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a b s t r a c t

In this paper we consider the problem of testing for equality of two density or two conditional density
functions defined over mixed discrete and continuous variables. We smooth both the discrete and
continuous variables, with the smoothing parameters chosen via least-squares cross-validation. The test
statistics are shown to have (asymptotic) normal null distributions. However, we advocate the use of
bootstrap methods in order to better approximate their null distribution in finite-sample settings and
we provide asymptotic validity of the proposed bootstrap method. Simulations show that the proposed
tests have better power than both conventional frequency-based tests and smoothing tests based on ad
hoc smoothing parameter selection, while a demonstrative empirical application to the joint distribution
of earnings and educational attainment underscores the utility of the proposed approach in mixed data
settings.
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1. Introduction

It is difficult to think of a more ubiquitous test in applied
statistics than the test for equality of distributions and conditional
distributions, sometimes conditioned on discrete covariates.
The most popular variants are derivative since they involve
testing equality of moments, such as means and/or variances, or
perhaps quantiles. Examples include tests for ‘regime change’,
heteroskedasticity, and ‘symmetry’. Also, comparing distributions,
or reconstructing indirectly observed distributions (such as the
counter factuals in program evaluation) is implicit and ever
present in almost all statistical/econometric work. However,
moment-based tests, which only compare a finite number of
moments from two distributions, are not consistent tests. The
same can be said for parametric tests which require specification
of the null distribution. When the parametric null distribution is
misspecified, parametric tests can lead to erroneous conclusions.
Generally, interest truly lies in detecting any potential difference
between two distributions without having to specify a parametric
family, not just their means or variances. When this is the case,
nonparametric tests have obvious appeal.
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A number of kernel-based tests of equality of distribution
functions exist; however, existing kernel-based tests presume that
the underlying variable is continuous in nature; see Ahmad and van
Belle (1974), Mammen (1992), Fan and Gencay (1993), Li (1996)
and Fan and Ullah (1999), and the references therein. It is widely
known that a traditional ‘frequency-based’ kernel approach could
be used to consistently estimate a joint probability function in the
presence of mixed continuous and categorical variables, and hence
one could readily construct a kernel-based test for the equality
between two unknown density functions by simply employing the
conventional frequency kernel method. In contrast we consider
kernel ‘smoothing’ the discrete variables as well, following a
rich literature in statistics on smoothing discrete variables and
its potential benefits; see Aitchison and Aitken (1976), Hall
(1981), Grund and Hall (1993), Scott (1992), Simonoff (1996), Li
and Racine (2003) and Hall et al. (2004, 2007), among others.
Though smoothing discrete variables in an appropriate manner
may introduce some finite-sample bias, it simultaneously reduces
finite-sample variance substantially, and leads to a reduction
in the finite-sample mean square error of the nonparametric
estimator relative to the frequency-based estimator. It turns
out that, for testing purposes, this is also highly desirable. The
tests developed herein are extensions of existing frequency-based
‘smooth’ kernel tests. ‘Non-smooth’ (i.e., empirical cumulative
distribution function (CDF)) tests of distributional differences have
recently been examined and reviewed in Anderson (2001).
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In this paper we first propose a kernel-based test for equality
of distributions mounted on a square integral metric defined over
mixed continuous/discrete variables. We then extend our result to
the case of testing the equality of two conditional distributions.
Conditional distributions, such as that of earnings given gender,
age or education categories, are often themain targets of inference
and policy analysis. As an alternative to our approach in this
paper, entropy metrics have been used for testing equality of
distributions, or hypotheses which may be cast as such. For a
pioneering paper see Robinson (1991), as well as Hong and White
(2005), Ahmad and Li (1997) and Racine and Maasoumi (2007).
We use data-driven bandwidth selection methods, smooth both
the continuous and discrete variables in a particular manner,
and advocate a resampling method for obtaining the statistic’s
null distribution, though we also provide its limiting (asymptotic)
null distribution and prove that the bootstrap works. It is well
known that the selection of smoothing parameters is of crucial
importance in nonparametric estimation, and it is now known
that the selection of smoothing parameters also affects the power
of nonparametric tests such as ours. When discrete variables
are present, cross-validation has been shown to be an effective
method of smoothing parameter selection. Not only is there
a large sample optimality property associated with minimizing
estimation mean square error, but we also avoid sample splitting
in small sample applications. When one smooths both the discrete
and continuous variables, cross-validation seems to be the only
feasible way of selecting the smoothing parameters. Configuring
plug-in rules for mixed data is an algebraically tedious task, and no
general formulae are yet available. Additionally, plug-in rules, even
after adaption to mixed data, require choice of ‘pilot’ smoothing
parameters, and it is not clear how to best make that selection
when both continuous and discrete variables are involved.
We believe the improved power of the proposed tests is partly

due to smoothing over discrete variables. Heuristically, this type
smoothing is equivalent to endowing ‘‘degrees of likelihood’’ to
the set of potential values for a discrete variable. For a Bayesian
interpretation see Kiefer and Racine (2008). This additional
information increases power.
The paper is organized as follows. Section 2 presents a test

for the equality of two unconditional distribution functions and
examines the asymptotic distribution of the test statistic, Section 3
proposes a test for the equality of two conditional density
functions, Section 4presents two simulation experiments designed
to assess the finite-sample performance of the estimator, while
Section 5 presents a demonstrative empirical application that tests
for differences in the joint distribution of earnings and educational
attainment over time. Section 6 concludes, and all proofs are
relegated to the Appendix.

2. A nonparametric test for the equality of unconditional
density functions with mixed categorical and continuous data

2.1. Testing the equality of two density functions

We consider the case where we are faced with a mixture of
discrete and continuous data. Let X = (X c, Xd) ∈ Rq × Sr ,
where X c is the continuous variable having dimension q, and Xd
is the discrete variable having dimension r . Let xds and X

d
is denote

the sth components of xd and Xdi respectively. Following Aitchison
and Aitken (1976), for xs, Xdis ∈ Srs = {a1, a2, . . . , acs} (x

d
s

takes cs different values) so that Xd assumes values in Sr =∏r
s=1{a1, a2, . . . , acs}. Similarly, Y = (Y

c, Y d), which has the same
dimension as X . Let f (·) and g(·) denote the density functions of
X and Y , respectively, and let {Xi}

n1
i=1 and {Yi}

n2
i=1 be i.i.d. random
draws from populations having density functions f (·) and g(·),
respectively.1We are interested in testing the null hypothesis that

H0: f (x) = g(x) for xd ∈ Sr and for almost all xc ∈ Rq

against the alternative hypothesis H1 that f (x) 6= g(x) for some
xd ∈ Sr or for some xc on a set with positive measure. We first
discuss how to estimate f (·) and g(·) and then outline the test
statistic. We define a univariate kernel function

l(Xdis, x
d
s , λs) =

{
1− λs if Xdis = x

d
s ,

λs/(cs − 1) if Xdis 6= x
d
s ,

(2.1)

where the range of the smoothing parameter λs is [0, (cs − 1)/cs].
Note that when λs = 0, l(Xdis, x

d
s , 0) = I(Xdis = xds ) becomes

an indicator function. We shall use I(·) to denote an indicator
function, i.e., I(A) = 1 if the event A holds true, otherwise I(A) = 0.
Observe that if λs = (cs − 1)/cs, then l(Xdis, x

d
s ,
cs−1
cs
) = 1/cs which

is a constant for all values of Xdis and x
d
s .

A product kernel function for the discrete variable components
xd is given by

Lλ,xi,x =
r∏
t=1

l(Xdis, x
d
s , λs) =

r∏
s=1

{λs/(cs − 1)}
I
xdis 6=x

d
s (1− λs)

I
xdis=x

d
s ,

(2.2)

where Ixdis 6=xds = I(X
d
is 6= x

d
s ) and Ixdis=xds = I(X

d
is = x

d
s ). Here I(A)

is an indicator function which takes value one if A holds true, zero
otherwise.
Let w

(
Xcis−x

c
s

hs

)
be a univariate kernel function associated

with the continuous variable xcs , where hs is the associated
smoothing parameter. The product kernel for the continuous
variable components xc is given byWh,xi,x =

∏q
s=1 h

−1
s w

(
Xcis−x

c
s

hs

)
.

The ‘generalized’ product kernel defined over both discrete and
continuous variables is given by

Kγ ,xi,x = Wh,xi,xLλ,xi,x, (2.3)

where γ = (h, λ). We estimate the density functions f (x) and g(x)
by

f̂ (x) =
1
n1

n1∑
i=1

Kγ ,xi,x and ĝ(x) =
1
n2

n2∑
i=1

Kγ ,yi,x. (2.4)

A test statistic can be constructed based on the integrated
squared density difference given by I =

∫
[f (x) − g(x)]2dx =∫

[f (x)dF(x) + g(x)dG(x) − f (x)dG(x) − g(x)dF(x)], where F(·)
and G(·) are the cumulative distribution functions for X and Y ,
respectively, and where

∫
dx =

∑
xd∈Sd

∫
dxc . Replacing f (·) and

g(·) by their kernel estimates, and replacing F(·) and G(·) by
their empirical distribution functions, we obtain the following test
statistic,

Ian =
1
n1

n1∑
i=1

f̂ (Xi)+
1
n2

n2∑
i=1

ĝ(Yi)−
1
n1

n1∑
i=1

ĝ(Xi)−
1
n2

n2∑
i=1

f̂ (Yi)

=
1
n21

n1∑
i=1

n1∑
j=1

Kγ ,xi,xj +
1
n22

n2∑
i=1

n2∑
j=1

Kγ ,yi,yj

−
1
n1n2

[
n1∑
i=1

n2∑
j=1

Kγ ,xi,yj +
n2∑
i=1

n1∑
j=1

Kγ ,xj,yi

]
. (2.5)

1 For what follows, when we consider a distribution defined over mixed
continuous and discrete variables, we shall use the word ‘density’ to mean that,
for any given value of xd ∈ Sr , f (xc , xd) is absolutely continuous with respect to xc .
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It can be shown that the test statistic Ian has a non-zero center
term, say cn, even under the null hypothesis. Li (1996) proposed a
center-free test statistic which is obtained by removing the i = j
terms in the double summations appearing in Ian . However, this
causes a new problem in that the test (with i = j terms removed)
depends on the ordering of the data. To see this, note that the i = j
terms in the third term of Ian is

