally suited to datasets containing a mix of
categorical (nominal and ordinal) and continuous data types.
One distinguishing feature of the proposed approach is the use
of kernel smoothing for both the continuous and the discrete
covariates. We elect to use a least-squares conditional cross-
validation method to select smoothing parameters for both
the categorical and continuous variables; this method was
proposed by Hall et al. (2006), who demonstrate that cross-
validation produces asymptotically optimal smoothing for
relevant components while eliminating irrelevant components
by oversmoothing. Indeed, for the problem of nonparametric
estimation with mixed categorical and continuous data, cross-
validation comes into its own as a method with no obvious peers.

In addition to deriving the asymptotic distribution of our
proposed kernel-based ATE estimator, we also propose using a
bootstrap method to better approximate the finite-sample dis-
tribution of the ATE estimator, and we prove that the bootstrap
method works.

The rest of the article proceeds as follows. In Section 2, we
outline the nonparametric model and derive the distribution
of the resultant average treatment effect. In Section 3, we
undertake some simulation experiments designed to demon-
strate that the proposed method is capable of outperforming
existing kernel approaches that require splitting the sample into
cells. We also report simulation results that compare our pro-
posed kernel estimator to a nonparametric series-based esti-
mator. An empirical application presented in Section 4
involving a study that examines the efficacy of right heart
catheterization on medical outcomes reveals that our approach
negates the controversial findings of Connors et al. (1996),
suggesting that their result may be an artifact of an incorrectly
specified parametric model. Main proofs appear in the
appendices.

2. THE MODEL

For what follows, we use a dummy variable, ti 2 {0, 1}, to
indicate whether an individual has received treatment. We let
ti ¼ 1 for the treated, and 0 for the untreated. Letting yi(ti)
denote the outcome, then, for i ¼ 1, . . . , n, we write

yi ¼ tiyið1Þ þ ð1� tiÞyið0Þ:

Interest lies in the average treatment effect defined as
follows:

t ¼ E½yið1Þ � yið0Þ�:

Let xi denote a vector of pretreatment variables. One issue
that instantly surfaces in this setting is that, for each individual
i, we either observe yi(0) or yi(1), but not both. Therefore, in
the absence of additional assumptions, the treatment effect is
not consistently estimable. One popular assumption is the
‘‘unconfoundedness condition’’ (Rosenbaum and Rubin 1983).

Assumption (A1) (Unconfoundedness):
Conditional on xi, the treatment indicator ti is independent

of the potential outcome.
Define the conditional treatment effect by t(x) ¼ E[yi(1) �

yi(0)|X ¼ x]. Under Assumption (A1) one can easily show that
(e.g., Theorem 4 of Rosenbaum and Rubin (1983))

tðxÞ ¼ E½yijti ¼ 1; xi ¼ x� � E½yijti ¼ 0; xi ¼ x�: ð1Þ

The two terms on the right-hand side of (1) can be estimated
consistently by any nonparametric estimation technique. It is
not clear to us how to extend the property of kernel smoothing
noted in Section 1 to other nonparametric estimation methods
such as series methods (i.e., the ability to automatically remove
irrelevant covariates). Therefore, we restrict our attention to
nonparametric kernel methods in this section. Under As-
sumption (A1), the average treatment effect can be obtained via
simple averaging over t(x) and is given by

t ¼ E½tðxiÞ�: ð2Þ

Letting E(yi|xi, ti) be denoted by g(xi, ti), we then have

yi ¼ gðxi; tiÞ þ ui; ð3Þ

with E(ui|xi, ti) ¼ 0.
Defining g0(xi) ¼ g(xi, ti ¼ 0) and g1(xi) ¼ g(xi, ti ¼ 1), we

can rewrite (3) as

yi ¼ g0ðxiÞ þ ½g1ðxiÞ � g0ðxiÞ�ti þ ui

¼ g0ðxiÞ þ tðxiÞti þ ui;
ð4Þ

where t(xi) ¼ g1(xi) � g0(xi).
From (4), it is easy to show that t(xi) ¼ cov (yi, ti|xi)/var

(ti|xi). Letting m(xi) ¼ Pr(ti ¼ 1|xi) [ E(ti|xi) (because ti equals
0 or 1), we may write

t ¼ E½tðxiÞ� ¼ E
ðti � miðxiÞÞyi

varðtijxiÞ

� �
: ð5Þ

We now turn to the discussion of the nonparametric esti-
mation of t based on (5) in the presence of a mix of continuous
and categorical covariates, some of which, in fact, may be
irrelevant.

2.1. Nonparametric Estimation of the Propensity Score

We use xc
i and xd

i to denote the continuous and discrete
components of xi, with xc

i2Rq and xd
i being of dimension r. Let

w(�) denote a univariate kernel function for the continuous
variables, and define the product kernel function for the con-
tinuous variables by

Whðxc
i ; x

c
j Þ ¼

Yq

s¼1

h�1
s w

xc
is � xc

js

hs

� �
; ð6Þ

where xc
is is the sth component of xc

i and hs is the corresponding
smoothing parameter (s ¼ 1, . . . , q).

We assume that some of the discrete variables have a natural
ordering, examples of which would include preference order-
ings (like, indifference, dislike), health conditions (excellent,
good, poor), and so forth. Let xd;o

i denote an ro vector (0 # ro #

r) of discrete covariates that have a natural ordering, and let xd;u
i

denote the remaining ru ¼ r � ro discrete covariates that do not
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have a natural ordering (e.g., race or industry of occupation).
We use xd

it to denote the tth component of xd
i ðt ¼ 1; . . . ; rÞ:

As in Hall et al. (2006), for an ordered variable, we use the
following kernel:

loðxd
is; x

d
js; lsÞ ¼

1; if xd
is ¼ xd

js;

l
jxd

is�xd
jsj

s ; if xd
is 6¼ xd

js:

8<
: ð7Þ

Note that when ls ¼ 0 (ls 2 [0, 1]), loðxd
is; x

d
js; ls ¼ 0Þ becomes

an indicator function, and when ls ¼ 1; loðxd
is; x

d
js; ls ¼ 1Þ ¼ 1

becomes a uniform weight function.
For an unordered variable, we use a variation on Aitchison

and Aitken’s (1976) kernel function defined by

luðxd
is; x

d
jsÞ ¼

1; if xd
is ¼ xd

js;

ls; otherwise:

�
ð8Þ

Again, note that ls¼ 0 leads to an indicator function and ls¼ 1
leads to a uniform weight function.

Let 1(A) denote an indicator function that assumes the value
1 if A occurs and 0 otherwise. Combining (7) and (8), we obtain
the product kernel function for the categorical variables
(ordered and unordered), which we denote by

Lðxd
i ; x

d
j ; lÞ ¼

Y
s2So

ls
jxd

is�xd
jsj

" # Yr

s2Su

l
1 xd

is 6¼xd
jsð Þ

s

" #
; ð9Þ

where So and Su denote the index sets for ordered and unor-
dered components of xd.

When there exists a mix of categorical and continuous var-
iables, we obtain an appropriate kernel function by simply
taking the product of (9) and (6). The use of this ‘‘generalized
product kernel’’ along with a particular data-driven method of
smoothing parameter selection is supported by strong theo-
retical and practical reasons, which we now briefly discuss.

We note that there does not exist a plug-in or even an ad-hoc
formula for selecting the smoothing parameters associated with
the categorical variables in this setting (i.e., ls, S ¼ 1, . . . , r).
Hence, we recommend using least-squares cross-validation for
selecting ls (S ¼ 1, . . . , r). Our recommendation is based not
only on the mean-square-error optimality of least-squares
cross-validation, but also due to its automatic ability to
(asymptotically) remove irrelevant discrete covariates (Hall
et al. 2004, 2006). This property bears highlighting as we have
observed that irrelevant variables tend to occur surprisingly
often in practice. Thus, cross-validation provides an efficient
way of guarding against overspecification of nonparametric
models, and thereby mitigates the ‘‘curse of dimensionality’’
often associated with kernel methods.

Since m(xi) ¼ Pr(ti ¼ 1|xi) ¼ E(ti|xi), we can use either a
conditional probability estimator or a conditional mean esti-
mator to estimate m(xi). We will use the latter in this article. We
let t̂ðxiÞ be the nonparametric estimator of mi [ m(xi) defined by

t̂ðxiÞ ¼
Pn

j¼1 tjKg;ijPn
j¼1 Kg;ij

; ð10Þ

where Kg;ij ¼ Whðxc
i ; x

c
j ÞLðxd

i ; x
d
j ; lÞðg ¼ ðh; lÞÞ with Wh(�)

and L(�) being the kernel functions defined in (6) and (9),
respectively. By noting that var (ti|xi) ¼ mi(1 � mi), one can
estimate the average treatment effect by

t̂ ¼ 1

n

Xn

i¼1

ðti � t̂ðxiÞÞyiMni

t̂ðxiÞð1� t̂ðxiÞÞ
[

1

n

Xn

i¼1

tiyi

t̂ðxiÞ
� ð1� tiÞyi

1� t̂ðxiÞ

� �
Mni;

ð11Þ

where Mni ¼ Mn(xi) is a trimming set that trims out observa-
tions near the boundary.

Equation (11) is a nonparametric version of the Horvitz and
Thomson (1952) estimator. Hirano et al. (2003) studied the
Horvitz-Thomson estimator with the propensity score esti-
mated by series methods. As we mentioned earlier, it is not
clear how to use nonparametric series methods to automatically
remove irrelevant discrete covariates. Therefore, in this paper,
we will focus on kernel-based estimation methods, which has
the advantage of automatically removing irrelevant covariates
(be they discrete or continuous).

We will choose the smoothing parameters based on a least-
squares cross-validation method. The leave-one-out kernel
estimator of E(ti|xi) ¼ m(xi) is given by

t̂�iðxiÞ ¼
Pn

j 6¼i tjKg;ijPn
j 6¼i Kg;ij

; ð12Þ

where, as defined previously, Kg;ij ¼ Whðxc
i ; x

c
j ÞLðxd

i ; x
d
j ; lÞ.

We choose (h, l) ¼ (h1, . . . , hq, l1, . . . , lr) by minimizing the
following least-squares cross-validation function:

CVðh; lÞ ¼ 1

n

Xn

i¼1

ti � t̂�iðxiÞ½ �2SðxiÞ; ð13Þ

where S(�) is a weight function that trims out observations near
the boundary of the support of xi (thereby avoiding excessive
boundary bias). For example, if a continuous covariate, say, xc

is;
takes values in [0,1], then S(�) will trim out data near the
boundary and only use the data for xc

is 2 ½d; 1� d� for some
small d 2 (0, 1/2).

Hall et al. (2004, 2006) have shown that, when xd
s ðxc

sÞ is an
irrelevant covariate, the cross-validation selected smoothing
parameter ls (hs) will converge to 1 (‘) in probability; hence,
irrelevant covariates (discrete or continuous) will be auto-
matically smoothed out.

We let ðĥ1; . . . ; ĥq; l̂1; . . . ; l̂rÞ denote the cross-validation
choices of ðh1; . . . ; hq; l1; . . . ; lrÞ that minimize (13). Without
loss of generality, we assume that the first q1 components of xc

i ,
1 # q1 # q, and the first r1 components of xd

i , 0 # r1 # r, are
the relevant covariates, while the remaining covariates are
irrelevant; Condition (C1) provides a rigorous definition. Then,
similar to the proofs of Hall et al. (2006), one can show the
following.

Lemma 2.1. Under conditions (C1)–(C5) given in Appen-
dix A, we have

ĥs ¼ a0
s n�1=ðnþq1þ2Þ þ opðn�1=ðnþq1þ2ÞÞ; for s ¼ 1; . . .; q1;

l̂s ¼ b0
s n�2=ðnþq1þ2Þ þ opðn�2=ðnþq1þ2ÞÞ; for s ¼ 1; . . .; r1;

P½ĥs > C� ! 1 for any C > 0; for s ¼ q1 þ 1; . . . ; q

l̂s ! 1 in probability for s ¼ r1 þ 1; . . . ; r;

where the ao;
s s are finite positive constants, and the bo;

s s are non-
negative finite constants.

208 Journal of Business & Economic Statistics, April 2009



The proof of Lemma 2.1 follows in a manner similar to the
proof of Theorem 3.1 of Hall et al. (2006). A sketch of the
proof of Lemma 2.1 is given in Appendix A.

Lemma 2.1 shows that the cross-validation method can
(asymptotically) automatically remove irrelevant covariates. If
q1 # 3, we will use the cross-validation-selected smoothing
parameters to estimate t̂. However, if q1 $ 4, we suggest using
�hs ¼ ĥsn

1=ð2nþq1Þn�1=ðq1þnþ2Þ and �ls ¼ l̂sn
2=ð2nþq1Þn�n=ðq1þnþ2Þ

for computing t̂. The reason for doing so is that, when q1 $ 4,
regularity conditions that ensure the

ffiffiffi
n
p

-normality result for t̂

require us to undersmooth the data; the discussion following
Assumption (A3) provides more detail.

The empirical applications and simulation results presented
in Hall et al. (2004, 2006) reveal that nonparametric estimation
based on cross-validated smoothing parameter selection per-
forms much better than a frequency-based estimator (which, as
noted, corresponds to ls ¼ 0 for all s ¼ 1, . . . , r).