∑min{n1,n2}
i=1 Kγ ,xi,yi , which depends

on how one orders the data {Xi}
n1
i=1 and {Yi}

n2
i=1. Below we propose

a test statistic which does not have a non-zero center term (under
H0) and is also invariant to the ordering of the data. The test statistic
we propose is given by

In =
1

n1(n1 − 1)

n1∑
i=1

n1∑
j6=i

Kγ ,xi,xj +
1

n2(n2 − 1)

n2∑
i=1

n2∑
j6=i

Kγ ,yi,yj

−
1
n1n2

[
n1∑
i=1

n2∑
j=i

Kγ ,xi,yj +
n2∑
i=1

n1∑
j=1

Kγ ,xj,yi

]
. (2.6)

Note that the double summation of the first two terms of In
removes the i = j terms, while the third term in In does not
remove the i = j terms. Clearly, the test statistic In is invariant
to the ordering of the data because the terms removed from Ian
(i.e.,

∑n1
i=1 Kγ ,xi,xj and

∑n2
i=1 Kγ ,yi,yj ) are both invariant with respect

to the ordering of the data. We will show in Theorem 2.1 that In is
an asymptotic zero mean test statistic (under H0).
The following conditions will be used to derive the asymptotic

distribution of In.
(C1) The data {Xi}

n1
i=1 and {Yi}

n2
i=1 are independent and identically

distributed (i.i.d.) as X and Y respectively.
(C2) For all xd ∈ Sr , f (·, xd) and g(·, xd) are bounded (fromabove

by some positive constants) and continuous functions (continuous
with respect to xc). The kernel function w(·) is a bounded, non-
negative second order kernel,

∫
w(v)v4dv is finite, and it satisfies

a Lipschitz condition: |w(u)− w(v)| ≤ ξ(v)|u− v|, where ξ(·) is
a bounded smooth function with

∫
ξ(v)v4dv <∞.

(C3) Letting δn = n1/n2, then as n = min{n1, n2} → ∞,
δn → δ ∈ (0, 1), nh1 . . . hq → ∞, hs → 0 for s = 1, . . . , q
and λs → 0 for s = 1, . . . , r .
Note that in (C1) we assume that Xi (Yi) is independent of Xj

(Yj) for j 6= i. When n1 = n2 = n, however, we allow for the
possibility that Xi and Yi are correlated, as would be the case in
panel or longitudinal settings where we have repeated measures
on individuals. The i.i.d. assumption can be relaxed to weakly
dependent (β-mixing) data processes, in which case one needs to
apply the central limit theorem (CLT) for degenerate U-statistics
with weakly dependent data as given in Fan and Li (1999) in order
to derive the asymptotic distribution of the test statistic. Of course,
with dependent data, the bootstrap procedure (see Theorem 2.3)
will also need to be modified; block or stationary bootstrapping or
subsamplingmethods would be appropriate. In the remaining part
of this paper, we will only consider i.i.d. data as stated in (C1).
The other conditions under which Theorem 2.1 holds are quite

weak. (C2) only requires that f (·) and g(·) are bounded and
continuous, and (C3) is the minimum condition placed upon the
smoothing parameters required for consistent estimation of f (·)
and g(·). In addition, (C3) requires that the two sample sizes have
the same order of magnitude.
The following theorem provides the asymptotic null distribu-

tion of the test statistic In.

Theorem 2.1. Assuming that conditions (C1) through (C3) hold, we
have, under H0, that

Tn = (n1n2 . . . hq)1/2In/σn → N(0, 1) in distribution,
where

σ 2n = 2(n1n2h1 . . . hq)

[
1

n21(n1 − 1)2

n1∑
i=1

n1∑
j6=i

(Kγ ,xi,xj)
2

+
1

n22(n2 − 1)2

n2∑
i=1

n2∑
j6=i

(Kγ ,yi,yj)
2

+
1
n21n

2
2

n1∑
i=1

n2∑
j=1

(Kγ ,xi,yj)
2
+

1
n21n

2
2

n2∑
i=1

n1∑
j=1

(Kγ ,xj,yi)
2

]
,

which is a consistent estimator of σ 20 = 2[δ−1 + δ + 2]
[E[f (Xi)]][

∫
W 2(v)dv], the asymptotic variance of (n1n2h1 . . . hq)1/2

In, where δ = limmin{n1,n2}→∞(n1/n2).

The proof of Theorem 2.1 is given in the Appendix.
It can also be shown that, when H0 is false, the test statistic Tn

will diverge to+∞ at the rate of (n1n2h1 . . . hq)1/2. To see this, note
that whenH0 is false, one can show that In →

∫
[f (x)−g(x)]2dx ≡

C > 0 (in probability), and that σn = Op(1). Hence, Tn will
diverge to +∞ at the rate of (n1n2h1 . . . hq)1/2, and therefore it is
a consistent test.
It is well known that the selection of smoothing parameters is

of crucial importance in nonparametric estimation, and it is now
known that the selection of smoothing parameters also affects
the performance (particularly the power) of nonparametric tests
such as the In test. Given the reasons outlined in the introduction
as to why cross-validation methods seem to be the only feasible
way of selecting the smoothing parameters in the presence of
mixed discrete and continuous variables, we suggest using cross-
validation methods for selecting (h, λ).
The cross-validation method we consider involves selecting

smoothing parameters by minimizing a sample analogue of the
integrated square error (ISE) of the density estimator. The ISE is

defined by ISE =
∫ [
f̂ (x)− f (x)

]2
dx =

∫
f̂ (x)2dx−2

∫
f̂ (x)f (x)+∫

f (x)2, where
∫
dx =

∑
xd
∫
dxc . The third term on the right-

hand-side of ISE does not depend on the smoothing parameters.
Therefore, in practice one chooses the smoothing parameters to
minimize an estimator of

∫
f̂ (x)2dx − 2

∫
f̂ (x)f (x). Let {Zi}Ni=1

denote the pooled sample (N = n1+n2), i.e., Zi = Xi for 1 ≤ i ≤ n1
and Zn1+i = Yi for 1 ≤ i ≤ n2. Let f̃ (Zi) = (N−1)

−1∑N
j6=i Kγ ,zi,zj be

the leave-one-out estimator of f (Zi). Then
∫
f̂ (x)2dx−2

∫
f̂ (x)f (x)

can be consistently estimated by the following cross-validation
function:

CV (h, λ) =
1
N2

N∑
i=1

N∑
j=1

K̄γ ,zi,zj −
2

N(N − 1)

N∑
i=1

N∑
j6=i

Kγ ,zi,zj , (2.7)

where Kγ ,zi,zj = Wh,zi,zjLλ,zi,zj , and K̄γ ,zi,zj = W̄h,ijL̄λ,ij, W̄h,ij =∫
Wh,zi,zWh,zj,zdz and L̄λ,ij =

∑
z∈Sr Lλ,z,ziLλ,z,zj . It can be shown

that W̄h,xi,xj =
∏q
s=1 h

−1
s w̄((Xis − Xjs)/hs), where w̄(v) =∫

w(u)w(v−u)du is the two-fold convolution kernel derived from
w(·), which is also a standard second order kernel function. For
example, if w(v) = e−v

2/2/
√
2π , i.e., a standard normal kernel,

then w̄(v) = e−v
2/4/
√
4π , a normal kernel with mean zero and

variance two, which follows from the fact that two independent
N(0, 1) random variables sum to a N(0, 2) random variable.
Therefore, we select the smoothing parameters by minimizing the
CV function defined in (2.7).
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Letting (ĥ1, . . . , ĥq) and (λ̂1, . . . , λ̂r)denote the cross-validated
values of (h1, . . . , hq) and (λ1, . . . , λr), Li and Racine (2003)2

andOuyang et al. (2006) have proved the following,whichwe sum-
marize in a condition below for ease of reference.
(C4) ĥs/h0s − 1 → 0 in probability, and λ̂s/λ0s − 1 → 0 in

probability, where h0s = a
0
s n
−ζ , and λ0s = b

0
s n
−2ζ for some ζ > 0,

where a0s and b
0
s are some finite constants.

h0s and λ0s in (C4) above are the non-stochastic optimal
smoothing parameters thatminimize the integratedmean squared
difference

∫
E[(f̂ (z) − f (z))2]dz. To establish (C4), Li and Racine

(2003) and Ouyang et al. (2006) assumed that (i) f (x) is four times
differentiable with respect to xc ; (ii) there exists xd, zd ∈ Sr , such
that f (xc, xd) 6= f (xc, zd) for all xc in a subset of the support of
X c with positive measure; (iii) Pr(Xds = x

d
s ) is not constant for all

xds ∈ {0, 1, . . . , cs − 1}. For details on the regularity conditions
that ensure (C4) holds, see Li and Racine (2003) and Ouyang et al.
(2006).
When f (x) and g(x) have unbounded support and non-

vanishing second derivative functions with respect to xcs for all
s = 1, . . . , q, Li and Racine (2003) and Ouyang et al. (2006) show
that ζ = 1/(4+ q), i.e., ĥs = Op(n−1/(4+q)) and λ̂ = Op(n−2/(4+q)).
When the support of xc is bounded, the kernel estimator may
suffer from the boundary bias problem. However, even in this case,
the cross-validated smoothing parameters ĥs still converge to the
optimal smoothing parameter values in the sense that ĥs/h0s → 1
in probability. In fact, Stone (1984) showed that as long as the
marginal density function for Xs is bounded (for all s = 1, . . . , q),
then ĥs/h0s → 1 almost surely. However, the rate at which ĥs (or
h0s ) converges to zero may be different when the support of x

c is
bounded. For example, for the case where q = 1 and where xc

is uniformly distributed, Ouyang et al. (2006, their Lemma 3.1)
showed that ζ = 1/2 so that ĥ = Op(n−1/2). The reason why
ĥ → 0 (or ĥs/h0s → 1) in probability even when xc has bounded
support (i.e., is uniformly distributed) is as follows. Consider the
case where the support of X is [0, 1]. Then, at the boundary regions
x ∈ [0, h]∪[1−h, 1], f̂ (x)− f (x) usually does not converge to zero
in probability due to the boundary bias problem. In this case, only
when h → 0 will the integrated (mean) squared error converge
to zero since the boundary regions shrink to zero length as h→ 0.
Since ĥs asymptoticallyminimizes the integrated squared error,we
know that ĥs must converge to zero whether or not X has bounded
support.
Let T̂n (În) denote the test statistic Tn (In) but with (h, λ) being

replaced by (ĥ, λ̂), the cross-validated smoothing parameters.
The next theorem shows that the test statistic T̂n has the same
asymptotic distribution as Tn.

Theorem 2.2. Assuming that conditions (C1) through (C3) hold, then
under H0 we have

T̂n = (n1n2ĥ1 . . . ĥq)1/2 În/σ̂n → N(0, 1) in distribution,

where σ̂n is defined the same way as in σn but with (h, λ) replaced by
(ĥ, λ̂).

The proof of Theorem 2.2 is given in the Appendix.

2 Li and Racine (2003) only consider the case for which h1 = · · · = hq = h and
λ1 = · · · = λr = λ. It is straightforward to generalize the result of Li and Racine
(2003) to the vector h and λ case, and the result should be modified as given here.
2.2. Comparison with non-smoothing tests

In this section we discuss the local power property of our T̂n
test and compare it with some non-smoothing tests. For ease of
exposition we only consider the case where x (y) is a continuous
variable of dimension q.3 One class of non-smoothing tests involves
fixing the value of hs in a smoothing test, say letting hs = 1 for all
s = 1, . . . , q; see Anderson et al. (1994), Fan (1998) and Fan and Li
(2000) and the references therein. Another class of non-smoothing
tests involves testing for the equality of two CDFs. There is a rich
literature on testing the equality of two CDFs, i.e., where one tests
the null hypothesis that F(x) = G(x) for all x where F(x) and G(x)
are two unknown CDFs. Anderson et al. (1994) show that one can
set h1 = · · · = hq = 1 in the Ian test to obtain a non-smoothing test
of the form

In,h=1 =

[
n1∑
i=1

n1∑
j=1

W (Xi − Xj)
n21

+

n2∑
i=1

n2∑
j=1

W (Yi − Yj)
n22

−

n1∑
i=1

n2∑
j=1

W (Xi − Yj)
n1n2

−

n2∑
i=1

n1∑
j=1

W (Xj − Yi)
n1n2

]
, (2.8)

where W (Xi − Xj) =
∏q
s=1w(Xis − Xjs) which is obtained from

Wh,xi,xj by setting h1 = · · · = hq = 1. It can be shown that, for a
wide class of kernel functionsw(·), In,h=1 leads to a consistent test
for the null hypothesis of equality of f (x) and g(x) for almost all
x ∈ Rq. It is well known that a non-smoothing test such as In,h=1
does not have an asymptotic normal distribution. It can be shown
that
√
n1n2In,h=1 has an asymptotic weighted χ2 distribution of

the form
∑
∞

l=1 clχl(1), where the cl’s are some constants, and the
χl(1)’s are independent chi-square random variables with one
degree of freedom. The weight cl depends on the unknown density
functions f (x) and g(x). Therefore, it is impossible to tabulate this
asymptotic distribution. However, bootstrapmethodsmay be used
to approximate the null distribution of In,h=1.
One can also test the null hypothesis of equality of two

distributions based upon estimation of the unknown CDFs. For
example, a Kolmogorov-Smirnov type test can be constructed
based on supx∈Rq |F(x)− G(x)|. Let Fn1(·) and Gn2(·) be the
empirical CDFs of {Xi}

n1
i=1 and {Yi}

n2
i=1, respectively. Formally, we

have

KSn = sup
x∈Rq

∣∣∣∣∣
√
2n1n2
n1 + n2

[
1
n1

n1∑
i=1

I(Xi ≤ x)−
1
n2

n2∑
i=1

I(Yi ≤ x)

]∣∣∣∣∣ .
It is easy to check that

√
2n1n2/(n1 + n2)[Fn1(·) − Gn2(·)]

converges to a zero mean Gaussian process (under H0), say GP(·).
Then it follows from the continuous mapping theorem that KSn →
supx∈Rq |GP(x)| in distribution under H0.
A Cramer–von Mises (CM) type statistic (based on

∫
[F(x) −

G(x)]2dx) can be constructed by

CMn =
2n1n2
n1 + n2

∫ [
1
n1

n1∑
i=1

I(Xi ≤ x)−
1
n2

n2∑
i=1

I(Yi ≤ x)

]

×

[
1
n1

n1∑
j=1

I(Xj ≤ x)−
1
n2

n2∑
j=1

I(Yj ≤ x)

]
dx.

It can be shown that CMn →
∫
GP(x)2dx in distribution under

H0.

3 Adding discrete components to x (y) will require more complex notation, but
will not affect the result of the local power analysis.



190 Q. Li et al. / Journal of Econometrics 148 (2009) 186–200
We will use some bootstrap methods to approximate the
null distributions of In,h=1, KSn and CMn. A simple bootstrap
method involves resampling from the pooled sample {Zi}

n1+n2
i=1 with

replacement, where Zi = Xi for i = 1, . . . , n1, and Zn1+i = Yi
for i = 1, . . . , n2. One then uses the bootstrap sample {X∗i }

n1
i=1 =

{Z∗i }
n1
i=1, and {Y

∗

i }
n2
i=1 = {Z

∗

n1+i
}
n2
i=1 to compute I

∗

n,h=1, KS
∗
n and CM

∗
n ,

respectively.
Note that since both the KSn and the CMn tests involve indicator

functions, therefore, the sup operator in KSn can be replaced by
maximization over the n1 + n2 sample realizations as follows:

KSn = max
1≤j≤n1+n2

∣∣∣∣∣
√
2n1n2
n1 + n2

[
1
n2

n1∑
i=1

I(Xi ≤ Wj)

−
1
n2

n2∑
i=1

I(Yi ≤ Wj)

]∣∣∣∣∣ . (2.9)

Similarly, all integration required for the computation of CMn
can be computed easily leading to the following result:

CMn =
2n1n2
n1 + n2

{
1
n1n2

[
n1∑
i=1

n2∑
j=1

max{Xi, Yj}

+

n2∑
i=1

n1∑
j=1

max{Yi, Xj}

]
−
1
n21

n1∑
i=1

n1∑
j=1

max{Xi, Xj}

−
1
n22

n2∑
i=1

n2∑
j=1

max{Yi, Yj}

}
. (2.10)

We now compare the local power properties of smoothing and
non-smoothing tests. We consider two types of local alternatives.
One is a sequence of ‘regular’ or ‘Pitman’ alternatives given by

LHr : f (x) = g(x)+ αn∆(x),

where
∫
∆(x)dx = 0 and αn → 0 as n → ∞. The second is a

sequence of so-called ‘singular’ local alternatives which was first
introduced by Rosenblatt (1975) and is given by

LHs : f (x) = g(x)+ αn∆n(x),

where
∫
∆n(x)dx = 0,

∫
∆2n(x)dx → 0, and αn → 0 as

n → ∞. For example, one can have ∆n(x) =
∑p
j=1 dj((x −

lj)/βn), where p is a positive integer, l1, . . . , lp are constant vectors
in Rq, d1(·), . . . , dp(·) are bounded smooth functions satisfying∫
dj(x)dx = 0 for j = 1, . . . , p, and βn → 0 as n → ∞. Then
it is easy to see that

∫
∆n(x)2dx = O(βn) = o(1).

In finite-sample applications, the ‘singular’ alternative corre-
sponds to a ‘rapidly changing’ or a ‘high frequency’ density func-
tion. In the simulations reported in Section 4, we use somemixture
normal distributions (densities with multiple peaks) to represent
‘high frequency’ density functions.
It is well established that non-smoothing tests can detect both

the Pitman and the Rosenblatt local alternatives that approach
the null at the rate of n−1/2. In contrast, smoothing tests can
detect Pitman local alternatives converging to the null at rate
n2(h1 . . . hq)−1/4, which is slower than n−1/2 because hs → 0 for
all s = 1, . . . , q. Therefore, for Pitman local alternatives, a non-
smoothing test is asymptotically more powerful than a smoothing
test. However, it is also known that, for the class of ‘singular’
local alternatives, a smoothing test can detect local alternatives
that approach the null at a rate of o(n−1/2); see Ghosh and Huang
(1991), Fan (1998) and Fan and Li (2000). Hence, a smoothing test
is more powerful than a non-smoothing test for ‘singular’ local
alternatives. Indeed the simulation evidence reported in Fan and Li
(2000) reveals strong support for the above theoretical local power
analysis.
The existing simulation comparisons between In,h=1 and In
typically use some ad-hoc selection of h such as hs,ad-hoc =
zs,sd(n1 + n2)−1/(4+q) when computing In, where zs,sd is the sample
standard deviation of {Zis}

n1+n2
i=1 (s = 1, . . . , q). In Section 4 we

show that cross-validated (CV) selection of hs results in a test that
is often more powerful (in finite-sample applications) than either
using hs,ad-hoc or using h = 1. The superior performance of the CV-
based test arises because the CV method can automatically adapt
to the smoothness of the underlying density functions. When f (x)
(g(x)) is a relatively smooth (i.e., unimodal and slowly changing)
function of xs, the CV method will select a relatively large value
for hs; when f (x) (g(x)) is a relatively high frequency function of
xs (i.e., multimodal and peaked), the CV method will select a small
value for hs resulting in a test having high power against either low
or high frequency alternatives. The simple ad-hoc rule of selecting
hs,ad-hoc or even fixing h = 1 cannot possess such flexibility which
can harm their power as will be seen.
The CDF-based tests have local power properties similar to non-

smoothing tests In,h=1. Therefore, they are asymptotically more
powerful than a smoothing test against Pitman local alternatives,
and they may be less powerful against ‘singular’ local alternatives.
In Section 4 we report simulation results that examine the finite-
sample performance of our smoothing test versus some non-
smoothing tests including the Kolmogorov-Smirnov test and the
Cramer–von Mises test discussed above.