Having obtained the �hs
;s and �ls

;s based on cross-validation,
we estimate t using expression (11) with t̂ðxiÞ computed using
the �hs

;s and �ls
;s. To avoid introducing superfluous notation, we

continue to use t̂ to denote the resulting estimator of t.

2.2. The Asymptotic Distribution of t̂

We shall require some regularity assumptions to derive the
asymptotic distribution of t̂. Following Robinson (1988), we
use Ga

n (n is a positive integer) to denote the smooth class of
functions such that, if g 2 Ga

n , then g is n-times differentiable,
and g and its partial derivatives (up to order n) all satisfy some
Lipschitz conditions and are all bounded by functions with
finite ath moments.

Assumption (A2):
(i) (yi, xi, ti) are independently and identically distributed as

(yi, xi, ti). (ii) xd
i takes finitely many different values; for each

xd, the support of f(xc, xd) is a compact convex set in xc (the
support of f(., .) is defined as {(xc, xd) 2 Rqþr | f(xc, xd) > 0}),
mðxc; xdÞ 2 G4

n; f ðxc; xdÞ 2 G4
n�1, where n $ 2 and n > q � 2 is

a positive integer. (iii) infx2S f(x) $ h for some h > 0, where S
is the support of xi. (iv) s2(x, t) ¼ var(ui|xi ¼ x, ti ¼ t) is
bounded below by a positive constant on the support of (xi, ti).
(v) The trimming function, Mn(x), converges to an indicator
function (as n! ‘) 1(x 2 S), where 1(�) is the usual indicator
function and S is the support of f(x).

Assumption (A3):
(i) w(�) is a compactly supported nth order kernel; it is

bounded, symmetric, and differentiable up to order n. (ii) As
n! ‘, n

Pq1

s¼1 h2nþ4
s ! 0, and n h1 . . . hq1

	 
2! ‘.
Assumptions (A2) (i)-(iv) are standard smoothness and

moment conditions. Assumption (A2) (v) implies that,
asymptotically, we only trim a negligible amount of data (near
the boundary) so that t̂ is asymptotically efficient (Theorem
2.1). A trimming set is used in (11) for theoretical reasons.
Given that the support of x is a compact convex set (in xc),
without loss of generality, one can assume that xc 2 [�1, 1]q.
Then, one can define a set Adn

¼
Qq

s¼1½�1þ ds; 1� ds�, where
ds ¼ dsn < 1 converges to 0 as n! ‘. To avoid boundary bias,
one can choose ds ¼ O ha

s

	 

for some 0 < a < 1, and define

Mn xið Þ ¼ 1 xi 2 Adn
ð Þ. In this way, the boundary effects dis-

appear asymptotically. In practice, boundary trimming does

not appear to be necessary. In both the simulations and the
empirical application reported in Sections 3 and 4, we do not
resort to trimming. In the presence of outliers, however, one
might wish to consider trimming. (A3) requires that w (�) has
compact support; this assumption is used in Hall et al. (2006)
and can be relaxed, however, at the cost of a much lengthier
proof. In particular, the Gaussian kernel can be used in practice.

Note that with a nth order kernel, ĥs ; n�1=ð2nþq1Þ and
l̂s ; n�2=ð2nþq1Þ. However, our Assumption (A3) (ii) rules out
optimal smoothing when q1 $ 4. Note that, by Assumption
(A2) (ii), we know that we can choose hs ; n�1/a (s¼1, . . . , q1)
for any a such that 2q1 < a < 2n þ 4. Here, we choose a¼ q1þ
n þ 2, the mean value of 2q1, and 2n þ 4, in �hs ; n�1=a and
�l ; n�2=a. This is why we use �hs and �ls to replace ĥs and l̂s

when q1 $ 4. To see this clearly, let us assume that hs¼ h for all
s ¼ 1, . . . , q1. In this case, Assumption (A3) (ii) requires that
n þ 2 > q1. If one uses a second-order kernel (n ¼ 2), this will
imply that q1 < 4 or q1 # 3, because q1 is a positive integer.
Thus, a second-order kernel satisfies Assumption (A3) if q1 #

3. When q1 $ 4, Assumption (A3) requires the use of a higher
order kernel function.

Remark 2.1. If 1 # q1 # 3 and one uses a second-order
kernel (n ¼ 2), then Assumption (A3) allows for optimal
smoothing. To see this, note that, when n ¼ 2, optimal
smoothing requires that hs ¼ O n�1=ð4þq1Þ

	 

. Assumption (A3)

(ii) becomes (assuming hs ¼ h) nh8 ! 0 and nh2q1 ! ‘;
optimal smoothing, i.e., h ; n�1=ð4þq1Þ, satisfies these con-
ditions for q1 ¼ 1, 2, 3, where A ; B means that A and B have
the same order of magnitude.

The next theorem provides the asymptotic distribution of t̂.

Theorem 2.1. Under Assumptions (A1)–(A3), we haveffiffiffi
n
p
ðt̂ � t � Bh;lÞ ! Nð0;V1 þ V2Þ in distribution;

where Bh;l ¼
Pq1

s¼1 C1sðxÞĥ
n

s �
Pr1

s¼1 C2sðxÞl̂s, C1s(x) and
C2s(x) are defined in Lemma B.2 of Appendix B, V1 ¼ var
(t(xi)), V2 ¼ Efs2 xi; tið Þ ti � mið Þ2=

�
m2

i 1� mið Þ2
�
g; and

s2ðxi; tiÞ ¼ Eðu2
i jxi; tiÞ.

The proof of Theorem 2.1 is given in Appendix A.
Let f(x, t) and fx(x) denote the joint and marginal densities of

(xi, ti) and xi, respectively, and let p(ti|xi) be the conditional

probability of ti given xi. Letting
R

dx ¼
P

xd

R
dxc, mx ¼ m(x),

using f(xi, ti) ¼ p(ti|xi)fx(xi), and noting that p(ti ¼ 1|xi) ¼ mi

and p(ti ¼ 0|xi) ¼ 1 � mi, we have

V2 ¼Efs2ðxiÞ ðti � miÞ
2=
�
m2

i ð1� miÞ
2�g

¼
X
t¼1;0

Z
f xðxÞpðtjxÞfs2ðx; tÞ ðti � mxÞ

2=
�
m2

xð1� mxÞ
2�gdx

¼
Z

f xðxÞmxs2ðx; 1Þ ð1� mxÞ
2

m2
xð1� mxÞ

2
dx

þ
Z

f xðxÞ ð1� mxÞs2ðx; 0Þm2
x

m2
xð1� mxÞ

2
dx

¼ E
s2ðxi; 1Þ

mi

þ s2ðxi; 0Þ
1� mi

� �
:

ð14Þ

Li, Racine, and Wooldridge: Efficient Estimation of Average Treatment Effects 209



Equation (14) matches the expression given in Hahn (1998).
Thus, V1 þ V2 coincides with the semiparametric efficiency
bound for this model. Therefore, Theorem 2.1 shows that our
kernel-based estimator of t̂ is semiparametrically efficient.

Hirano et al. (2003) consider the problem of estimating
average treatment effects using series estimation methods.
They observe that, if one uses the true var (ti|xi)¼ mi(1 � mi) to
replace the estimated variance t̂ið1� t̂iÞ in (the denominator of)
t̂, then it results in a less efficient estimator of t. The same
result holds true for our kernel-based estimator, as the next
lemma shows.

Lemma 2.2. If one replaces the denominator t̂ið1� t̂iÞ in t̂

by mi(1� mi), and lets ~t denote the resulting estimator of t, i.e.,

~t ¼ 1

n

Xn

i¼1

ðti � t̂iÞyiMni

mið1� miÞ
; ð15Þ

then ffiffiffi
n
p
ð~t � t � Bh;lÞ ! Nð0;V1 þ V2 þ V3Þ in distribution;

where V1 and V2 are the same as those given in Theorem 2.1,
while V3 is given by

V3 ¼ E
ðti � miÞ

2

mið1� miÞ
� 1

" #2

t2
i

8<
:

9=
;:

The proof of Lemma 2.2 is given in Appendix A.
We observe how using the true var (ti|xi) yields a less efficient

estimator than t̂, which uses the estimated var (ti|xi). The reason
for this result is that one can express

ffiffiffi
n
p
ðt̂ � t � Bh;lÞ asffiffiffi

n
p
ðt̂ � t � Bh;lÞ ¼

ffiffiffi
n
p
ðt̂ � ~tÞ þ

ffiffiffi
n
p
ð~t � t � Bh;lÞ:

In Appendix A, we show that
ffiffiffi
n
p
ð~t � t � Bh;lÞ ¼ Zn1 þ

Zn2þ Zn3þ opð1Þ ! Nð0;V1þV2þV3Þ in distribution, where
the Znl’s (l ¼ 1, 2, 3) are three asymptotically uncorrelated
terms, having asymptotic N(0, Vl) distributions, respectively
(l ¼ 1, 2, 3, with definitions appearing in Appendix A). This
yields Lemma 2.2. In Appendix A, we also show thatffiffiffi

n
p
ðt̂ � ~tÞ ¼ �Zn3 þ opð1Þ. Hence,ffiffiffi

n
p
ðt̂ � t � Bh;lÞ ¼

ffiffiffi
n
p
ðt̂ � ~tÞ þ

ffiffiffi
n
p
ð~t � t � Bh;lÞ

¼ �Zn3 þ opð1Þ
 �
þ Zn1 þ Zn2 þ Zn3 þ opð1Þ
 �

¼ Zn1 þ Zn2 þ opð1Þ

! Nð0;V1 þ V2Þ in distribution;

resulting in Theorem 2.1. That is, since the leading term inffiffiffi
n
p
ðt̂ � ~tÞ cancels one of the leading terms inffiffiffi

n
p
ð~t � t � Bh;lÞ, this gives rise to the result whereby using an

estimated variance varðt̂ijxiÞ is more efficient than using the
true variance var (ti|xi) when estimating t. If one uses the true
propensity score mi in both the numerator and denominator of
t̂, then one gets ~t, which is more efficient than t̂, becauseffiffiffi

n
p
ð~t � tÞ is asymptotically normal with mean zero and

asymptotic variance V1. Of course, ~t is not a feasible estimator.
Thus, among the class of feasible (‘‘regular’’) estimators, t̂ is
asymptotically efficient.

To construct a consistent estimator for the asymptotic var-
iance V1 þ V2, we need to obtain, among other things, a con-
sistent estimator of the error ui. The estimator t̂ proposed
previously is based on an estimated propensity score, so it does
not estimate the regression mean function directly. In this
subsection, we consider an alternative estimator for t, which is
based on the direct estimation of E(yi|xi, ti), which of course
also leads to a direct estimator of ui.

Note that (4) can also be viewed as a functional coefficient
model (i.e., a smooth coefficient model), which has been
considered by a number of authors including Chen and Tsay
(1993), Cai, Fan, and Yao (2000), Cai, Fan, and Li (2000), and
Li et al. (2002). Thus, an alternative estimator of t(xi) can be
obtained by a local regression of yi on (1, ti) using kernel
weights. In this way, we obtain a nonparametric estimator of
(g0(xi), t(xi))9 given by

ĝ0ðxiÞ
t̂nðxiÞ

� �
¼ n�1

Xn

j 6¼i

1

tj

� �
ð1; tjÞWh;ijLl̂;ij

" #�1

3 n�1
Xn

j 6¼i

1

tj

� �
yjWh;ijLl̂;ij

" #
; ð16Þ

where Wh;ij ¼ Wh xc
j ; x

c
i

� �
and Ll̂;ij ¼ Lðxd

i ; x
d
j ; l̂Þ. Equation

(16) provides consistent estimators of g0(xi) and t(xi). For ex-
ample, the resulting estimators of g0(xi) and t(xi) are given by

ĝ0ðxiÞ ¼
ÊðtijxiÞ½ÊðyijxiÞ � ÊðyitijxiÞ�

t̂ðxiÞð1� t̂ðxiÞÞ
ð17Þ

and

t̂nðxiÞ ¼
ÊðyitijxiÞ � ÊðyijxiÞÊðtijxiÞ

t̂ðxiÞð1� t̂ðxiÞÞ
; ð18Þ

where ÊðyitijxiÞ ¼ n�1
Pn

j¼1 tjyjKg;ij=f̂ ðxiÞ, ÊðyijxiÞ ¼ n�1Pn
j¼1 yjKh;ij=f̂ ðxiÞ, t̂ðxiÞ ¼ n�1

Pn
j¼1 tjKg;ij=f̂ ðxiÞ, and f̂ ðxiÞ ¼

n�1
Pn

j¼1 Kg;ij. Similarly, one can obtain consistent estimators
for V1, V2 and Bh,l, which we denote by V̂1, V̂2, and B̂h;l; the
explicit definitions can be found in Appendix A. The following
result follows directly from Theorem 2.1:

T̂n ¼
def ffiffiffi

n
p
ðt̂ � t � B̂h;lÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂1 þ V̂2

q
! Nð0; 1Þ in distribution:

ð19Þ

2.3 A Bootstrap Test for the Presence of
Treatment Effects

The estimation of treatment effects goes hand in hand with
the central issue of testing whether the estimated effect differs
from that of no effect, and the result of Theorem 2.1 can be
used to test the null hypothesis of no ‘‘effect’’ of a treatment
(i.e., the null hypothesis is H0: t ¼ 0). It is well known that
valid bootstrap procedures often provide more accurate finite-
sample estimates for confidence intervals. Subsequently, we
present a bootstrap procedure and we will use nonparametric
bootstrap confidence intervals to test the null hypothesis of no
treatment effect.