2.3. A bootstrap procedure

Theorems 2.1 and 2.2 show that Tn and T̂n have asymptotic
standard normal null distributions. However, existing simulation
results suggest that this limiting normal distribution is in fact a
poor approximation to the finite-sample distribution of Tn. Our
experience also shows that the same holds true for the T̂n statistic.
Therefore, in order to better approximate thenull distribution of T̂n,
in applied settings we advocate the use of the following bootstrap
procedure.
Let Zi = Xi for i = 1, . . . , n1 and Zn1+i = Yi for i =

1, . . . , n2. Randomly draw n1 observations from the pooled sample
{Zj}

n1+n2
j=1 with replacement, and call the resulting sample {X∗i }

n1
i=1;

then randomly draw another n2 observations from {Zj}
n1+n2
j=1 with

replacement, and call the resulting sample {Y ∗i }
n2
i=1. Compute the

bootstrap test statistic given by T̂ ∗n = (n1n2ĥ1 . . . ĥq)1/2 Î∗n/σ̂
∗
n ,

where Î∗n and σ̂
∗
n are defined the same way as În and σ̂n except that

Xi and Yi are replaced by X∗i and Y
∗

i , respectively. We repeat this
procedure a large number of times, say B = 399 times (Davidson
and MacKinnon, 2000), and we use the empirical distribution
of the B bootstrap statistics {T̂ ∗n,l}

B
l=1 to approximate the null

distribution of T̂n. Empirical P-values can be computed via P̂ =
B−1

∑B
l=1 I(T̂

∗

n,l > T̂n), where I(·) is an indicator function, which
is simply the proportion of resampled test statistics under the null
that are more extreme than the statistic itself.
Note that we use the same smoothing parameters (ĥ, λ̂) when

computing T̂ ∗n , i.e., we do not re cross-validate for each bootstrap
replication. Therefore, this bootstrap procedure is computationally
less costly than the computation of T̂n, which involves a cross-
validation procedure. The next theorem proves the validity of the
proposed bootstrap method.

Theorem 2.3. Define T̂ ∗n = (n1n2ĥ1 . . . ĥq)1/2 Î∗n/σ̂
∗
n . Assuming that

the same conditions given in Theorem 2.2 hold, but without imposing
the null hypothesis, then we have

sup
z∈R

∣∣∣P (T̂ ∗n ≤ z|{Xi, Yi}ni=1)− Φ(z)∣∣∣ = op(1), (2.11)

where Φ(·) is the cumulative distribution function of a standard
normal random variable.



Q. Li et al. / Journal of Econometrics 148 (2009) 186–200 191
A sketch of the proof of Theorem 2.3 is given in the Appendix.
To summarize, Theorem 2.3 states that T̂ ∗n converges to N(0, 1) in
distribution in probability.
A former wording definition of convergence in distribution in

probability can be given as follows: Let ξn denote a statistic that de-
pends on the random sample {Wi}ni=1, we say that (ξn|W1,W2, . . .)
converges to (ξ |W1,W2, . . .) in distribution in probability if for any
subsequence ξn′ , there exists a further subsequence ξn′′ such that
(ξn′′ |W1,W2, . . .) converges to (ξ |W1,W2, . . .) for almost every se-
quence (W1,W2, . . .).

3. A nonparametric test for the equality of conditional density
functions with mixed categorical and continuous data

In this section we consider the problem of testing the equality
of two conditional density functions. We will only consider the
case for which the conditioning variable is categorical in nature.
There are two reasons for this. First, technically it is difficult to
handle the continuous conditioning variable casewhen the density
function is not bounded below by a positive constant. The second
consideration is a practical one. In empirical applications it is often
the case that one is interested in knowing the distribution of a
continuous variable, say the distribution of income conditional on
a discrete variable such as a person’s gender, or perhaps their level
of education.
Given that we only consider a discrete conditioning variable in

this section, we shall employ slightly different notation for what
follows. We shall continue to use x = (xc, xd) ∈ Rq × Sr to denote
a mixture of continuous and discrete variables, and we use w to
denote the conditioning discrete variable. w can be a multivariate
discrete variable. We use Sw to denote the support of W , and we
assume that P(w) = Pr(W = w) is bounded below by a positive
constant for all w ∈ Sw . Suppose we have i.i.d data, {Xi,Ui}

n1
i=1,

which are random draws from the joint density function f (x, w)
along with i.i.d. draws of {Yi, Vi}

n2
i=1 from the joint density function

g(x, w). We use f (x|w) (g(x|w)) to denote the conditional density
function of X (Y ) conditional on U = w (V = w). We use Sw to
denote a subset of the support of w such that one is interested
testing for f (x|w) = g(x|w) for all w ∈ Sw . Formally, we want
to test the following null hypothesis.
Hc0 : f (x|w) = g(x|w) for allw ∈ Sw , xd ∈ Sr

and for almost all xc ∈ Rq, (3.12)
against the alternative hypothesis, Hc1 , that f (x|w) 6= g(x|w) on a
set with positive measure.
Define pf (w) = Pr(U = w) and pg(w) = Pr(V = w). Note that

pf (w) can differ from pg(w). For example, consider the case where
x is income andw is a dummy variable equal to one for males, zero
otherwise. Clearly the percentage of males in two populations can
differ, i.e., pf (w)may not equal pg(w).
Using f (x|w) = f (x, w)/pf (w) and g(x|w) = g(x, w)/pg(w),

we will construct a test statistic based on

J =
∑
w∈Sw

∫
[f (x|w)− g(x|w)]2dx

=

∑
w∈Sw

∫ [
f (x, w)2

pf (w)2
+
g(x, w)2

pg(w)2
−
2f (x, w)g(x, w)
pf (w)pg(w)

]
dx, (3.13)

where
∫
dx =

∑
xd∈Sr

∫
dxc .

Let Iui,w = I(Ui = w) denote an indicator functionwhich equals
one if Ui = w and zero otherwise. Ivi,w is similarly defined. We
estimate the joint density of f (x, w) and g(x, w) by

f̂ (x, w) =
1
n1

n1∑
i=1

Kγ ,xi,xIui,w, and

ĝ(x, w) =
1
n2

n2∑
i=1

Kγ ,yi,xIvi,w.

(3.14)
Also, we estimate pf (w) and pg(w) by

p̂f (w) =
1
n1

n1∑
i=1

I(Ui = w) and p̂g(w) =
1
n2

n2∑
i=1

I(Vi = w).

(3.15)

Define the leave-one-out empirical functions by Fn,−i(x) =
(n1−1)−1

∑n1
j6=i I(Xj ≤ x) andGn,−i(x) = (n2−1)

−1∑n2
j6=i I(Yj ≤ x).

Replacing f , g , pf and pg by their estimators in (3.13), and using
the short-hand notation p̂f = p̂f (w) and p̂g = p̂g(w), we obtain a
feasible test statistic given by

Jn =
∑
w∈Sw

∫ [
f̂ (x, w)
p̂2f

dFn,−i(x)+
ĝ(x, w)
p̂2g

dGn,−i(x)

−
f̂ (x, w)
p̂f p̂g

dGn(x)−
ĝ(x, w)
p̂f p̂g

dFn(x)

]

=

∑
w∈Sw

{∑
i

∑
j6=i

[
K̄γ ,xi,xj Iui,wIuj,z
n1(n1 − 1)p̂2f

+
K̄γ ,yi,yj Ivi,wIvj,w
n2(n2 − 1)p̂2g

]

−
1

n1n2p̂f p̂g

∑
i

∑
j

[
K̄γ ,xi,yj Iui,wIvj,w + K̄γ ,xj,yi Iuj,wIvi,w

]}
,

(3.16)

where K̄h,xi,yj = W̄h,xi,xL̄λ,xi,xj , and W̄h,xi,x and L̄λ,xi,xj are defined
in Section 2. Also, as in Section 2,

∑
i is

∑n1
i=1 if the summand

has (Xi,Ui) as its argument, and
∑
i is

∑n2
i=1 if the summand

has (Yi, Vi) as its argument. We choose (h1, . . . , hq, λ1, . . . , λq)
by the cross-validation method discussed in Section 2, and
we use (ĥ1, . . . , ĥq, λ̂1, . . . , λ̂q) to denote the cross-validated
smoothing parameters. We will use Ĵn to denote our test statistic
as defined in (3.16) but with (h1, . . . , hq, λ1, . . . , λq) replaced by
(ĥ1, . . . , ĥq, λ̂1, . . . , λ̂q).
We make the following additional assumption.
(C5) For all (xd, w) (xd ∈ Sr ), both f (·, xd, w) and g(·, xd, w) are

bounded (from above by some positive constants) and continuous
functions (continuous with respect to xc).
The asymptotic null distribution of our test statistic is given in

the next theorem.

Theorem 3.1. Assuming that conditions (C1)–(C5) hold, then under
Hc0 , we have

T̂n,c
def
= (n1n2ĥ1 . . . ĥq)1/2 Ĵn/σ̂n,c → N(0, 1) in distribution,

where

σ̂ 2n,c = 2(n1n2ĥ1 . . . ĥq)
∑
w∈Sw

[
n1∑
i=1

n1∑
j6=i

(K̄γ̂ ,xi,xj Iui,wIuj,w)
2

n41p̂f (w)4

+

n2∑
i=1

n2∑
j6=i

(K̄γ̂ ,yi,yj Ivi,wIvj,w)
2

n42p̂g(w)4
+

n1∑
i=1

n2∑
j=1

(K̄γ̂ ,xi,yj Iui,wIvj,w)
2

n21n
2
2p̂f (w)2p̂g(w)2

+

n2∑
i=1

n1∑
j=1

(K̄γ̂ ,xj,yi Ivi,wIuj,w)
2

n21n
2
2p̂g(w)2 f̂f (w)2

]
.