Let zi [ yi; xi; tif gn
i¼1; i.e., the vector of realizations on the

outcome, treatment, and conditioning information, respectively.
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We wish to construct the sampling distribution of t̂, and do so
with the following resampling procedure.

(1) Letting zj ¼ (yj, xj, tj), randomly select from zj

 �n

j¼1
with

replacement, and call z�i
 �n

i¼1
the bootstrap sample.

(2) Use the bootstrap sample to compute the bootstrap sta-
tistic t̂� using the same cross-validated smoothing param-
eters as were used for t̂.

(3) Repeat steps 1 and 2 a large number of times, say,
B times. The empirical distribution function of ft̂�j g

B
j¼1

will be used to approximate the finite-sample distri-
bution of t̂.

We point out that the bootstrap counterpart quantities (i.e.,
T̂
�
n;ðjÞ) use the same smoothing parameters as the original sta-

tistic (i.e., T̂n) (they do not require recross-validation). The
following theorem shows that the bootstrap method works.

Theorem 2.2. Under the same conditions as in Theorem

2.1, define T�n ¼
ffiffiffi
n
p
ðt̂� � t̂ � B̂

�
h;lÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂
�
1 þ V̂

�
2:

q
Then,

sup
z2R
jP T�n # zjfyi; xi; tign

i¼1

	 

�FðzÞj ¼ opð1Þ ð20Þ

where F(�) is the cumulative distribution function of a standard
normal random variable.

Since F(z) is a continuous function, by Theorem 1 of Tucker
(1967), we know that (20) follows from

P T�n # zjfxi; ti; yign
i¼1

	 

�FðzÞ

�� ��
¼ opð1Þ for any fixed value of z 2 R: ð21Þ

The proof of (21) (i.e., the proof of Theorem 2.2) is given in
Appendix C.

3. SIMULATIONS

In this section, we report on simulations designed to examine
the finite-sample performance of the proposed methods. We
highlight performance in mixed data settings, a feature that
existing frequency-based methods do not handle well, and
consider three estimators of the average treatment effect (‘‘t̂’’)
differing in the respective estimator of the propensity score
(‘‘t̂iðxiÞ’’); (1) the proposed nonparametric propensity score
estimator that smooths both continuous and discrete variables
in a particular manner (‘‘NP (CVLS)’’), (2) a nonparametric
frequency-based propensity score estimator (‘‘NP (FREQ)’’),
and (3) an alternative nonparametric frequency-based propen-
sity score estimator, namely, a B-spline approach (‘‘Spline’’).
That is, we are comparing the proposed estimator that smooths
both the continuous and discrete data in a particular way with
two nonsmooth conventional approaches that require sample
splitting to be used in the presence of categorical covariates.

To provide a sound basis for comparison, leave-one-out
cross-validation is used to select the smoothing parameters for
the continuous and discrete variables for NP (CVLS), for the
smoothing parameter for the continuous variable for NP
(FREQ), and for the knot and parameter selection for Spline.
Minimization of the cross-validation function is achieved using
multidimensional numerical search routines that allow for
different smoothing parameters for all variables. Restarting is
used to avoid the presence of local minima. The second-order

Gaussian kernel is used for the continuous kernel, and the
Aitchison and Aitken kernel is used for the discrete kernel.
Further details and code are available upon request.

For what follows, we consider the following nonlinear data
generating process (DGP):

yi ¼ g0 xc
i ; x

d
i

	 

þ g1 xc

i ; x
d
i

	 

� g0 xc

i ; x
d
i

	 
� �
ti þ ei

¼ g0 xc
i ; x

d
i

	 

þ t xc

i ; x
d
i

	 

ti þ ei

¼ 1þ 2xc
i1= 4pð Þ þ 2xd

i1 þ xc
i1

	 
2
= 4pð Þ þ tti þ ei;

where xc
1 is U[�p, p] and xd

1 2 0; 1f g with P xd
1 ¼ 1

� �
¼ 0:5

and xd
2 2 0; 1f g with P xd

1 ¼ 1
� �

¼ 0:5; while se ¼ 1/2 and xd
2

are irrelevant. Our model for the propensity score (Probit) is

Ti ¼ �p=2þ p sin ðxc
i1Þ=2þ pxd

i1 þ pxd
i1 cos ðxc

i1Þ=2þ hi;

ti ¼
1 if F ðTiÞ> 0:5

0 otherwise;

(

where sh ¼ 3 and F(�) is the standard normal CDF, while x2
d is

irrelevant.
We first examine the sampling properties of each method, and

then examine size and power of tests of H0: t ¼ 0 based on the
estimators (1)–(3) mentioned earlier. We vary both t and n, and
consider t 2 {0, 1/4, 1/2, 3/4} and n 2 {200, 300, 400, 500}.

3.1 Sampling Performance

To assess the sampling performance of the proposed method
relative to its frequency-based peers, we draw M ¼ 1,000
Monte Carlo replications from the preceding DGP for a given
value of t, and summarize the sampling performance of each
estimator by reporting its median square error relative to the
proposed smooth approach (i.e., we report ratios of medi

ðt̂i � tÞ2; i ¼ 1; . . . ;MÞ.Values of relative median square error
greater than 1 indicate a loss in efficiency relative to the pro-
posed method. Results are summarized in Table 1.

Table 1 reveals that the proposed smooth approach yields
more efficient estimators (in finite-sample applications) of t in
finite samples than either the kernel or spline-based frequency
approach. One important reason for the efficiency loss for the
frequency-based estimators is that these estimators split the
sample also for discrete cells related to xd

2; while our kernel
smoothed estimator does not as we can smooth out the irrele-
vant covariate xd

2:
An anonymous referee has suggested to us that even when all

variables are relevant, the nonparametric approach that
smooths both the discrete and continuous variables in a par-
ticular manner may still have better finite-sample properties
than the frequency estimator. Additionally, as the number of
categories increases for the discrete variables, the benefits from
smoothing discrete variables should be even more pronounced.
Therefore, we also ran a set of simulations focusing on the
issue of the efficiency gain arising by smoothing over discrete
variables when, in fact, all variables are relevant. We modify
the propensity score used previously so that xd

1; x
d
2 2

0; 1; 2f g; p xd
1 ¼ xd

2 ¼ 0
	 


¼ 1=4; p xd
1 ¼ xd

2 ¼ 1
	 


¼ 1=2; and
p xd

1 ¼ xd
2 ¼ 2

	 

¼ 1=4; while se ¼ 1/2. Our model for the

propensity score (Probit) is now given by

Li, Racine, and Wooldridge: Efficient Estimation of Average Treatment Effects 211



Ti ¼ �p=2þ pxd
i2 sin ðxc

i1Þ=2þ pxd
i1 þ pxd

i1 cos ðxc
i1Þ=2þ hi;

ti ¼
1 if FðTiÞ> 0:5

0 otherwise;

(

where sh¼ 3 and F(�) is the standard normal CDF, and both xd
i1

and xd
i2 are relevant (i.e., all variables are now relevant).

Table 2 presents relative efficiency for the case described
previously where all variables are relevant (we do not include
spline estimation results, because as the number of discrete
cells increases, the frequency-based spline method is more
prone to failing to converge, which leads to substantial
increases in its relative square error performance).

The results in Table 2 clearly show that it is not just the
presence of irrelevant variables, but also the number of cells in
the data that drives the relative efficiency gains for our pro-
posed smooth estimator.

3.2 Testing for the Null of No Effect

Next, we consider the performance of the proposed test for
the null of no effect (i.e., H0: t ¼ 0). For a given value of t, we
generate each replication in the following manner.

(1) Draw a sample of size n for xc
1; x

d
1; x

d
2;h; e

 �
; which then

determines the values of {t, y}.
(2) Using ti; yi; x

c
i1; x

d
i1; x

d
i2

 �n

i¼1
; compute t̂:

(3) Test for the null of no effect based on B¼ 1,000 bootstrap
replications.

(4) Repeat steps 1 through 3 M ¼ 1,000 times for a given
value of t.

We then construct empirical rejection frequencies, and the
results are summarized in Table 3 for tests conducted at a
nominal size of a ¼ 0.05 (results for 0.01 and 0.10 were also
computed and are available upon request but are omitted for
space considerations).

Examining Table 3, we observe that the smooth approach is
correctly sized (i.e., when t ¼ 0) and has power that increases
with n and the magnitude of t. The conventional frequency-
based propensity score estimators suffer from substantial size
distortions, suggesting that they are more susceptible to effi-
ciency losses arising from sample splitting than the proposed
smooth approach. It is clear that, at least for high-frequency
nonlinear DGPs such as that considered previously, these fre-
quency-based approaches are to be avoided altogether.

Note that we have only considered one binary irrelevant
covariate in this experiment. When there exist more irrelevant
covariates, or one irrelevant covariate that assumes more

Table 1. Relative sampling performance given by the ratio of median
square errors where NP (CVLS) is the numeraire (four data cells)

n NP (CVLS) NP (FREQ) Spline

t ¼ 0.00
200 1.00 1.44 1.84
300 1.00 1.24 1.80
400 1.00 1.26 1.50
500 1.00 1.17 1.52

t ¼ 0.25
200 1.00 1.22 1.70
300 1.00 1.39 1.53
400 1.00 1.35 1.35
500 1.00 1.40 1.54

t ¼ 0.50
200 1.00 1.29 1.96
300 1.00 1.24 1.47
400 1.00 1.44 1.32
500 1.00 1.43 1.42

t ¼ 0.75
200 1.00 1.51 1.96
300 1.00 1.30 1.45
400 1.00 1.34 1.20
500 1.00 1.39 1.16

Table 2. Relative sampling performance given by the ratio of median
square errors where NP (CVLS) is the numeraire (nine data cells)

n NP (CVLS) NP (FREQ)

t ¼ 0.00
200 1.00 1.19
300 1.00 1.19
400 1.00 1.18
500 1.00 1.18

t ¼ 0.25
200 1.00 1.19
300 1.00 1.18
400 1.00 1.17
500 1.00 1.18

t ¼ 0.50
200 1.00 1.24
300 1.00 1.17
400 1.00 1.20
500 1.00 1.17

t ¼ 0.75
200 1.00 1.23
300 1.00 1.17
400 1.00 1.16
500 1.00 1.14

Table 3. Size and power comparisons, a ¼ 0.05

n NP (CVLS) NP (FREQ) Spline

Size (t ¼ 0.00)
200 0.062 0.218 0.007
300 0.061 0.203 0.003
400 0.056 0.187 0.004
500 0.059 0.182 0.004

Power (t ¼ 0.25)
200 0.116 0.312 0.013
300 0.133 0.328 0.051
400 0.125 0.276 0.095
500 0.166 0.286 0.171

Power (t ¼ 0.50)
200 0.220 0.386 0.151
300 0.301 0.375 0.306
400 0.374 0.458 0.523
500 0.476 0.513 0.612

Power (t ¼ 0.75)
200 0.411 0.475 0.373
300 0.581 0.592 0.631
400 0.692 0.661 0.745
500 0.816 0.783 0.814
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than two unique values, the differences between the smooth and
frequency-based approaches become even more pronounced.
Summarizing, the proposed smooth test is more powerful than a
conventional frequency-based test when confronted with cate-
gorical data, which is often the case in applied settings.

4. AN EMPIRICAL APPLICATION

In this section, we consider the performance of parametric and
nonparametric propensity score models based upon data taken
from the Study to Understand Prognoses and Preferences for
Outcomes and Risks of Treatments (SUPPORT). The data were
obtained from the Department of Health Evaluation Sciences at
the University of Virginia, and we are most grateful to Drs.
B. Knaus and F. Harrell, Jr. for making these data available to us.
These data were used in a study by Connors et al. (1996) who
considered 30-day, 60-day, and 180-day survival, and they also
considered categories of admission diagnosis and categories of
comorbidities illness as covariates. We restrict attention to 180-
day survival by way of example, while we ignore admission
diagnosis and comorbidities illness due to the prevalence of
missing observations among these covariates. As it is our
intention to demonstrate the utility of the proposed methods on
actual data and not to become immersed in ad hoc adjustments
that must be made to handle the prevalence of missing data for
these additional covariates, we beg the reader’s forgiveness in
this matter. Nevertheless, even though we omit admission
diagnosis and comorbidities illness as covariates, we indeed
observe results that are qualitatively and quantitatively similar to
those reported in Connors et al. (1996) and Lin et al. (1998).

Y: Outcome-1 if death occurred within 180 days, zero
otherwise

T: Treatment-1 if a Swan-Ganz catheter was received by the
patient when they were hospitalized, zero otherwise.