The proof of Theorem 3.1 is given in the Appendix.
In practice we recommend the use of the following bootstrap

procedure to approximate the null distribution of T̂n,c .
Let Zi = {Xi,Ui} for i = 1, . . . , n1, and Zn1+i =

{Yi, Vi} for i = 1, . . . , n2. Then randomly draw n1 observations
from the pooled sample {Zj}

n1+n2
j=1 with replacement, and call the

resulting sample {X∗i ,U
∗

i }
n1
i=1, and then randomly draw another
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n2 observations from {Zj}
n1+n2
j=1 with replacement, and call the

resulting sample {Y ∗i , V
∗

i }
n2
i=1. Compute a test statistic T̂

∗
n,c =

(n1n2ĥ1 . . . ĥq)1/2 Ĵ∗n /σ̂
∗
n,c , where Ĵ

∗
n and σ̂

∗
n,c are defined the same

way as Ĵn and σ̂n,c except that (Xi,Ui) and (Yi, Vi) are replaced by
(X∗i ,U

∗

i ) and (Y
∗

i , V
∗

i ), respectively. We repeat this procedure a
large number of times (say B = 399), and we use the empirical
distribution of the B bootstrap statistics {T̂ ∗n,c,l}

B
l=1 to approximate

the null distribution of T̂n,c .
The next theorem states that the above bootstrap method can

be used to approximate the null distribution of T̂n,c .

Theorem 3.2. Define T̂ ∗n,c = (n1n2ĥ1 . . . ĥq)1/2 Ĵ∗n /σ̂
∗
n,c . Assume the

same conditions as in Theorem 3.1 except that we do not impose the
null hypothesis Hc0 . Then we have

sup
z∈R

∣∣∣P (T̂ ∗n,c ≤ z|{Xi,Ui, Yi, Vi}ni=1)− Φ(z)∣∣∣ = op(1), (3.17)

where Φ(·) is the cumulative distribution function of a standard
normal random variable.

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1 and
is thus omitted.
Note that in constructing our conditional density test statistic

Tn,c , we smooth both xc and xd, and we do not smooth over
the conditional discrete covariate w. In practice one can also
smooth the conditional discrete variable w when testing Hc0 . For
expositional simplicity, we discuss the case where w is a scalar
below. In this case, one replaces the indicator function, say, Iui,w =
I(Ui = w) by lλ0,ui,w = l(Ui, w, λ0), which is defined in (2.1), and
λ0 is the smoothing parameter associated with w. The modified
test statistic becomes

Jn,λ0 =
∑
w∈Sw

{∑
i

∑
j6=i

[
K̄γ ,xi,xj lλ0,ui,w lλ0,uj,z
n1(n1 − 1)p̃2f

+
K̄γ ,yi,yj lλ0,vi,w lλ0,vj,w
n2(n2 − 1)p̃2g

]

−
1

n1n2p̃f p̃g

∑
i

∑
j

[
K̄γ ,xi,yj lλ0,ui,w lλ0,vj,w

+ K̄γ ,xj,yi lλ0,uj,w lλ0,vi,w
] }

, (3.18)

where p̃f = n−11
∑n
i=1 lλ0,ui,w and p̃g = n

−1
2
∑n
i=1 lλ0,vi,w . For the

test statistic Jn,λ0 we also need a different method for selecting
the smoothing parameters. In the framework of estimating a
conditional density function, Hall et al. (2004) propose selecting
the smoothing parameters by minimizing the sample analogue
of
∑

w∈Sw

∑
xd∈Sr

∫
[f̂ (x|w) − f (x|w)]2µ(x)dxc , where µ(x) is

a weight function. We suggest using the least squares cross-
validation method proposed by Hall et al. (2004) for selecting
the smoothing parameters (λ0, λ1, . . . , λr) and (h1, . . . , hq). In
Section 4 we also compute the test statistic Jn,λ0 and compare it
with the test statistic Jn. The bootstrap procedure for obtaining
critical values for the Jn,λ0 test is similar to that for Jn, except
that one replaces the indicator functions by the (discrete variable)
corresponding kernel functions. The simulations reported there
show that Jn,λ0 test has better power performance than that of Jn.
The asymptotic analysis of Jn,λ0 is much more involved than

that of Jn. This is because the Jn statistic uses p̂f (w) and p̂g(w)
to estimate pf (w) and pg(w); and that p̂f (w) − pf (w) =
Op(n

−1/2
1 ) and p̂g(w) − pg(w) = Op(n

−1/2
2 ); they both have the

parametric root-n convergence rate. In Appendix we show that
the asymptotic distribution of Tn,c is unaffected if one replaces
p̂f (w) and p̂g(w) by pf (w) and pg(w). In contrast, the Jn,λ0
statistic uses kernel-smoothed probability estimators p̃f (w) and
p̃g(w) to estimate pf (w) and pg(w); and p̃f (w) − pf (w) =
Op
(∑q

s=1 h
2
s +

∑r
s=0 λs + (nh1 . . . hq)

−1/2
)
= p̃g(w) − pg(w).

They both have a (slow) nonparametric rate of convergence.
Estimating pf (w) and pg(w) by the nonparametric estimators
p̃f (w) and p̃g(w) may affect the asymptotic distribution of Jn,λ0 ,
rendering the asymptotic analysis much more complex than
that of Jn. We leave the asymptotic analysis of Jn,λ0 as a future
research topic. We use simulations to examine the finite-sample
performance of Jn,λ0 based on bootstrap critical values.

4. Monte Carlo simulations

In this sectionwe consider the finite-sample performance of the
proposed tests in a variety of settings. We begin by comparing the
performance of the proposed unconditional density test (Tn) with
its frequency-based and ad-hoc smoothing parameter selection
counterparts when there exist both continuous and discrete
variables. Next, we compare the proposed unconditional density
test with non-smooth tests under both ‘high frequency’ and ‘low
frequency’ alternatives. The local power analysis of Section 2.2
suggests that a non-smoothing test is likely to be more powerful
against low frequency (i.e., slowly changing) density functions,
while a smoothing test is expected to be more powerful for
high frequency (i.e., rapidly changing) density functions. Finally,
we examine the finite-sample performance of the proposed
conditional density (Jn and Jn,λ0 ) tests.

4.1. Testing equality of unconditional density functions with mixed
data

We consider a range of mixed data DGPs for f (x) and g(x)
designed to examine empirical size and power of the proposed
test. We allow X c and Xd to be correlated, and vary the degree
of correlation. We let Xd ∈ {0, 1, . . . , 3} with probabilities
(0.125, 0.375, 0.375, 0.125). We let Y be a mixture of normals
drawn from N(−2, σ 2) and N(2, σ 2) with equal probability. We
first draw Xd and then let X c = αXd + Y . When α = 0, Xd
and X c are independent, while when α = 3/4, ρxc ,xd = 1/4. As
the bootstrap test is correctly sized, we report size only once, and
report power for a range of alternative DGPS. The null DGP is DGP0
for independent xc and xd where f (·) = g(·). For DGP1, we let
the continuous components of f (·) and g(·) differ in their means
under the alternative with the difference in means equal to 1/2,
withρxc ,xd = 0. For DGP2,we again let the continuous components
of f (·) and g(·) differ in their means under the alternative with the
difference in means equal to 1/2, with ρxc ,xd = 1/4. For DGP3, the
marginals of xc and xd are identical under the null and alternative,
but the degree of correlation differs under the alternative (ρxc ,xd =
1/2 under the null, ρxc ,xd = 1/4 under the alternative). Finally, for
DGP4 the standard deviation of xc differs by 1/2 under the null and
alternative, while ρxc ,xd = 1/4.

4

We consider three tests of the hypothesis H0 : g(x) = f (x):
(i) the proposed test with least-squares cross-validated h and λ
(Tn), (ii) the conventional frequency test with cross-validated h and
λ = 0 (Tn,λ=0), and (iii) the conventional ad hoc test with h =
1.06σn−1/5 and λ = 0 (Tn,h=1.06σn−1/5,λ=0). Least-squares cross-
validated bandwidth selection is used to obtain h and λ for each of
the M = 1000 Monte Carlo replications, except where noted. The

4 We are grateful to an anonymous referee for suggesting this rich range of
DGPs.
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Table 1
Unconditional density Tn test mixed data Monte Carlo.

n Tn Tn,λ=0 Tn,h=1.06σn−1/5,λ=0
α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

Size (DGP0)

50 0.013 0.058 0.106 0.011 0.050 0.105 0.010 0.034 0.073
100 0.006 0.059 0.102 0.006 0.053 0.113 0.008 0.043 0.089
200 0.009 0.052 0.106 0.007 0.045 0.104 0.005 0.036 0.083
400 0.013 0.052 0.103 0.010 0.055 0.104 0.008 0.042 0.097

Power (DGP1), mean of x differs under null and alternative, ρx,z = 0

50 0.045 0.146 0.257 0.026 0.102 0.187 0.016 0.067 0.148
100 0.093 0.255 0.389 0.062 0.195 0.316 0.042 0.146 0.265
200 0.221 0.499 0.646 0.174 0.424 0.592 0.143 0.374 0.531
400 0.633 0.867 0.936 0.564 0.830 0.920 0.534 0.850 0.925

Power (DGP2), mean of x differs under null and alternative, ρx,z = 1/4

50 0.036 0.135 0.218 0.029 0.120 0.213 0.017 0.085 0.162
100 0.066 0.216 0.343 0.064 0.208 0.340 0.039 0.154 0.280
200 0.176 0.437 0.605 0.158 0.435 0.604 0.121 0.389 0.551
400 0.532 0.830 0.913 0.508 0.828 0.909 0.485 0.805 0.906

Power (DGP3), marginals identical under null and alternative, correlation differs under alternative

50 0.059 0.192 0.308 0.042 0.165 0.276 0.023 0.118 0.215
100 0.111 0.325 0.492 0.105 0.301 0.466 0.058 0.247 0.386
200 0.335 0.647 0.767 0.316 0.629 0.768 0.250 0.575 0.731
400 0.811 0.964 0.989 0.815 0.968 0.986 0.776 0.967 0.985

Power (DGP4), standard deviations of x differ under the null and alternative, ρx,z = 1/4

50 0.028 0.122 0.221 0.030 0.116 0.203 0.014 0.067 0.131
100 0.068 0.217 0.343 0.067 0.219 0.328 0.036 0.140 0.246
200 0.164 0.413 0.569 0.165 0.409 0.567 0.089 0.304 0.490
400 0.461 0.788 0.895 0.485 0.785 0.892 0.388 0.732 0.867
second order Gaussian kernel is used throughout. For each Monte
Carlo replication we conduct B = 399 bootstrap replications,
and then compute empirical P-values for each statistic. We then
summarize the empirical rejection frequencies for each test at the
1%, 5%, and 10% levels. We vary the sample size from n = 50
through n = 400. Empirical size and power over the M = 1000
Monte Carlo replications is summarized in Table 1.
Table 1 suggests the following; (i) our test is correctly sized,

while the other test sizes are reasonable as well, (ii) the proposed
method often exhibits substantial power gains, especially in small
sample situations relative to the conventional frequency test (λ =
0) and relative to the ad-hoc test in particular (h = 1.06σn−1/5,
λ = 0), and (iii) the consistency of the tests is evident in the
large sample experiments with power approaching one. As the ad-
hoc test appears to be slightly undersized, we also computed size-
adjusted power and the ranking of estimators in terms of power
remains unchanged (the results of size-adjusted power are not
reported here to save space).

4.2. Testing equality of unconditional density functions under ‘low
frequency’ alternatives

First, we consider a Monte Carlo simulation designed to
demonstrate how, under a ‘low frequency’ alternative, non-
smoothing tests such as the KSn and CMn tests can perform better
than smoothing tests such as the Tn test proposed in this paper. For
what follows, we consider the case where the marginal density for
the continuous variable (xc) is a simple univariate normal density
function. Here we treat a unimodal normal distribution as a low
frequency (i.e., slowly changing) density function.
Specifically, for this experiment the null DGP is N(0, 1) while

the alternative DGP is N(1/2, 1). Under the null, both X and Y
are drawn from the N(0, 1), while under the alternative X is
drawn the N(0, 1) while Y is drawn from the N(1/2, 1). Least-
squares cross-validated bandwidth selection is used for the Tn
test, and is computed for each of the M = 1000 Monte Carlo
replications. For each Monte Carlo replication we conduct B =
399 bootstrap replications, and then compute empirical P-values
for each statistic. We then summarize the empirical rejection
frequencies for each test at the 1%, 5%, and 10% levels. We vary the
sample size from n = 50 through n = 400 at which point power is
equal to one for all three tests considered. Results are reported in
Table 2.
Table 2 reveals that each test is correctly sized while power

is highest for the non-smoothed tests as expected under ‘low
frequency’ alternatives with the CMn test being most powerful for
this DGP. We also computed the non-smoothing test In,h=1 in our
simulations, and since results show that the In,h=1 test is correctly
sized and has power similar to that of the KSn test, detailed results
are not reported here due to space limitation.

4.3. Testing equality of unconditional density functions under ‘high
frequency’ alternatives

Next, we consider a Monte Carlo simulation designed to
demonstrate how, under ‘high frequency’ alternatives, smoothing
tests such as the Tn test proposed in this paper can perform better
than non-smoothing tests such as the KSn and CMn tests, a fact that
may not be appreciated by all readers.
We shall draw data from a mixture of normal distributions

each having different locations and scales. Under the null, f (x)
(and g(x)) is a mixture of two normal distributions: N(−1/2, 1)
and N(1/2, 4), with equal probability. That is, we draw data for
X and Y from a N(−1/2, 1) and N(1/2, 4) with equal probability.
It can be seen that the PDF of data drawn from this mixture
has a bimodal and asymmetric distribution, the left peak being
higher than the right. Under the alternative, however, f (x) remains
the same as above, while g(x) is again a mixture but of two
different normal distributions: N(−1/2, 4) and N(1/2, 1) with
equal probability. That is, we reverse the peaks and draw data
for Y from a N(−1/2, 4) and N(1/2, 1) with equal probability. All
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Table 2
Monte Carlo comparison of the Tn , CMn , and KSn tests (low frequency data).

n Tn CMn KSn
α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

Size (DGP0)

50 0.013 0.061 0.118 0.011 0.049 0.097 0.018 0.063 0.110
100 0.014 0.057 0.113 0.011 0.041 0.093 0.011 0.051 0.090
200 0.015 0.060 0.111 0.006 0.043 0.088 0.009 0.062 0.101
400 0.007 0.052 0.130 0.014 0.054 0.103 0.011 0.055 0.109

Power (DGP1)

50 0.170 0.416 0.548 0.344 0.637 0.745 0.297 0.583 0.718
100 0.440 0.715 0.823 0.719 0.922 0.958 0.643 0.874 0.931
200 0.795 0.959 0.982 0.976 0.999 0.999 0.936 0.994 0.999
400 0.990 0.999 0.999 1.000 1.000 1.000 0.999 1.000 1.000
Table 3
Monte Carlo comparison of the Tn , CMn , and KSn tests (high frequency data).

n Tn CMn KSn
α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

Size (DGP0)

50 0.012 0.053 0.100 0.007 0.037 0.095 0.011 0.069 0.116
100 0.006 0.047 0.091 0.008 0.035 0.073 0.007 0.047 0.100
200 0.006 0.059 0.106 0.006 0.041 0.086 0.011 0.051 0.114
400 0.009 0.050 0.095 0.008 0.043 0.081 0.006 0.041 0.098

Power (DGP1)

50 0.107 0.269 0.395 0.017 0.092 0.175 0.054 0.155 0.258
100 0.214 0.452 0.586 0.036 0.159 0.287 0.078 0.233 0.337
200 0.539 0.756 0.850 0.129 0.409 0.614 0.208 0.433 0.570
400 0.895 0.986 0.994 0.428 0.823 0.943 0.439 0.734 0.835
remaining particulars are the same as for the Monte Carlo setting
considered above. Results are reported in Table 3.
Table 3 reveals that each test is correctly sized while power is

highest for the smoothing tests as expected under ‘high frequency’
alternativeswith the Tn test beingmost powerful for this DGP. Note
that our so-called ‘high frequency’ density function only has two
modes. Simulation results (not reported here to save space) show
that, for density functionswithmore than twomodes, a smoothing
test enjoys additional power gains relative to non-smoothing tests.
Therefore, smoothing tests complement non-smoothing tests and
should be part of all applied researchers’ standard toolkit.

4.4. Testing equality of conditional density functions with mixed data

Finally, we consider a Monte Carlo simulation designed to
examine the finite-sample performance of the proposed Jn,λ0 and
Jn tests and compare them to a counterpart that smooths the
continuous variable with an ad-hoc h and uses the frequency
indicator function for the discrete conditional variable.
Under the null of f (x|w) = g(x|w)we let the discrete variable,

w, assume four values with equal probability, {0, 1, . . . , 3}.
Next, we create Y = z/4 + N(0, 1) under the null so that
f (x|w), g(x|w) ∼ N(w/4, 1). Under the alternative Y = z/4 +
N(1/2, 1) so that g(Y |w) ∼ N(w/4 + 1/2, 1). All remaining
particulars are the same as for the Monte Carlo setting considered
above. Results are reported in Table 4.
Table 4 reveals that the proposed tests Jn,λ0 and Jn are correctly

sized and both are more powerful than their ad-hoc/frequency
counterpart Jn,h=1.06σn−1/5 . Also, the Jn,λ0 test ismore powerful than
the Jn test due to the fact that Jn,λ0 also smooths the conditional
discrete variable z.

5. Earnings, educational attainment, and wage gaps

There exists a large literature in labor economics regarding how
returns to a college education is instrumental in understanding
Fig. 1. Kernel-smoothed PDFs by year and educational attainment.

the widening wage gap in the US economy. The first step of
such analysis, however, would involve determining whether or
not statistically significant differences between joint distributions
defined over both continuous (income) and discrete (educational
attainment) variables exist.
For what follows, we consider data spanning the years

1980–2000 constructed from the US Current Population Survey
(CPS) March supplement on real incomes for white non-Hispanic
workers aged 25 to 55 years who were full-time workers working
at least 30 h a week and at least 40 weeks a year. Self-employed,
farmers, unpaid family workers, andmembers of the Armed Forces
are excluded. We consider the distribution of income for high
school versus college graduates. Wage income is the income
category considered, and figures are expressed in 2000 dollars.
Fig. 1 presents kernel smoothed PDF estimates for income by

year and educational attainment.
Table 5 presents various moments for the income data, namely,

measures of location and scale by year and educational attainment.
We observe that average/median income for both high school
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Table 4
Conditional density tests (Jn,λ0 and Jn).

n Jn,λ0 Jn Jn,h=1.06σn−1/5
α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

Size (DGP0)

50 0.018 0.060 0.113 0.013 0.045 0.096 0.007 0.036 0.088
100 0.015 0.062 0.120 0.013 0.051 0.100 0.012 0.046 0.100
200 0.012 0.048 0.103 0.011 0.051 0.098 0.008 0.053 0.097
400 0.013 0.055 0.105 0.009 0.050 0.097 0.011 0.051 0.091

Power (DGP1)

50 0.149 0.362 0.508 0.072 0.222 0.329 0.073 0.206 0.318
100 0.304 0.578 0.683 0.175 0.392 0.499 0.163 0.367 0.496
200 0.643 0.843 0.907 0.504 0.733 0.826 0.457 0.722 0.808
400 0.938 0.988 0.996 0.876 0.975 0.987 0.857 0.964 0.987
Table 5
Income location and scale summaries by year and educational attainment.

1980 2000
High School College High School College

Mean $20,637.72 $22,838.88 $18,578.75 $22,104.75
Median $18,880.17 $20,661.16 $16,647.06 $19,207.68
Stdev $10,720.27 $11,767.74 $11,331.94 $14,547.50
IQR $14,709.37 $14,876.03 $12,242.35 $13,805.52

and college graduates is lower in 2000 than it was in 1980. The
interquartile range (IQR) has fallen for both groups from 1980 to
2000, while standard deviations have increased.
As noted in Section 1,moment-based tests, which only compare

a finite number of moments from two distributions, are not
consistent tests. By way of example, we test whether the joint
distribution of earnings and educational attainment differ over
time. We select two random samples, one for the year 1980 and
one for the year 2000, each of size n1 = n2 = 1000, and apply
the unconditional Tn and conditional Jn tests. We obtain T̂n =
87.15 with an associated bootstrap P-value of P < 0.001, while
Ĵn = 54.63 with an associated bootstrap P-value of P < 0.001.
This suggests that there are indeed significant differences in the
joint distribution of income and educational attainment between
1980 and 2000, and that there are significant differences in the
distribution of income conditional upon educational attainment
between 1980 and 2000.