X1: Sex-0 for female, 1 for male
X2: Race-0 if black, 1 if white, 2 if other
X3: Income-0 if under 11 K, 1 if 11-25 K, 2 if 25-50 K, 3 if

over 50 K
X4: Primary disease category-1 if acute respiratory failure, 2 if

congestive heart failure, 3 if chronic obstructive pulmo-
nary disease, 4 if cirrhosis, 5 if colon cancer, 6 if coma, 7
if lung cancer, 8 if multiple organ system failure with
malignancy, 9 if multiple organ system failure with sepsis

X5: Secondary disease category-1 if cirrhosis, 2 if colon
cancer, 3 if coma, 4 if lung cancer, 5 if multiple organ
system failure with malignancy, 6 if multiple organ
system failure with sepsis, 7 if NA

X6: Medical insurance-1 if medicaid, 2 if medicare, 3 if
medicare and medicaid, 4 if no insurance, 5 if private, 6
if private and medicare

X7: Age-age (converted to years from Y/M/D data stored
with 2 decimal accuracy)

Table 4 presents some summary statistics on the variables
described previously. The number of cells in this dataset is
18,144, which exceeds the number of records, 5,735.

Note that, as was found by Connors et al. (1996), those
receiving right-heart catheterization are more likely to die
within 180 days than those who did not. Interestingly, Lin et al.

(1998) also find that, when further adjustments were made,
the risk of death is lower than that reported by Connors et al.
(1996) and they conclude that ‘‘results of our sensitivity
analysis provide additional insights into this important study
and imply perhaps greater uncertainty about the role of RHC
than those stated in the original report.’’

Lin et al. (1998) note that cardiologists’ and intensive care
physicians’ belief in the efficacy of RHC for guiding therapy for
certain patients is so strong that ‘‘it has prevented the conduct of
a randomized clinical trial’’ (RCT), while Connors et al. (1996)
note that ‘‘the most recent attempt at an RCTwas stopped because
most physicians refused to allow their patients to be randomized.’’

The confusion matrices for the parametric and non-
parametric propensity score models are given in Tables 5 and 6.
A ‘‘confusion matrix’’ is simply a tabulation of the actual
outcomes (A) versus those predicted (P) by a model. The
diagonal elements contain correctly predicted outcomes, while
the off-diagonal ones contain incorrectly predicted (confused)
outcomes. The classification ratio (CR(0–1)) is the number of
correctly predicted outcomes, while CR(0) and CR(1) denote
the number of correctly predicted zeros and ones, respectively.

An examination of these confusion matrices demonstrates
how, for this dataset, the nonparametric approach is better able to
predict who receives treatment and who does not than the para-
metric Logit model. The parametric approach correctly predicts
3,828 of the 5,735 patients, while the nonparametric approach
correctly predicts 3,976 patients, thereby predicting an additional
148 patients correctly. The differences between the parametric
and nonparametric versions of the weighting estimator reflect this
additional number of correctly classified patients along with
differences in the estimated probabilities of treatment them-
selves. The increased risk suggested by the parametric model
drops from a 7% increase for those receiving RHC to 0% when
the proposed smooth nonparametric method is used.

Table 4. Summary statistics

Variable Mean StdDev Minimum Maximum

Outcome 0.65 0.48 0 1
Treatment 0.38 0.49 0 1
Sex 0.56 0.50 0 1
Race 0.90 0.46 0 2
Income 0.75 0.99 0 3
Primary disease category 3.98 3.34 1 9
Secondary disease category 6.66 0.84 1 7
Medical insurance 3.81 1.79 1 6
Age 61.38 16.68 18 102

Table 5. Parametric confusion matrix

A/P 0 1

0 2,841 710
1 1,197 987
Sample size 5,735
CR(0-1) 66.7%
CR(0) 80.0%
CR(1) 45.2%
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Based upon the parametric propensity score estimate, the
treatment effect is 0.072, while the nonparametric propensity
score estimate yields a treatment effect of �0.001. We then
bootstrapped the sampling distribution of these estimates and
obtained 95% coverage error bounds of [0.044, 0.099] for the
parametric approach and [�0.039, 0.010] for the nonparametric
approach. Thus, we overturn the parametric testing result and
conclude that patients receiving RHC treatment, in fact, do not
appear to suffer an increased risk of death. These error bounds
indicate that the parametric model suggests a statistically sig-
nificant increased risk of death for those receiving RHC, while
the nonparametric model yields no significant difference.

APPENDIX A

Definition A.1. (Definition of V̂1; V̂2 and B̂h;l). V̂1 ¼ n�1Pn
i¼1½t̂ni � m̂t�2, where t̂ni is defined in (18) and m̂t ¼ n�1Pn
j¼1 t̂nj is the sample mean of t̂nðxjÞ.
V̂2 ¼ n�1

Pn
i¼1 û2

i ðti � t̂iÞ2=½t̂2
i ð1� t̂

2
i Þ�, where t̂i is the ker-

nel estimator of E(ti|xi) defined in (10), ûi ¼ ĝ0ðxiÞ þ tit̂nðxiÞ,
and ĝ0ðxiÞ is defined in (16).

To estimate Bh,l, we need to estimate B1s (s ¼ 1, . . . , q1) and
B2s (s ¼ 1, . . . , r1). These quantities can be estimated by first
estimating f(xi), m(xi) ¼ g0(xi) þ m(xi)t(xi) by f̂ ðxiÞ and
m̂ðxiÞ ¼ ĝ0ðxiÞ þ m̂ðxiÞt̂nðxiÞ; respectively, and their derivative
estimators can be obtained by taking derivatives (since the
kernel function is differentiable up to order n). Finally,
replacing the population mean E(�) by the sample mean leads to
consistent estimators for B1s and B2s, and hence for Bh,l.

In Appendices A and B, because Mn(x)! 1 on the support of
f(x), we will omit the trimming function Mni to simplify nota-
tion. Also, we will use the notation (s.o.), which is defined as
follows: when Bn is the leading term of An, we write An ¼ Bn þ
(s.o.), where (s.o.) denotes terms having probability order
smaller than Bn. Also, when we write A(xi)¼ B(xi)þ (s.o.), it is
always understood to mean that n�1

Pn
i¼1 AðxiÞ ¼ n�1Pn

i¼1 BðxiÞ þ ðs:o:Þ.

Proof of Lemma 2.1. We first list conditions that are nee-
ded to prove Lemma 2.1. We use �X to denote the first q1 rel-
evant components of Xc and the first r1 components of Xd. Let
~X ¼ X= �X denote the remaining components of X. We make the
following assumptions:

(C1) ðY; �XÞ is independent of ~X.
(C2) The data are iid and ui has finite moments of any order;

g, f, and s2 have two continuous derivatives; M(�) is
continuous, non-negative, and has compact support;
and f is bounded away from zero for x ¼
ðxc; xdÞ 2 M 3 Sd.

(C3) Define H ¼
Qq1

s¼1 hs

	 
Qq
s¼q1þ1 min ðhs; 1Þ. Let 0 < e <

1/(qþ 4) and for some constant c > 0, ne�1 # H # n�c;
n�c < hs < nc for all s ¼ 1, . . . , q; the kernel function is
a symmetric, compactly supported, Hölder-continuous
probability density; w(0) > w(d) for all d > 0.

(C4) Define �mt ¼ E½t̂ðxÞf̂ ðxÞ�=E½f̂ ðxÞ�; then,
R

suppðMÞ½�mtðxÞ�
mð�xÞ� �Mð�xÞ�f ð�xÞd�x, as a function of h1;...;hq1

; and
l1;...;lr1

; vanishes if and only if all of the smooth-
ing parameters vanish.

(C5) Let x(a, b) be defined as in (A.5) subsequently. We
assume that there exist unique finite positive constants
a0

s (s ¼ 1, . . . , q1) and finite non-negative constants ls

(s ¼ 1, . . . , r1) that minimize x(a, b).

We use the notation g
ðlÞ
s xð Þ to denote @lg xð Þ=@ xc

s

	 
l
; the lth

order partial derivative of g(�) with respect to xs
c. Also, when xd

s

is an unordered categorical variable, define an indicator func-
tion Is(., .) by

Isðzd; xdÞ ¼ 1 zd
s 6¼ xd

s

	 
Yr1

t 6¼s

1 xd
t ¼ zd

t

	 

: ðA:1Þ

When xd
s is an ordered categorical variable, for notational

simplicity, we assume that xd
s takes (finitely many) consecutive

integer values, and Is(., .) is defined by

Isðzd; xdÞ ¼ 1 jzd
s � xd

s j ¼ 1
	 
Yr1

t 6¼s

1 xd
t ¼ zd

t

	 

: ðA:2Þ

When using a second-order kernel (n ¼ 2), Hall et al. (2004,
2006) have shown that ĥs ! ‘ for s ¼ q1 þ 1, . . . , q, that
l̂s ! 1 for s ¼ r1 þ 1, . . . , r, and that
CVðh; lÞjn¼2

¼
X

xd

Z
k2

2

Xq1

s¼1

ðf mÞð2Þs ðxÞ � mðxÞf ð2Þs ðxÞ
h i

h2
s

(

þ
X

vd

Xr1

s¼1

Isðvd; xdÞ½mðxc; vdÞ � mðxÞ�f ðxc; vdÞls

)2

3 SðxÞf ðxÞ�1dxc

þ kq1

nh1 . . . hq1

X
xd

Z
s2ðxÞSðxÞdxc þ ðs:o:Þ;

ðA:3Þ
where k2 ¼

R
wðvÞv2dv; k ¼

R
wðvÞ2dv, and Is(�) is defined in

(A.1) and (A.2).
By following exactly the same derivation as in Hall et al. (2004,

2006), one can show that, with a nth order kernel, ĥs ! ‘ for
s ¼ q1 þ 1; . . . ; q, that l̂s ! 1 for s ¼ r1 þ 1; . . . ; r, and that

CVðh; lÞ ¼
X

xd

Z Xq1

s¼1

B1sðxÞhn
s þ

Xr1

s¼1

B2sðxÞls

( )2

3 SðxÞf ðxÞ�1dxc

þ kq1

nh1 . . . hq1

X
xd

Z
s2ðxÞSðxÞ dxc þ ðs:o:Þ;

ðA:4Þ
where B1sðxÞ ¼ ðkq1

=n!Þ½ðf mÞðnÞs ðxÞ � mðxÞf ðnÞs ðxÞ�ðs ¼ 1; . . . ;

q1Þ; kq1
¼
R

wðvÞvq1 dv; and B2sðxÞ ¼
P

vd Isðvd; xdÞ½mðxc;

Table 6. Nonparametric confusion matrix

A/P 0 1

0 2,916 635
1 1,092 1,092
Sample size 5,735
CR(0-1) 69.9%
CR(0) 82.1%
CR(1) 50.0%
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vdÞ � mðxÞ�f ðxc; vdÞðs ¼ 1; . . . ; r1Þ, and (s.o.) denotes terms
having smaller probability orders, uniformly in ðh; lÞ 2
ð0;hn�

q1þr1 .
The only difference between (A.3) and (A.4) is that h2

s is
replaced by hn

s and that the definition of B1s is slightly different.
Of course, (A.4) reduces to (A.3) if n ¼ 2.

Defining as via hs ¼ asn
�1=ð2nþq1Þðs ¼ 1; . . . ; q1Þ and bs via

ls ¼ bsn
�n=ð2nþq1Þðs ¼ 1; . . . ; r1Þ, (A.4) can be written as

CVðh; lÞ ¼ n�2n=ð2nþq1Þxða; bÞ þ ðs:o:Þ uniformly in ðh; lÞ 2
ð0;hn�

q1þr1 , where

xða; bÞ ¼
X

xd

Z Xq1

s¼1

B1sðxÞan
s þ

Xr1

s¼1

B2sðxÞbs

( )2

SðxÞf ðxÞ�1dxc

þ kq1

a1 . . . aq1

X
xd

Z
s2ðxÞSðxÞdxc: ðA:5Þ

Note that the x(a, b) function defined previously is the
leading term of CV(h, l) (up to a factor n�4=ð4þq1Þ, which is also
the leading term of the weighted integrated mean-square error
when estimating m(x) ¼ E(ti|xi ¼ x)). Li and Zhou (2005)
provide a necessary and sufficient condition for Condition
(C.5), i.e., for the existence of unique ða1; . . . ; aq1

; b1; . . . ; br1
Þ

that minimize x(a, b). Li and Zhou (2005) also provide some
intuitive explanations of Condition (C.5).