6. Conclusion

We consider the problem of testing for equality of two density
or two conditional density functions defined over mixed discrete
and continuous data. Smoothing parameters are chosen via least
squares cross-validation, and we smooth both the discrete and
continuous variables in a particular manner. We advocate the use
of bootstrap methods for obtaining the statistic’s null distribution
in finite-sample settings. Simulations show that the proposed tests
enjoy power gains relative to both a conventional frequency-based
test and a smoothing test based on ad hoc smoothing parameter
selection. An application to testing for the equality of the joint
distribution of income and educational attainments underscores
the novelty and flexibility of the proposed approach in mixed data
settings.
Our approach can be extended to testing the equality of two

residual distributions. Hall et al. (2004) have shown that the cross-
validationmethod has the remarkable ability of potentially remov-
ing irrelevant conditioning variables. In the testing framework we
expect that this will lead to a more powerful test relative to peers
that lack this ability. In this paper we only consider the case where
the discrete variable has finite support. Extension of our approach
to allow the discrete variable to be countably infinitewill be a fruit-
ful avenue for further investigation. We leave the exploration of
these topics for future research.
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Appendix. Proofs of Theorems

Proof of Theorem 2.1. The test statistic In can be written as In =
I1n + I2n, with

I1n = −
2
n1n2

min{n1,n2}∑
i=1

Kγ ,xi,yi

and

I2n =
∑
i

∑
j6=i

[
1

n1(n1 − 1)
Kγ ,xi,xj +

1
n2(n2 − 1)

Kγ ,yi,yj

−
1
n1n2

Kγ ,xi,yj −
1
n1n2

Kγ ,xj,yi

]
,

where
∑
i =

∑n1
i=1 if the summand contains xi, and

∑
i =∑n2

i=1 if the summand contains yi. For example,
∑
i
∑
j6=i Kγ ,xi,yj =∑n1

i=1
∑n2
j6=i Kγ ,xi,yj , and

∑
i
∑
j6=i Kγ ,xj,yi =

∑n2
i=1
∑n1
j6=i Kγ ,xj,yi .

Let n = min{n1, n2} and let m(x, y) denote the joint density of
(X ci , Y

c
i ). By noting that |Lλ,xi,yi | ≤ 1, we have that E[|Kγ ,xi,yi |] ≤

E[|Wh,xi,yi |] = (h1 . . . hq)−1
∫
W ((yci − x

c
i )/h)m(x

c
i , y

c
i )dx

c
i dy

c
i =∫

W (v)m(xci , x
c
i + hv)dvdx

c
i = O(1). Then it follows that

E [ |I1n| ] = (n1n2)−1O(min{n1, n2}E|Kγ ,xi,yi |) = O(n−1). This
implies that

I1n = Op(n−1). (A.1)

Note that we obtain the above result by allowing for arbitrary
correlation between Xi and Yi. For example, for panel datawith two
time periods, Xi and Yi can be repeated measures from the same
individual i over two different time periods.
Next, we consider I2n. We will write An = Bn + (s.o.) to mean

that Bn is the leading term of An, while (s.o.) denotes terms having

http://www.nserc.ca
http://www.sshrc.ca
http://www.sharcnet.ca
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orders smaller than Bn. Define Hn,ij = Kγ ,xi,xj + Kγ ,yi,yj − Kγ ,xi,yj −
Kγ ,xj,yi . For i 6= j, we have

E[Hn,ij|Xi, Yi] = E[Kγ ,xi,xj |Xi] − E[Kγ ,xi,yj |Xi]
+ E[Kγ ,yi,yj |Yi] − E[Kγ ,xj,yi |Yi] = 0,

which follows because E[Kγ ,xi,xj |Xi] =
∫
Kγ ,xi,xj f (xj)dxj =∫

Kγ ,xi,yjg(yj)dyj = E[Kγ ,xi,yj |Xi] (where
∫
dx =

∑
xd
∫
dxc) since

f (·) = g(·) under H0.
Therefore, I2n is a degenerate U-statistic. To save space we will

write (nj − 1) by nj (j = 1, 2) as this will change any results
asymptotically. Defining H = h1 . . . hq, then it is easy to show that

var(I2n) = E[(I2n)2]

= 2
∑
i

∑
j6=i

{
n−41 E[(Kγ ,xi,xj)

2
] + n−42 E[(Kγ ,yi,yj)

2
]

+ (n1n2)−2E[(Kγ ,xi,yj)
2
]

+ (n1n2)−2E[(Kγ ,xj,yi)
2
] + (s.o.)

}
=

2
n1n2H

{ [
δ−1n + δn + 2

]
×

[
E[f (Xi)]

[∫
W 2(v)dv

]
+ o(1)

]}
≡ (n1n2H)−1

{
σ 20 + o(1)

}
,

where δn = n1/n2, and σ 20 = 2[δ
−1
+δ+2][E[f (Xi)]][

∫
W 2(v)dv],

and we have used

E[(Kγ ,xi,xj)
2
] = H−2

∑
xdi ,x

d
j

∫
W 2((xcj − x

c
i )/h)L

2(xdi , x
d
j , λ)

× f (xi)f (xj)dxci dx
c
j

= H−1
∑
xdi ,x

d
j

∫
W 2(v)L2(xdi , x

d
j , λ)

× f (xi)f (xci + hv, x
d
j )dx

c
i dv

= H−1
{
E[f (Xi)]

[∫
W 2(v)dv

]
+ o(1)

}
,

with H = h1 . . . hq, where |h|2 =
∑q
s=1 h

2
s and |λ| =∑r

s=1 λs. Similarly, E[(Kγ ,yi,yj)
2
], E[(Kγ ,xi,yj)

2
], E[(Kγ ,xj,yi)

2
] all

equalH−1{E[f (Xi)][
∫
W 2(v)dv]+o(1)} underH0 (since E[f (Xi)] =

E[g(Yi)] under H0).
It is straightforward, though tedious, to check that the

conditions for the CLT of Hall (1984) for degenerate U-statistics
holds. Thus, under H0 we have

(n1n2H)1/2I2n/σ0 → N(0, 1) in distribution. (A.2)

Note that E(σ 2n ) = σ
2
0 +o(1) (σ

2
n is defined in Theorem2.1), and

by the U-statistic H-decomposition, it follows that σ 2n = E(σ
2
n ) +

op(1) = σ 20 + op(1). Therefore, from (A.2) we obtain

(n1n2H)1/2I2n/σn → N(0, 1) in distribution. (A.3)

In the above proof we implicitly assumed that the support of
xc is unbounded since we did not address the possible boundary
bias problem. Below we show that, in fact, the above result holds
true evenwhen xc has bounded support and the density is bounded
below by a positive constant in its support. First, it is obvious
that E[Hn,ij|Xi, Yi] = 0 under H0, because this follows from
f (·) = g(·), regardless of whether xc has bounded or unbounded
support. Next, we show that var(I2n) = (n1n2H)−1{σ 20 + o(1)}
also holds true. It suffices to show that E[(Kγ ,xi,xj)
2
] = H−1

{E[f (Xi)][
∫
W 2(v)dv] + o(1)}. For expositional simplicity, we will

only consider the univariate xc case (and without xd) where xc is
uniformly distributed in [a, b] for some constants a, b with b > a.
The proof for the general case is similar but much more tedious.
Now let α ∈ (0, 1) be a constant. Then we have

E[(Wh,xi,xj)
2
] = H−2

∫ b

a

∫ b

a
W 2((xcj − x

c
i )/h)f (x

c
i )f (x

c
j )dx

c
i dx

c
j

= H−1
∫ b

a

∫ (b−xi)/h

(a−xi)/h
W 2(v)f (xci )f (x

c
i + hv)dvdx

c
i

= H−1
[∫ a+hα

a
+

∫ b−hα

a+hα
+

∫ b

b−hα

]

×

∫ (b−xi)/h

(a−xi)/h
W 2(v)f (xci )f (x

c
i + hv)dvdx

c
i

= H−1
{[∫ b−hα

a+hα
f (xci )

2dxi

][∫
∞

−∞

W 2(v)dv
]
+ o(1)

}

= H−1
{
E[f (X ci )]

∫
W 2(v)dv + o(1)

}
,

where we have used the fact that for xi ∈ (a + hα, b − hα),
the interval ((a − xi)/h, (b − xi)/h) ⊃ (−hα/h, hα/h), which
expands to (−∞,∞) as h → 0 since 0 < α < 1. Hence,∫ (b−xi)/h
(a−xi)/h

W (v2)dv →
∫
∞

−∞
W 2(v)dv as h → 0. The basic idea

underlying the proof above is as follows:Wedivide [a, b] into three
intervals: [a, a+ hα], (a+ hα, b− hα), and [b− hα, b]. Compared
with the second interval, the first and third intervals are negligible
since their lengths shrink to zero as n → ∞. The second interval
does not have a boundary problem as the boundary regions lie
in the first and third intervals. The testing problem we consider
here is different from pointwise estimation which may suffer from
boundary bias issues. The leading term of the test statistic has
zero mean and its asymptotic variance has the same expression,
regardless of the nature of the support of xc . Hence, the asymptotic
null (normal) distribution presented in Theorem 2.1 is invariant to
the nature of the support of xc . Summarizing the above, (A.1) and
(A.3) complete the proof of Theorem 2.1. �

Below we present a lemma which will be used in the proof of
Theorem 2.2.

Lemma A.1. Let An(c) = (n1n2h1 . . . hq)1/2I2n(h, λ), where hs =
asn−ζ , λs = bsn−2ζ , c = (a1, . . . , aq, b1, . . . , br), cs ∈ [C1s, C2s]
with 0 < C1s < C2s <∞ (s = 1, . . . , q+ r).
Then the stochastic process An(c) indexed by c is tight under the

sup-norm.