From (A.4), (A.5), and Condition (C5), we obtain ĥs ¼
a0

s n�1=ð2nþq1Þ þ op n�1=ð2nþq1Þ
	 


and l̂s ¼ b0
s n�n=ð2nþq1Þþ

op n�n=ð2nþq1Þ
	 


. j

To make the proof of Theorem 2.1 more manageable, we
make a number of simplifying assumptions. (1) We replace t̂ðxiÞ
in the definition of t̂ by the leave-one-out estimator t̂�iðxiÞ (or
one can redefine t̂ by replacing t̂ðxiÞ by t̂�iðxiÞ in t̂Þ: (2) We
replace ĥs by the nonstochastic quantity h0

s ¼ a0
s n�1=ðnþq1þ2Þ

ðs ¼ 1; . . . ; q1Þ, and l̂s by l0
s ¼ b0

s n�2=ðnþq1þ2Þðs ¼ 1; . . . ; r1Þ.
(3) When we evaluate the probability order of a term, we
sometimes assume that hs¼ h for all s ¼ 1; . . . ; q1 and that ls¼
l for all s ¼ 1; . . . ; r1 to simplify notation. For example, we will
write O hnð Þ for O

Pq1

s¼1 hn
s

	 

and O lð Þ for O

Pr1

s¼1 ls

	 

to save

space. Note that the proof carries through without making these
simplifying assumptions. For example, ignoring the leave-one-
out estimator only introduces some extra smaller order terms.
Lemma 2.1 shows that ĥs=h0

s � 1 ¼ opð1Þ and l̂s=l0
s � 1 ¼

opð1Þ, and by the stochastic equicontinuity result of Ichimura
(2000) and Hsiao et al. (2006), we know that the asymptotic dis-
tribution of t̂ remains the same whether one uses the ĥs’s and l̂s’s
or their nonstochastic leading terms (i.e., the h0

s ’s and l0
s ’s). Or,

alternatively, one can use tightness and stochastic-equicontinuity
arguments to prove this result (e.g., Hsiao et al. (2006)).

We will repeatedly use the u statistic H decomposition in the
subsequent proof. When we evaluate the order of some terms,
we sometimes write n�1 for (n � 1)�1, because this approx-
imation does not affect the order of any quantities considered.

We will use the short-hand notation t̂i ¼ t̂�iðxiÞ and f̂ i ¼
f̂�iðxiÞ; i.e.,

t̂i ¼
n�1

Pn
j6¼i tjKgðxj; xiÞ

f̂ i

; ðA:6Þ

with f̂ i ¼ n�1
Pn

j 6¼i Kgðxj; xiÞ.

Defining vi ¼ ti � E(ti|xi) [ ti � mi, so that ti ¼ mi þ vi, and
replacing tj by mj þ vj in the right-hand-side of (A.6), we have

t̂i ¼ m̂i þ v̂i; ðA:7Þ

where m̂i ¼ n�1
Pn

j 6¼i mjKgðxj; xiÞ=f̂ i; and v̂i ¼ n�1
Pn

j 6¼i

vjKgðxj; xiÞ=f̂ i.
We use the short-hand notation wi and ~wi defined by

wi ¼ mið1� miÞ and ~wi ¼ t̂ið1� t̂iÞ: ðA:8Þ

We use the following identities to handle the random
denominator of t̂:

1

~wi
¼ 1

wi
þ wi � ~wi

w2
i

þ ðwi � ~wiÞ2

w2
i ~wi

: ðA:9Þ

Proof of Theorem 2.1. We have defined ~t in (15). We
now define another intermediate quantity �t (vi¼ ti� mi and we
omit Mni for notational simplicity):

�t ¼ 1

n

Xn

i¼1

ðti � miÞyi

wi
[

1

n

Xn

i¼1

viyi

wi
: ðA:10Þ

By adding and subtracting terms in
ffiffiffi
n
p
ðt̂ � tÞ, we obtainffiffiffi

n
p
ðt̂ � tÞ ¼

ffiffiffi
n
p
½ðt̂ � ~tÞ þ ð~t � �tÞ þ ð�t � tÞ�

¼ J1n þ J2n þ J3n;
ðA:11Þ

where J1n ¼
ffiffiffi
n
p
ðt̂�~tÞ;J2n ¼

ffiffiffi
n
p
ð~t��tÞ, and J3n ¼

ffiffiffi
n
p
ð�t� tÞ.

Lemma A.4 gives the leading terms of J2n. Recall that wi ¼
mi(1 � mi), ~wi ¼ t̂ið1� t̂iÞ. Using (A9), from (C4), we obtain

t̂ ¼ 1

n

Xn

i¼1

ti � t̂i½ � yi

1

wi
þ wi � ~wi

w2
i

þ ðwi � ~wiÞ2

w2
i ~wi

" #

[ L1n þ L2n þ L3n;

ðA:12Þ

where L1n ¼ n�1
Pn

i¼1½ðti � t̂iÞyi�=wi [ ~t; L2n ¼ n�1
Pn

i¼1½ðti

�t̂iÞðwi � ~wiÞyi�=½w2
i �, and L3n ¼ n�1

Pn
i¼1½ðti � t̂iÞðwi �

~wiÞ2yi�=½w2
i ~wi�.

Note that L1n ¼ ~t; therefore, by (A.12), we have

J1n [
ffiffiffi
n
p
ðt̂ � ~tÞ ¼

ffiffiffi
n
p
ðt̂ � L1nÞ ¼

ffiffiffi
n
p

L2n þ
ffiffiffi
n
p

L3n: ðA:13Þ

Lemma A.3 below gives the leading term of J1n.
Using (4) and adding and subtracting terms, we write J3n ¼ffiffiffi
n
p
ð�t � tÞ as

J3n ¼ n�1=2
Xn

i¼1

viyi=wi � t½ �

¼ n�1=2
Xn

i¼1

ðviyi=wi � tiÞ þ n�1=2
Xn

i¼1

ðti � tÞ

¼ n�1=2
Xn

i¼1

½viðg0i þ titi þ uiÞ=wi � ti�

þ n�1=2
Xn

i¼1

ðti � tÞ; ðA:14Þ

where ti ¼ t(xi).
By (A.14), Lemma A.3, and Lemma A.4, from (A.11), we

obtain
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ffiffiffi
n
p
ðt̂ � t � Bh;lÞ ¼ J1n þ J2n � n1=2Bh;l þ J3n

¼ n�1=2
Xn

i¼1

vi½2mi � 1�ti=wi � n�1=2

3
Xn

i¼1

viðg0i þ timiÞ=wi�

þ n�1=2
Xn

i¼1

fviðg0i þ titi þ uiÞ=wi � tig

þ n�1=2
Xn

i¼1

ðti � tÞ þ opð1Þ

¼ n�1=2
Xn

i¼1

viui

wi
þ n�1=2

Xn

i¼1

ðti � tÞ þ opð1Þ

[ Zn2 þ Zn3 þ opð1Þ; ðA:15Þ

where the definitions of Zn2 ¼ n�1=2
Pn

i¼1 viui =wi and
Zn3 ¼ n�1=2

Pn
i¼1ðti � tÞ. Also, in the preceding, we used the

following cancellation result (wi ¼ mi(1 � mi)):

n�1=2
Xn

i¼1

viðti � miÞ
wi

� 1

� �
ti þ n�1=2

X
i

vi
2mi � 1

wi

� �
ti

¼ n�1=2
Xn

i¼1

v2
i � mið1� miÞ þ 2vimi � vi

wi

� �
ti

¼ n�1=2
Xn

i¼1

ðmi þ viÞ2 � ðmi þ viÞ
wi

" #
ti

¼ 0; ðA:16Þ

since (mi þ vi)
2 � (mi þ vi) [ t2

i � ti ¼ 0 (because t2
i ¼ tiÞ:

Theorem 2.1 follows from (A.15) and the Lindeberg central
limit theorem. j

Proof of Lemma 2.2. From
ffiffiffi
n
p
ð~t�t�Bh;lÞ¼

ffiffiffi
n
p
ð~t��t�

Bh;lÞ þ
ffiffiffi
n
p
ð�t�tÞ¼J2n�n1=2Bh;lþJ3n, and using (A.14) and

Lemma A.4, we have (vi ¼ ti � mi):ffiffiffi
n
p
ð~t � t � Bh;lÞ ¼ J2n � n1=2Bh;l þ J3n

¼� n�1=2
Xn

i¼1

viðg0i þ timiÞ=wi

þ n�1=2
Xn

i¼1

½viðg0i þ titi þ uiÞ=wi � ti�

þ n�1=2
Xn

i¼1

ðti � tÞ þ opð1Þ

¼n�1=2
Xn

i¼1

v2
i

wi
� 1

� �
ti

þ n�1=2
Xn

i¼1

viui

wi
þ n�1=2

3
Xn

i¼1

ðti � tÞ þ opð1Þ

[ Zn1 þ Zn2 þ Zn3 þ opð1Þ
!dNð0;V1 þ V2 þ V3Þ

by the Lindeberg central limit theorem, ( A.17)

where Zn1 and Zn2 are defined in (A.15), and Zn3 ¼ n�1=2Pn
i¼1 ðv2

i =wiÞ � 1
� �

. Note that by Lemma A.3 and (A.16), we
know that J1n ¼ � Zn3 þ op(1). j

Subsequently, we present some lemmas that are used in
proving Theorem 2.1. We will use the following identity to
handle the random denominator in the kernel estimator. For any
positive integer p, we have

1

f̂ i

¼ 1

f i

þ f i � f̂ i

f i f̂ i

¼ 1

f i

þ
Xp

l¼1

ðf i � f̂ iÞ
l

f lþ1
i

þ ðf i � f̂ iÞ
pþ1

f p
i f̂ i

: ðA:18Þ

For example, in Lemma A.1 we need to evaluate a term such
as n�1

Pn
i¼1 viyiv̂i =w2

i : v̂i ¼ n�1
P

j6¼i vjKg;ij= f̂ i, which has a
random denominator, namely f̂ i. By computing the second
moment of the term associated with ðf i � f̂ iÞl =f lþ1

i , one can
easily show that this term has an order smaller than the main
term that is associated with 1/fi. Also, using the uniform
convergence rate of supx2S jf̂ ðxÞ � f ðxÞj ¼ Op

Pq1

s¼1 hv
s þ

	
ln n nh1 . . . hq1

	 
�1Þ, together with infx2S f ðxÞ $ d > 0, one can
easily show the last remainder term associated with ðf i �
f̂ iÞpþ1 =ðf p

i f̂ iÞ is of smaller order than the first leading term (by
choosing p to be sufficiently large). Therefore, using (A.18),
we have

n�1
Xn

i¼1

viyiv̂i=w2
i ¼ n�1

Xn

i¼1

viyiv̂if̂ i=ðf iw
2
i Þ þ ðs:o:Þ:

Now the leading term n�1
Pn

i¼1 viyiv̂if̂ i =ðf iw
2
i Þ does not con-

tain the random denominator f̂ i; hence, its probability order can
be easily evaluated by using H decomposition of u statistics.

Lemma A.1.

L2n ¼ n�1
X

i

við2mi � 1Þti =wi þ op

	
n�1=2



:

Proof. Recalling that wi ¼ mi(1 � mi), ~wi ¼ t̂ið1� t̂iÞ, ti ¼
mi þ vi, and t̂i ¼ m̂i þ v̂i, we have

L2n ¼ n�1
Xn

i¼1

yiðti � t̂iÞ½mi � t̂i � ðm2
i � t̂

2
i Þ�=w2

i

¼ n�1
Xn

i¼1

yiðti � t̂iÞðmi � t̂iÞ½1� ðmi þ t̂iÞ�=w2
i

¼ n�1
Xn

i¼1

yiðmi � m̂i þ vi � v̂iÞðmi � m̂i � v̂iÞ

3 ½1� ðmi þ m̂i þ v̂iÞ�=w2
i

¼�n�1
Xn

i¼1

yiviv̂i½1� 2mi�=w2
i þ op

	
n�1=2



ðusing m̂i ¼ mi þ ðm̂i � miÞ; Lemma B:3; and ðA3Þ ðiiÞÞ

¼ 1

nðn� 1Þ
Xn

i¼1

Xn

j6¼i

yivivið2mi � 1ÞKg;ij =w2
i þ op

	
n�1=2




¼ 2

nðn� 1Þ
X

i

X
j > i

Hn;aðzi; zjÞ þ ðs:o:Þ;

where Hn,a(zi, zj) ¼ (1/2)vivj{yi(1 � 2mi)/[ fiwi
2] þ yj(2mj � 1)/

[fjwj
2]}Kg, and ij and zi ¼ (xi, ti, ui).
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Define H1n,a(zi) ¼ E[Hn,a(zi, zj)|zi] ¼ (1/2) viti(2mi � 1)/wi
2

þ (s.o.) by Lemma B.4 (i).
Hence, by the u statistic H decomposition, we have

L2n ¼
2

nðn� 1Þ
X

i

X
j > i

Hn;aðzi; zjÞ þ ðs:o:Þ

¼ 0þ ð2=nÞ
X

i

H1n;aðziÞ þ
2

nðn� 1Þ
X

i

X
j > i

fHn;aðzi; zjÞ

� H1n;aðziÞ � H1n;aðzjÞ þ 0g þ ðs:o:Þ;
¼ n�1

X
i

vitið2mi � 1Þ=wi þ Opððnhq1=2Þ�1Þ þ ðs:o:Þ

¼ n�1
X

i

vitið2mi � 1Þ=wi þ opðn�1=2Þ

by Lemma B.4 and Assumption (A3), where we also used

the fact that the degenerate u statistic Un;a ¼
def ½2=nðn� 1Þ�P

i

P
j>ifHn;aðzi; zjÞ � H1n;aðziÞ � H1n;aðzjÞg has a second

moment given by E½U2
n;a� ¼ Oððn2hq1Þ�1Þ, so Un;a ¼

Opððnhq1=2Þ�1Þ. j

Lemma A.2.

L3n ¼ Oðh2n þ h2ðnhq1Þ�1Þ ¼ opðn�1=2Þ:
Proof. Using the identity

1

~wi
¼ 1

wi
þ
Xp

l¼1

ðwi � ~wiÞl

wlþ1
i

þ ðwi � ~wiÞpþ1

wp
i ~wi

; ðA:19Þ

one can show that the leading term of L3n is L3n;1 ¼ n�1P
i yiðti � t̂iÞðwi � ~wiÞ2 =w3

i . This follows because (1) it is easy
show that (by computing their second moment) the term
associated with ðwi � ~wiÞl =wlþ1

i has an order smaller than the
main term that is associated with 1/wi and also because (2)

using the uniform convergence rate of supx2S jm̂ðxÞ � mðxÞj ¼
Op

Pq1

s¼1 hv
s

	
þ ln n nh1 . . . hq1

	 
�1Þ, together with infx2S mðxÞ
$ c > 0 and supx2S mðxÞ # c�1 < 1 (0 < c < 1), one can easily

show the last remainder term associated with ðwi � ~wiÞpþ1 =

ðw p
i ~wiÞ is of smaller order than the first leading term (by

choosing p to be sufficiently large if needed).
By noting that ti ¼ mi þ vi and wi � ~wi ¼ ðmi � t̂iÞ½1�
ðmi þ t̂iÞ�, we have

L3n;1 ¼ n�1
X

i

yiðti � t̂iÞðwi � ~wiÞ2=w3
i

¼ n�1
X

i

½g0i þ titi þ ui�½ðmi � t̂iÞ þ vi�ðmi � t̂iÞ2

3 ½1� ðmi þ t̂iÞ�2 =w3
i

; n�1
X
i¼1

n½viðmi � t̂iÞ2 þ ðmi � t̂iÞ3�

¼Oðh2n þ h2ðnhq1Þ�1Þ
by Lemma B.3, where in the above A ; B means that A ¼ B þ
(s.o.). j

Lemma A.3.

J1n ¼ n�1=2
X

i
við2mi � 1Þti =wi þ opð1Þ:

Proof. This follows from lemmas A.1 and A.2. j

Lemma A.4.
J2n ¼

ffiffiffi
n
p

Bh;l � ð1
� ffiffiffi

n
p
Þ
Xn

i¼1
viðg0i þ timiÞ=wi þ opð1Þ:

Proof. Using t̂i ¼ m̂i þ v̂i, we have J2n ¼ n�1=2
Pn

i¼1ðmi �
t̂iÞyi =wi ¼ n�1=2

Pn
i¼1ðmi � m̂iÞyi =wi � n�1=2

Pn
i¼1 v̂iyi =wi [

J2n;1 � J2n;2.
We consider Jn2,1 first:

J2n;1[ n�1=2
Xn

i¼1

ðmi � m̂iÞyi =wi

¼
ffiffiffi
n
p

Bh;l þ Opð
ffiffiffi
n
p

hnþ2 þ hðnhq1Þ�1=2Þ
by Lemma B.2, where Bh,l is defined in Lemma B.2.

Next,

J2n;2 ¼ n�1=2
Xn

i¼1

v̂i f̂ iyi=ðf iwiÞ þ opð1Þðby using ðA:18ÞÞ

¼ n�1=2ðn� 1Þ�1
Xn

i¼1

Xn

j6¼i

vjyiKg;ij=ðf iwiÞ

¼ 2

n1=2ðn� 1Þ
Xn

i¼1

X
j > i

ð1=2Þfvjyi=ðf iwiÞ

þ viyj=ðf jwjÞgKg;ij

¼ n1=2 2

nðn� 1Þ
Xn

i¼1

X
j > i

Hn;bðzi; zjÞ;

where Hn,b(zi, zj) ¼ (1/2){vjyi/(fiwi) þ viyj/(fjwj)}Kg,ij, and zi ¼
(xi, ti, ui).

By noting that E(vi|xi)¼ 0, we have (using yj¼ g0jþ tj(mjþ
vj) þ uj)

H1n;bðziÞ ¼
def

E½Hn;bðzi; zjÞ jzi� ¼ ð1=2Þviðg0i þ timiÞ=wi þ ðs:o:Þ

by Lemma B.4 (iii).
Hence, by the u statistics H decomposition, we have

J2n;2 ¼�n1=2 0þ ð2=nÞ
Xn

i¼1

H1n;bðziÞ
(

þ 2

nðn� 1Þ
Xn

i¼1

X
j > i

3 ½Hn;bðzi; zjÞ

� H1n;bðziÞ � H1n;bðzjÞ þ 0�

¼ n�1=2
Xn

i¼1

viðg0i þ timiÞ=wi þ OpððnhqÞ�1=2Þ

because the last term in the H decomposition is a degenerate
u statistic, which has an order n1=2Op

	
ðnhq1=2Þ�1
 ¼

Op

	
ðnhq1Þ�1=2
. j

APPENDIX B

Lemma B.1. Let D denote the support of xd, for all xd 2 D,
let gðxd; xcÞ 2 Gn, and let f ðxd; xcÞ 2 Gn�1, where n $ 2 is an
even integer. Define h2 ¼

Pq1

s¼1 hv
s þ

Pr1

s¼1 ls. Suppose the
kernel function W(�) satisfies Assumption (A2), all hs have the
same order, say, h, and all ls have the same order as hn. Then,
uniformly in x,

(i) E ½gðXÞ � gðxÞ�KgðX;xÞ
 �

¼
Pq1

s¼1 D1sðxÞhn
s þ
Pr1

s¼1 D2s

ðxÞls þO h2h2
	 


;
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(ii) E KgðX; xÞ� � f ðxÞ
� �

¼
Pq1

s¼1
�D1sðxÞhn

s þ
Pr1

s¼1
�D2sðxÞ

ls þ O h2h2
	 


, where Dls(�) and �Dlsð�Þ are defined in the
subsequent proof.

Proof of (i).

E ½gðXÞ � gðxÞ�KgðX; xÞ
 �
¼
X

zd

Z
f ðzc; zdÞ gðzc; zdÞ � gðxc; xdÞ

� �
3Whðzc; xcÞLðzd; xd; lÞ dzc

¼
Z

f ðxc þ hv; xdÞ gðxc þ hv; xdÞ � gðxc; xdÞ
� �

WðvÞ dv

þ
X
zd 6¼xd

Z
f ðzc; zdÞ½gðzc; zdÞ �gðxc; xdÞ�Whðzc; xcÞ

3 Lðzd; xd; ljÞ dzc

¼
Z
fðfgÞðxc þ hv; xdÞ � ðfgÞðxÞ � gðxÞ½f ðxc þ hv; xdÞ

� f ðxÞ�WðvÞ dv
Xr1

s¼1

Isðzd; xdÞf ðxc; xdÞ½gðxc; zdÞ�gðxc; xdÞ�ls

þ o
Xq1

s¼1

hn
sþ
Xr1

s¼1

ls

 !
¼
Xq1

s¼1

D1sh
n
sþ
Xr1

s¼1

D2sðxÞlsþO h2h2
	 


by Taylor series expansion and the fact that W(�) is a nth-order
kernel function, where

D1sðxÞ ¼ ð1=n!Þkn½ðg f ÞðvÞs ðxÞ � gðxÞf ðvÞs ðxÞ�; ðB:1Þ

kn ¼
R

wðvÞvndv; and

D2sðxÞ ¼ Isðzd; xdÞf ðxc; xdÞ gðxc; zdÞ � gðxc; xdÞ
� �

: ðB:2Þ

j

Proof of (ii).

Ef½KgðX; xÞ � f ðxÞ�g

¼
X

zd

Z
f ðzc; zdÞWhðzc; xcÞLðzd; xd; lÞdzd � f ðxc; xdÞ

¼
Z

f ðxc þ hv; xdÞWðvÞdv� f ðxc; xdÞ

þ
Xr1

s¼1

Isðzd; xdÞf ðxc; zdÞls þ O

�
hn

�
h2 þ

Xr1

s¼1

ls

��

¼
Xq1

s¼1

�D1sðxÞhn
s þ

Xr1

s¼1

�D2sðxÞls þ O h2h2
	 


;

where �D1sðxÞ ¼ ðkn=n!Þf n
s ðxÞ and �D2s ¼ Isðzd; xdÞf ðxc; zdÞ. j

Lemma B.2.

A1n ¼
def

n�1
X

i

ðmi � m̂iÞyi=wi

¼ Bh;l þ Opðn�1=2hn þ h n2hq1
	 
�1=2Þ;

where the definition of Bh,l is given in the following proof.

Proof. Using (A.18), we know that A1n ¼ A1n,1 þ (s.o.),
where A1n;1 ¼ n�1

P
iðmi � m̂iÞf̂ iyi=ðwif iÞ. Note that E(ui|xi) ¼

0 and E(yi|xi) ¼ 0. Letting m(x) ¼ E(y|x) ¼ g01(x) þ t(x)m(x),
we first compute E(A1n). We observe that

EðA1n;1Þ ¼ E½ðm1 � m2ÞKg;1;2y1=ðf 1w1Þ�

¼
X

xd
1

X
xd

2

Z Z
f ðx2Þmðx1ÞwðxiÞ�1ðm1 � m2Þ

3 Wh;1;2Ll;1;2;dxc
1dxc

2

¼
X

xd

Z Z
mðxÞwðxÞ�1f ðx2 þ hv; xdÞ

3 mðxÞ � mðxc þ hv; xdÞ
� �

WðvÞ dv dxc

þ
X

xd

X
xd

2
6¼xd

Z Z
mðxÞwðxÞ�1f ðxc þ hv; xdÞ

3 mðxÞ � mðxc þ hv; xdÞ
� �

WðvÞLl;1;2dxcdv

¼
Xq1

s¼1

C1sh
n
s þ

Xr1

s¼1

C2sls þ O hnþ2
	 


[ Bh;l þ O hnþ2
	 


by the same proof used for Lemma B.1 (i), where Bh;l ¼Pq1

s¼1 C1sh
n
s þ

Pr1

s¼1 C2sls with

C1s ¼ ðkn=n!Þ
X

xd

Z
mðxÞwðxÞ�1

3 ½nðxÞf ðnÞs ðxÞ � ðmf ÞðnÞs ðxÞ�dxc; ðB:3Þ

and

C2s ¼
Z X

zd

X
xd

Isðzd; xdÞf ðxÞmðxÞwðxÞ�1f ðxÞ

3 mðxÞ � mðxc; zdÞ
� �

dzc: ðB:4Þ

Next, we compute var ðA1n;1Þ ¼ E½A2
1n;1� � ½EðA1n;1Þ�2: Note

that

EðA2
1n;1Þ ¼ n�4

X
i1

X
j1 6¼i1

X
i2

X
j2 6¼i2

E
�
ðmi1
� mj1

ÞKg;i1;j1 yi1

3 ðmi2
� mj2

ÞKg;i2;j2 yi2=ðwi1 wi2Þ
�
:

We consider three cases: (1) the four indices i1, j1, i2, and
j2 are all different; (2) the four indices assume three
distinct values; and (3) the four indices assume two different
values.

First, for case (1), it is easy to see that EðA2
1n;1ðiÞÞ will cancel

the leading term of [E(A1n,1)]2. Therefore, we have

EðA2
1n;1ðiÞÞ � ½EðA1n;1Þ�2 ¼ n�1Oð½EðA1n;1Þ�2Þ

¼ O n�1h2n
	 


: ðB:5Þ

For case (2), using Lemma B.1 (i) with hs ¼ h and
ls ¼ O hnð Þ, we have
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EðA2
1n;1ðiiÞÞ # Cn�4n3h2n E½y2

1� þ E½jy1y3 j�
 �

¼Oðn�1h2nÞ:
ðB:6Þ

Finally, for case (iii), we have

EðA2
1n;1ðiiiÞÞ # Cn�4n2fE½y2

1ðm1 � m2Þ
2K2

g;12�
þ E½y1y3ðm1 � m3Þ

2K2
g;13�g ¼ n�2Oðh�q1 h2Þ

¼ Oððn2hq1�2Þ�1Þ: ðB:7Þ

Summarizing (B.5)–(B.7), we have shown that

varðA1n;1Þ ¼ E½A2
1n;1� � ½EðA1n;1�2

¼ Oðn�1h2n þ ðn2hq1�2Þ�1Þ:
ðB:8Þ

Hence,

A1n;1 ¼ EðA1n;1Þ þ Op

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðA1n;1Þ

q� �
¼
Xq1

s¼1
C1sh

n
s

þ
Xr1

s¼1
C2sls þ Opðn�1=2hn þ h n2hq1

	 
�1=2Þ:

j

Lemma B.3.

(i) A2n ¼
def

n�1
P

iðm̂i � miÞ
2 ¼ Opðh2n þ h2 nhq1ð Þ�1Þ.

(ii) A3n ¼
def

n�1
P

i v̂2
i ¼ Opð nhq1ð Þ�1Þ.

(iii) A4n ¼
def

n�1
P

iðm̂i � miÞv̂i ¼ Opðh2n þ nhq1ð Þ�1Þ.

(iv) A5n ¼
def

n�1
P

iðt̂i � miÞ
2 ¼ Opðh2n þ nhq1ð Þ�1Þ.

Proof of (i). Using (A.18), we have A2n [ n�1
P

iðm̂i �
miÞ

2 f̂
2

i = f̂
2

i ¼ n�1
P

iðm̂i � miÞ
2 f̂

2

i =f 2
i þ ðs:o:Þ. Also, since f(x)

is bounded below by a positive constant, we only need to prove

(i) for A2n;1 ¼
def

n�1
P

iðm̂i � miÞ
2 f̂

2

i . Observe that

E½jA2n;1j� ¼ E½ðm̂1 � m1Þ
2 f̂

2

1�

¼ 1

ðn� 1Þ2
Xn

i6¼1

Xn

j 6¼1

E ðmi � m1ÞKg;i;1ðmj � m1ÞKg;j;1

� �

¼ 1

ðn� 1Þ2

ðn� 1ÞE½ðmi � m1Þ

2K2
n;i;1�

þ ðn� 1Þðn� 2ÞE½ðm2 � m1ÞKg;2;1�E½ðm3 � m1ÞKg;3;1�
�

¼ Oðh2ðnhq1Þ�1Þ þ Oðh2nÞ

by Lemma B.1, where we used E½ðmi � m1Þ
2K2

n;i;1� ¼ Oððh2þPr1

s¼1 lsÞh�q1Þ ¼ O ðh2 þ hnÞh�q1
	 


¼ O h2h�q1
	 


, because

lj ¼ O hnð Þ and n $ 2. Thus, A2n;1 ¼ Opðh2 nhq1ð Þ�1Þþ O h2n
	 


.

j

Proof of (ii). Similarly, by (A.18), we have A3n [ n�1
Pn

i¼1

v̂2
i f̂

2

i = f̂
2

i ¼ n�1
Pn

i¼1 v̂2
i f̂

2

i = f 2
i þ (s.o.). We only need to

prove (ii) for A3n;1 ¼ n�1
P

i ê2
i f̂

2

i (since fi
�1 is bounded). Note

that

E jA3n;1 j
� �

¼ E v̂2
1 f̂

2

1

h i

¼ 1

ðn� 1Þ2
XE

i6¼1

½v2
i K2

g;i;1�

¼ 1

n� 1
E½v2

2K2
g;2;1� ¼ Oððnhq1Þ�1Þ: j

Proof of (iii). (iii) follows from (i) and (ii) and the Cauchy
inequality. j

Proof of (iv). Finally, (iv) follows from (i)–(iii), because
ðt̂i � miÞ

2 ¼ ðm̂i � miÞ
2 þ v̂2

i þ 2ðm̂i � miÞv̂iðt̂i ¼ m̂i þ ŷiÞ. j

Lemma B.4. Let Hn,a(zi, zj) and Hn,b(zi, zj) be defined as in
Lemmas A.1 and A.4, respectively. Recalling that Ai ¼ Bi þ
(s.o.) means that n�1=2

Pn
i¼1 Ai ¼ n�1=2

Pn
i¼1 Bi þ ðs:o:Þ, then

we have

(i) H1n;aðziÞ ¼
def

E½Hn;aðzi; zjÞ jzi� ¼ tif2mi � 1g=wi þ ðs:o:Þ;

(ii) H1n;bðziÞ ¼
def

E½Hn;bðzi; zjÞ jzi� ¼ ðg0i þ timiÞ=wi þ ðs:o:Þ.

Proof of (i). Hn,a(zi, zj) ¼ (1/2){yivivj(2mi � 1)/( fiwi
2) þ

yjvivj(2mj� 1)/(fjwj
2)}Kg,ij, where zi¼ (xi, ti, ui). By noting that

mi, wi, fig0i, and ti are all functions of xi and that E(vi|xi) ¼ 0,
we have

E yivivjð2mi � 1ÞKg;ij=ð f iw
2
i Þ jzi

� �
¼ yivið2mi � 1Þðf iw

2
i Þ
�1E E½vjKg;ij j xj; zi�j zi

 �
¼ 0:

Also, using yj ¼ g0j þ tjtj þ uj ¼ g0j þ tj(mj þ vj) þ uj, and
E(vj|xj) ¼ 0, we have

H1n;aðziÞ ¼E½Hn;aðzi; zjÞ j zi�

¼ ð1=2Þ


0þ 2viE
�
vjyjmjKg;ij=ð f jw

2
j Þ j zi�

� viE½vjyjKg;ij=ð f jw
2
j Þ j zi

�
¼ð1=2Þ


2viE½v2

j tjmjKg;ij=ð f jw
2
j Þ j zi�

� viE½v2
j tjKg;ij=ð f jw

2
j Þjzi�

�
¼ð1=2Þvi


2E½tjmjKg;ij=ð f jwjÞ j zi�

� E½tjKg;ij=ð f jwjÞ j zi�
�

3 ðbecause Eðv2
j j xjÞ ¼ varðtj j xjÞ ¼ wjÞ

¼ ð1=2Þvitif2mi � 1g=wi þ ðs:o:Þ;

where we have used the change-of-variable argument: E tjKg

�
ððxi � xjÞ=hÞ=ð f jwjÞ�jzi� ¼ ti þ O hn þ lð Þ and E tjmjKg

�
ððxi � xjÞ=hÞ=ð f jwjÞ�jzi� ¼ timi þ O hn þ lð Þ. j
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Proof of (ii). Note that Hn,b(zi, zj) ¼ (1/2){vjyi/(fiwi) þ
viyj/( fjwj)}Kg,ij, and zi ¼ (xi, ti, ui). By noting that E(vi|xi) ¼ 0,
we have

H1n;bðziÞ ¼ E Hn;bðzi; zjÞ j zi

� �
¼ ð1=2Þ 0þ viE yjKg;ij=ðf jwjÞ j zi

� � �
¼ ð1=2ÞviE g0jþtjðmjþvjÞ þ uj

	 

Kg;ij=ðf jwjÞ j zi

� � �
¼ ð1=2ÞviE ½ðg0j þ tjmjÞKg;ij=ðf jwjÞ j zi�

 �
¼ ð1=2Þviðg0i þ timiÞ=wi þ ðs:o:Þ

by the change-of-variable argument. j

APPENDIX C: PROOF OF THEOREM 2.2

First, we introduce some notation. We will write An ¼ o�p
(1) if, for all e > 0, P*(|An| > e) [ P(|An| > e|{yi, xi, ti}i¼1

n ) ¼
op(1) (it is o(1) in probability, not necessarily o(1) almost
surely). We will use the short-hand notation t̂

�
i ¼ t̂

�
�iðx�i Þ and

f̂
�
i ¼ f̂

�
�iðx�i Þ; i.e.,

t̂
�
i ¼ n�1

Xn

j6¼i

t�j K�n;ij=f̂
�
i ; ðC:1Þ

with f̂
�
i [ f̂

�
�iðx�i Þ ¼ n�1

Pn
j6¼i K�n;ij and Kn,i

�
j¼ Kn(x�i , x�j ) ¼

Whðxc�
j ; x

c�
j ÞLðxd�

i ; x
d�
j ; lÞ:

Defining v�i ¼ t�i � Eðt�i jx�i Þ[ t�i � m�i ðm�i ¼ mðx�i ÞÞ; so that
t�i ¼ m�i þ v�i , and replacing t�j by m�j þ v�j in the right-hand-
side of (C.1), we have

t̂
�
i ¼ m̂�i þ v̂�i ; ðC:2Þ

where m̂�i ¼ n�1
Pn

j6¼i m�j K�n;ij=f̂
�
i , and v̂�i ¼ n�1

Pn
j 6¼i v�j

K�n;ij=f̂
�
i .

We use the short-hand notation wi* and ~w�i defined by

w�i ¼ m�i ð1� m�i Þ and ~w�i ¼ t̂
�
i ð1� t̂

�
i Þ: ðC:3Þ

Then, we have

t̂� ¼ 1

n

Xn

i¼1

ðt�i � t̂
�
i Þy�i

~w�i
: ðC:4Þ

We use the following identities to handle the random
denominator of t̂�:

1

~w�i
¼ 1

w�i
þ w�i � ~w�i

w�2i

þ ðw
�
i � ~w�i Þ

2

w�2i ~w�i
: ðC:5Þ

Proof of Theorem 2.2. Similar to the proof of Theorem
2.1, define ~t� and �t� by

~t� ¼ 1

n

Xn

i¼1

ðt�i � t̂
�
i Þy�i

m�i ð1� m�i Þ
; ðC:6Þ

and (vi* ¼ ti* � mi*)

�t� ¼def 1

n

Xn

i¼1

ðt�i � m�i Þy�i
w�i

[
1

n

Xn

i¼1

v�i y�i
w�i

: ðC:7Þ

By adding and subtracting terms in
ffiffiffi
n
p
ðt̂� � tÞ, we obtain

ffiffiffi
n
p
ðt̂� � tÞ ¼

ffiffiffi
n
p
½ðt̂� � ~t�Þ þ ð~t� � �t�Þ þ ð�t� � tÞ�

¼ J�1n þ J�2n þ J�3n;
ðC:8Þ

where J�1n ¼
ffiffiffi
n
p
ðt̂� � ~t�Þ; J�2n ¼

ffiffiffi
n
p
ð~t� � �t�Þ, and J�3n ¼ffiffiffi

n
p
ð�t� � tÞ.

Lemma C.4, as discussed subsequently, gives the leading
terms of J�2n. Recall that w�i ¼ m�i ð1� m�i Þ, and ~w�i ¼
t̂
�
i ð1� t̂

�
i Þ. Using (C.5), from (C.4), we obtain

t̂� ¼ 1

n

Xn

i¼1

t�i � t̂
�
i

� �
y�i

1

w�i
þ w�i � ~w�i

w�2i

þ ðw
�
i � ~wiÞ�2

w�2i ~w�i

" #

[ L�1n þ L�2n þ L�3n;

ðC:9Þ

where L�1n ¼ n�1
Pn

i¼1½ðt�i � t̂
�
i Þy�i �=w�i , L�2n ¼ n�1

Pn
i¼1

½ðt�i � t̂
�
i Þðw�i � ~w�i Þy�i �=w�2i , and L�3n ¼ n�1

Pn
i¼1½ðt�i � t̂

�
i Þ

ðw�i � ~wiÞ�2y�i �=½w�2i ~w�i �.

Note that L�1n ¼ ~t�, therefore, by (C.9) we have

J�1n[
ffiffiffi
n
p
ðt̂� � ~t�Þ ¼

ffiffiffi
n
p
ðt̂� � L�1nÞ

¼
ffiffiffi
n
p

L�2n þ
ffiffiffi
n
p

L�3n: ðC:10Þ

Lemma C.3, as discussed subsequently, gives the leading
term of J�1n .Using (C.8) and adding and subtracting terms, we
write J�3n ¼

ffiffiffi
n
p
ð�t� � t�Þ as

J�3n ¼ n�1=2
Xn

i¼1

v�i y�i =w�i � t
� �

¼ n�1=2
Xn

i¼1

ðv�i y�i =w�i � t�i Þ

þ n�1=2
Xn

i¼1

ðt�i � tÞ

¼ n�1=2
Xn

i¼1

½v�i ðg�0i þ t�i t�i þ u�i Þ=w�i � t�i �

þ n�1=2
Xn

i¼1

ðt�i � tÞ:

ðC:11Þ

By (C.11), Lemma C.3, and Lemma C.4, we obtain from
(C.8) thatffiffiffi

n
p
ðt̂� � t � B̂

�
h;lÞ

¼ J�1n þ J�2n � n1=2B̂
�
h;l þ J�3n

¼ n�1=2
Xn

i¼1

v�i ½2m�i � 1�t�i =w�i � n�1=2

3
Xn

i¼1

v�i ðg�0i þ t�i miÞ
�=w�i þ n�1=2

3
Xn

i¼1

fv�i ðg�0i þ t�i t�i þ u�i Þ=w�i � t�i g þ n�1=2

3
Xn

i¼1

ðt�i � tÞ þ o�pð1Þ ¼ n�1=2

3
Xn

i¼1

v�i u�i
w�i
þ n�1=2

Xn

i¼1

ðt�i � tÞ þ o�pð1Þ

[ Z�n2 þ Z�n3 þ o�pð1Þ;
ðC:12Þ
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where Z�n2 ¼ n�1=2
Pn

i¼1 v�i u�i =w�i and Z�n3 ¼ n�1=2
Pn

i¼1

ðt�i � tÞ.
Note that E�ðZ�n2Þ ¼ n�1=2

P
i viui=wi ¼ Zn2, and E�ðZ�n3Þ ¼

n�1=2
P

iðti � tÞ ¼ Zn3 . Hence, from (C.12), we obtain

E�f
ffiffiffi
n
p
½t̂� � t � B̂

�
h;l�g ¼ Zn2 þ Zn3 þ opð1Þ

¼
ffiffiffi
n
p

t̂ � t � B̂h;l

	 

þ opð1Þ; ðC:13Þ

where the last equality follows from (A.15).
It can be shown that

ffiffiffi
n
p
½B̂�h;l � B̂h;l� ¼ opð1Þ. This is

because
ffiffiffi
n
p
½B̂h;l � Bh;l� ¼ opð1Þ,

ffiffiffi
n
p
½B̂�h;l � ~Bh;l� ¼ opð1Þ,

and
ffiffiffi
n
p
½ ~Bh;l � Bh;l� ¼ opð1Þ, where ~Bh;l is defined in Lemma

C.4. Then, from (C.13), we immediately have that

E�½
ffiffiffi
n
p
ðt̂� � t̂ � B̂

�
h;lÞ� ¼ E�ðZ�n2 þ Z�n3Þ þ opð1Þ ¼ opð1Þ:

ðC:14Þ

Note that var�ðZ�n2Þ ¼ var�ðn�1=2
P

i u�i v�i =w�i Þ ¼ n�1P
i var�ðu�i v�i =w�i Þ ¼ n�1

P
i½u2

i v2
i =w2

i � � ½n�1
P

i uiyi=wi�2 ¼
V̂2 þ opð1Þ. Similarly, var�ðZ�n3Þ ¼ V̂3þ opð1Þ. Hence, we have

var�ð
ffiffiffi
n
p
ðt̂� � t̂ � B̂

�
h;lÞÞ

¼ var�ðZ�n2 þ Z�n3Þ þ opð1Þ ¼ V̂1 þ V̂2 þ opð1Þ: ðC:15Þ

Equations (C.14) and (C.15) state that, conditional on the
random sample Zn;

ffiffiffi
n
p
ðt̂� � t̂ � B̂

�
h;lÞ has mean op(1) and

variance V̂1 þ V̂2 þ opð1Þ. By taking the limit of n ! ‘, we
know that ðV̂1 þ V̂2Þ�1=2 ffiffiffi

n
p
ðt̂� � t̂ � B̂

�
h;lÞ has asymptotic

mean zero and unit variance. It can also be shown that the
conditions of the Liapunov (triangular array) central limit
theorem hold for the leading terms of Z�n2and Z�n3. Hence, we
know, for any z 2 R, that

Pr½
ffiffiffi
n
p
ðt̂� � t̂ � B̂

�
h;lÞ< zjZn� �FðzÞ

��� ��� ¼ opð1Þ;

where F(�) is the CDF for the standard normal distribution. j

Subsequently, we present some lemmas that are used in
proving Theorem 2.2. The same identity is used to handle the
random denominator in the kernel estimator; i.e., for any
positive integer p, we have

1

f̂
�
i

¼ 1

f �i
þ f �i � f̂

�
i

f �i f̂
�
i

¼ 1

f �i
þ
Xp

l¼1

ðf �i � f̂
�
i Þ

l

f �;lþ1
i

þ ðf
�
i � f̂

�
i Þ

pþ1

f �;pi f̂
�
i

: ðC:16Þ

Lemma C.1.

L�2n ¼ n�1
X

i
v�i ð2m�i � 1Þt�i =w�i þ o�p n�1=2

� �
:

Proof. Recall that w�i¼ m�i (1 � m�i ), ~w�i ¼ t̂
�
i ð1� t̂

�
i Þ, t�i¼

m�iþ v�i v, and t̂
�
i ¼ m̂�i þ v̂�i . Then, by exactly the same argu-

ments as we used in proving Lemma A.1 and using Lemma
C.6, we have

L�2n ¼ n�1
Xn

i¼1

y�i ðt�i � t̂�i Þ m�i � t̂�i � ðm�2i � t̂�2i Þ
� �

=w�2i

¼ n�1
Xn

i¼1

y�i ðm�i � m̂�i þ v�i � v̂�i Þðm�i � m̂�i � v̂�i Þ

3 1� ðm�i þ m̂�i þ v̂�i Þ
� �

=w�2i

¼ �n�1
Xn

i¼1

y�i v�i v̂�i 1� 2m�i
� �

=w�2i þ o�pðn�1=2Þ

¼ 1

nðn� 1Þ
Xn

i¼1

Xn

j 6¼i

y�i v�i v�j ð2m�i � 1ÞK�n;ij=ðf �i w�2i Þ

þ o�p
	
n�1=2



¼ 1

2nðn� 1Þ
Xn

i¼1

Xn

j 6¼i

v�i v�j

3
y�i ð2m�i � 1Þ

f �i w�2i

þ
y�j ð2m�j � 1Þ

f �j w�2j

" #
K�n;ij þ o�pðn�1=2Þ

¼ 1

n

Xn

i¼1

t�i v�i ð2m�i � 1Þ=w�i þ o�p
	
n�1=2



;

where the last equality follows from a u statistic H decom-
position. Because for j 6¼ iðKn;i�j ¼ KnðX�i ;XjÞÞ,

E�½v�i v�j y�j ð2m�j � 1ÞK�n;ij=ðf �i w�2i Þjz�i �

¼ v�i
1

n

X
j

vjyjð2mj � 1ÞKn;i�j=ðf jw
2
j Þ

¼ v�i
1

n

X
j

tjv
2
j ð2mj � 1ÞKn;i�j=ðf jw

2
j Þ þ ðs:o:Þ

¼ v�i E tjv
2
j ð2mj � 1Þ=ðw2

j Þjxj ¼ x�i

� �
þ ðs:o:Þ

¼ v�i t�i ð2m�i � 1Þ=w�i þ ðs:o:Þ;

while

E�½v�i v�j y�i ð2m�i � 1ÞK�n;ij=ðf �i w�2i Þjz�i �

¼ v�i y�i ð2m�i � 1ÞK�n;ij=ðf �i w�2i ÞE�ðv�j jz�i Þ

¼ v�i y�i ð2m�i � 1ÞK�n;ij=ðf �i w�2i Þ n�1
X

j

vjKn;i�j

" #
;

which has an order smaller than v�i t�i ð2m�i � 1Þ=w�i , because
n�1

P
j vjKn;i�j ¼ Opð nhq1ð Þ�1Þ. j

Lemma C.2.

L�3n ¼ Op

	
h2n þ h2ðnhq1Þ�1
 ¼ op

	
n�1=2



:

The proof follows from similar arguments as in the proof of
Lemma A.2 and is thus omitted here.

Lemma C.3.

J�1n ¼ n�1=2
X

i
v�i ð2m�i � 1Þt�i =w�i þ opð1Þ:
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Proof. Note that J�1n ¼
ffiffiffi
n
p

L�2n þ
ffiffiffi
n
p

L�3n. Lemma C.2
follows from Lemmas C.1 and C.2.

Lemma C.4.

J�2n ¼
ffiffiffi
n
p

B̂h;l �
1ffiffiffi
n
p
Xn

i¼1

v�i ðg�0i þ t�i m�i Þ=w�i þ opð1Þ:

Proof. Using t̂�i ¼ m̂�i þ v̂�i , we have
J�2n ¼ n�1=2

Pn
i¼1 ðm�i � t̂�i Þy�i =w�i ¼ n�1=2

Pn
i¼1ðm�i � m̂�i Þ

y�i =w�i � n�1=2
Pn

i¼1 v̂�i y�i =w�i [ J�2n;1 � J�2n;2.
We consider J�2n;1 first.

E�ðJ�2n;1Þ ¼ n�3=2
Xn

i¼1

Xn

j6¼i

ðmi � mjÞyiKn;ij=wi ¼
ffiffiffi
n
p

~Bh;l;

where ~Bh;l ¼ n�1
Pn

i¼1

Pn
j 6¼iðmi � mjÞyiKn;ij=wi. It is easy to

show that E*½ðJ�2n;1Þ
2� ¼ op(1). Hence, J�2n;1 ¼

ffiffiffi
n
p

~Bh;l þ ðs:o:Þ.
Next,

J�2n;2 ¼ n�3=2
Xn

i¼1

X
j 6¼i

v�j y�i K�n;ij=ðf �i w�i Þ þ ðs:o:Þ

¼ ð1=2Þn�3=2
X

i

X
j6¼i

y�i v�j
w�i f �i

þ
y�j v�i
w�j f �j

" #
K�n;ij

¼� 1ffiffiffi
n
p

X
i

vi
� g�0i þ t�i m�i
	 


=w�i þ ðs:o:Þ

ðC:17Þ

by the u statistic H decomposition, because

E�½y�j v�i K�n;ij=ðw�j f �j Þjz�i � ¼ v�i n�1
X
j 6¼i

ðyj=f jwjÞKn;i�j

" #

¼ v�i E yj=wjjxj ¼ x�i
� �

þ ðs:o:Þ

¼ v�i E ðg0j þ tjg1jÞ=wjjxj ¼ x�i
� �

þ ðs:o:Þ

¼ v�i ðg�0i þ t�i g�1iÞ=w�i þðs:o:Þ;

where we have used E[yj/wj|xj ¼ x�i ] ¼ ðg�0i þ t�i g�1iÞ=w�i ,
because E(vjjxj) ¼ 0 and E(ujjxj) ¼ 0.

Also, E�½y�i v�j K�n;ij=ðw�i f �i Þjz�i � ¼ ðy�i =f �i w�i Þ½n�1
P

j 6¼i vjKn;i�j�,
which has an order smaller than v�i ðg�0i þ t�1iÞ=w�i because
n�1

P
j6¼i vjKn;i�j ¼ Op

	
nhq1ð Þ�1
. j

Lemma C.5.

A�1n ¼
def

n�1
X

i

ðm�i � m̂�i Þy�i =w�i

¼ ~Bh;l þ Opðn�1=2hn þ h n2hq1
	 
�1=2Þ;

where the definition of ~Bh;l ¼ ð1=n2Þ
P

i

P
jðmi � mjÞKn;ijyi=

ðf iwiÞis given in the subsequent proof.

Proof. Using (C.16), we know that A�1n ¼ A�1n;1þ (s.o.),
where A�1n;1 ¼ n�1

P
iðm�i � m̂�i Þf̂

�
i y�i =ðw�i f �i Þ.

E�ðA�1n;1Þ ¼
1

n2

X
i

X
j

ðmi � mjÞKn;ijyi=ðf iwiÞ

¼ ~Bh;l: ðC:18Þ

By similar arguments, as in the derivation of (B.8), one can
easily show that

var�ðA�1n;1Þ ¼ Opðn�1h2n þ h2 n2hq1
	 
�1Þ: ðC:19Þ

Hence,

A�1n;1 ¼ EðA�1n;1Þ þ Op

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðA�1n;1Þ

q� �
¼ ~Bh;l þ Opðn�1=2hn þ h n2hq1

	 
�1=2Þ
:

Lemma C.6.

(i) A�2n ¼
def

n�1
P

iðm̂�i � m�i Þ
2 ¼ Opðh2n þ h2 nhq1ð Þ�1Þ.

(ii) A�3n ¼
def

n�1
P

i v̂�2i ¼ Opð nhq1ð Þ�1Þ.

(iii) A�4n ¼
def

n�1
P

iðm̂�i � m�i Þv̂i ¼ Opðh2n þ nhq1ð Þ�1Þ.

(iv) A5n ¼
def

n�1
P

iðt̂
�
i � m�i Þ

2 ¼ Opðh2n þ nhq1ð Þ�1Þ.

Proof of (i). Using (C.16), we have A�2n [ n�1
P

iðm̂�i �
m�i Þ

2 f̂
�2
i =f̂

�2
i ¼ n�1

P
iðm̂�i � m�i Þ

2: f̂
�2
i =f �2i þ ðs:o:ÞAlso, since

f(�) is bounded below by a positive constant, the leading term of

A2n* is given by A�2n;1 ¼
def

n�1
P

iðm̂�i � m�i Þ
2 f̂
�2
i . Hence

E�
���A�2n;1

��� ¼ E�½ðm̂�i � m�i Þ
2 f̂
�2
i �

¼ 1

nðn� 1Þ2
Xn

i6¼l

Xn

j 6¼l

Xn

l¼1

½ðmi � mlÞ

3Kn;ilðmj � mlÞKn;jl�

¼ 1

nðn� 1Þ2
Xn

i6¼l

Xn

l¼1

ðmi � m1Þ
2K2

n;i1

þ 1

nðn� 1Þ2
Xn

i6¼l

Xn

j6¼i;l

Xn

l¼1

ðmi � m1Þ

3ðmj � mlÞKn;ilKn;jl

¼ Op

�
h2ðnhq1Þ�1 þ h2nÞ

by Lemma B.3(i).

Proof of (ii). Similarly, by (C.16), we have A�3n[ n�1
Pn

i¼1

v̂�2i f̂
�2
i =f̂

�2
i ¼ n�1

Pn
i¼1 v̂�2i f̂

�2
i =f �2i þ ðs:o:Þ [ A�3n;1 þ ðs:o:Þ.

Hence,

E�½jA�3n;1j� ¼ E� v̂�2i f̂
�2
i

h i
¼ 1

nðn� 1Þ2
Xn

i 6¼l

Xn

j 6¼l

Xn

l¼1

vivjKn;ilKn;jl ¼ Opð nhq1ð Þ�1Þ:

Proof of (iii). (iii) follows from (i) and (ii) and the Cauchy
inequality.

Proof of (iv). Finally, (vi) follows from (i)–(iii), because
ðt̂�i � m�i Þ

2 ¼ ðm̂�i � m�i Þ
2 þ v̂�2i þ 2ðm̂�i � m�i Þv̂�i .
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