Proof. Writing Kγ ,ij as (h1 . . . hq)−1Kc,ij with hs = asn−ζ and λs =
b2n−2ζ , where Kc,ij = W

(
Xj−Xi
h

)
L(Xdj , X

d
i , λ), and letting δ = qζ ,

H−1/2 = (h1 . . . hq)−1/2, C1 = (a1, . . . , aq)T, C2 = (b1, . . . , br)T

(where the superscript T denotes transpose), C̄1 =
∏q
s=1 as, and

C̄2 =
∏r
s=1 bs. Then we have H

−1/2Kc,ij = C̄1nδ/2WC1,ijLC2,ij. Let
C ′2 = (b

′

1, . . . , br)
T, then note that |LC ′2,ij − LC2,ij| ≤ d1

∑r
s=1 |bs −

b′s| ≤ d2‖C2 − C ′2‖, where d1 and d2 are some finite positive
constants.
Noting that the as are all bounded below by some positive

constants, we have for all s = 1, . . . , q that∣∣∣∣Xis − Xjshs
−
Xis − Xjs
h′s

∣∣∣∣
≤
∣∣Xis − Xjs∣∣ ∣∣∣∣ 1hs − 1h′s

∣∣∣∣ = ∣∣∣∣Xis − Xjshs

∣∣∣∣ ∣∣∣∣h′s − hsh′s

∣∣∣∣
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=

∣∣∣∣Xis − Xjshs

∣∣∣∣ ∣∣∣∣a′s − asa′s

∣∣∣∣ ≤ ds ∣∣∣∣Xis − Xjshs

∣∣∣∣ ∣∣a′s − as∣∣ , (A.4)

where ds is a finite positive constant (as is bounded below and
above by some positive constants).
By the Lipschitz condition (see (C2)) on the univariate kernel

function, i.e., |w(u)− w(v)| ≤ ξ(v)|u− v|, it is easy to show that
the product kernel also satisfies a Lipschitz condition, namely,

|W (u)−W (v)| ≤ M(v)‖u− v‖, (A.5)

where M(v) = c[
∑q
s=1 ξ(vs)] and where c is a positive constant

such that supv∈Rw(v)
q−1
≤ c.

(A.4) and (A.5) yield

|WC ′1,xi,xj −WC1,xi,xj | ≤ dMC,xi,xj

∥∥∥∥Xi − Xjh

∥∥∥∥× ‖C ′1 − C1‖, (A.6)

where d is a positive constant, and MC1,ij = M((Xj − Xi)/h) =
c[
∑q
s=1 ξ((Xjs − Xis)/hs)].
Using (A.6) we have∣∣(H ′)−1/2KC ′,ij − H−1/2KC,ij∣∣
=

∣∣∣nδ/2 {(C̄ ′1)−1/2WC ′1,ijLC ′2,ij − C̄−1/21 WC1,ijLC2,ij
}∣∣∣

=

∣∣∣nδ/2 {(C̄ ′1)−1/2WC ′1,ij [LC ′2,ij − LC2,ij]
+

[
(C̄ ′1)

−1/2WC ′1,ij − C̄
−1/2
1 WC1,ij

]
LC2,ij

}∣∣∣
≤ D1

{
(H ′)−1/2WC ′1,ij‖C

′

2 − C2‖

+H−1/2MC1,ij

∥∥∥∥Xj − Xih

∥∥∥∥× ‖C ′1 − C1‖
}
, (A.7)

where D1 > 0 is a finite constant. In the last equality we used
|LC2,ij| ≤ 1 and Assumption (C3), and we also replaced one of the
(C̄ ′1)

−1/2 by C̄−1/21 because as ∈ [C1s, C2s] are all bounded from
above and below. The difference can be absorbed into D1.
By noting that An(c ′) − An(c) is a degenerate U-statistic, and

using (A.7), we have

E
{[
An(c ′)− An(c)

]2}
= E

{[
(H ′)−1/2Kc′,ij − H−1/2Kc,ij

]2}
≤ 4D2E

{[
(H ′)−1W 2C ′2,ij

‖C ′2 − C2‖
2

+ H−1M2C,ij

∥∥∥∥Xj − Xih

∥∥∥∥2 ‖C ′1 − C1‖2
]}

≤ D3

{[∫ ∫
f (xi)f (xi + hu)W 2(u)dxidu

]
‖C ′2 − C2‖

2

+

[∫ ∫
f (xi)f (xi + v)M2(v)‖v‖2dxidv

]
‖C ′1 − C1‖

2
}

≤ D4 sup
x
f (x)

{[∫
W 2(u)du

]
‖C ′2 − C2‖

2

+

[∫
M2(v)‖v‖2dv

]
‖C ′1 − C1‖

2
}

≤ D5‖C ′ − C‖2, (A.8)

where Dj (j = 2, 3, 4, 5) are some finite positive constants. There-
fore, An(·) (hence, Bn(·)) is tight by Theorem 15.6 of Billingsley
(1968, p. 128), or Theorem 3.1 of Ossiander (1987). �
Proof of Theorem 2.2. Theorem 2.1 implies that when hs = h0s =
a0s n
−ζ and λs = λ0s = b0s n

−2ζ , the test statistic T̂n(h0, λ0) →
N(0, 1) in distribution. Therefore, it is sufficient to prove T̂n(ĥ, λ̂)−
T̂n(h0, λ0) = op(1). For this, it suffices to show the following:

(i) (n1n2ĥ1 . . . ĥq)1/2 Î2n = (n1n2h01 . . . h
0
q)
1/2I2n + op(1),

(ii) (n1n2ĥ1 . . . ĥq)1/2 Î1n = (n1n2h01 . . . h
0
q)
1/2In1 = op(1), and

(iii) σ̂ 2n = σ 20 + op(1), σ
2
0 is defined in Theorem 2.1 but with

(h1, . . . , hq, λ1, . . . , λr) replaced by (h01, . . . , h
0
q, λ

0
1, . . . , λ

0
r ).

Below we will only prove (i) since (ii) and (iii) are much easier
to establish than (i). Write ĥs = âsn−ζ and λ̂s = b̂sn−2ζ . From
Theorem 3.1 of Li and Racine (2003), we know that ĥs/h0s − 1→ 0
and λ̂s/λ0s − 1→ 0 (in probability). This implies that âs → a0s and
b̂s → b0s in probability. Let C =

∏q
s=1[a1s, a2s] ×

∏r
t=1[b1t , b2t ],

where ajs and bjt (j = 1, 2) are some positive constants with
a1s < a0s < a2s (s = 1, . . . , q) and b1t < b

0
t < b2t (t = 1, . . . , r).

Let c = (a1, . . . , aq, b1, . . . , br), c0 = (a01, . . . , a
0
q, b

0
1, . . . , b

0
r ), and

ĉ = (â1, . . . , âq, b̂1, . . . , b̂r). Then Lemma A.1 shows that An(c) ≡
(n1n2h1 . . . hq)1/2I2n(h, λ) (with hs = asn−ζ and λs = bsn−2ζ ) is
tight in c ∈ C.
Define Bn(c) = An(c)−An(c0). Then (i) becomes Bn(ĉ) = op(1),

i.e., we want to show that, for all ε > 0,

lim
n→∞

Pr
[
|Bn(ĉ)| < ε

]
= 1. (A.9)

For any δ > 0, denote the δ-ball centered at c0 by Cδ = {c :
‖c − c0‖ ≤ δ}, where ‖.‖ denotes the Euclidean norm of a vector.
By Lemma A.1 we know that An(·) is tight. By the Arzela–Ascoli
Theorem (see Theorem 8.2 of Billingsley (1968, p. 55)) we know
that tightness implies the following stochastic equicontinuous
condition: for all ε > 0, η1 > 0, there exists a δ (0 < δ < 1)
and an N1, such that

Pr

[
sup
‖c′−c‖<δ

∣∣An(c ′)− An(c)∣∣ > ε

]
< η1 (A.10)

for all n ≥ N1. (A.10) implies that

Pr
[
|Bn(ĉ)| > ε, ĉ ∈ Cδ

]
≤ Pr

[
sup
c∈Cδ
|Bn(c)| > ε

]
< η1 (A.11)

for all n ≥ N1. Also, from ĉ → c0 in probability we know that, for
all η2 > 0 and for the δ given above, there exists an N2 such that

Pr
[
ĉ 6∈ Cδ

]
≡ Pr

[
‖ĉ − c0‖ > δ

]
< η2 (A.12)

for all n ≥ N2. Therefore,

Pr
[
|Bn(ĉ)| > ε

]
= Pr

[
|Bn(ĉ)| > ε, ĉ ∈ Cδ

]
+ Pr

[
|Bn(ĉ)| > ε, ĉ 6∈ Cδ

]
< η1 + η2 (A.13)

for all n ≥ max{N1,N2} by (A.11) and (A.12), where we have also
used the fact that {|Bn(ĉ)| > ε, ĉ 6∈ Cδ} is a subset of {ĉ 6∈ Cδ} (if A
is a subset of B, then P(A) ≤ P(B)).
(A.13) is equivalent to (A.9). This completes the proof of (i). �

Proof of Theorem 2.3. In order to shorten the proof and to save
space, we will only consider the case where n1 = n2 = n.
Also, because the cumulative distribution function for the standard
normal random variable is a continuous distribution, by Polyā’s
Theorem (Bhattacharya and Rao, 1986), we know that (3.17) is
equivalent to, for a given value of z ∈ R,∣∣∣P (T̂ ∗n ≤ z|{Xi, Yi}ni=1)− Φ(z)∣∣∣ = op(1). (A.14)
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First, we can write Î∗n = Î
∗

1n + Î
∗

2n, where Î
∗

jn is the same as Îjn
(j = 1, 2) except that Xi(Yi) is replaced by X∗i (Y

∗

i ) and (h, λ) is
replaced by (ĥ, λ̂). Let E∗(·) denote E(·|{Xi, Yi}ni=1) and P

∗(·) denote
P(·|{Xi, Yi}ni=1). Also, we write B

∗
n = o

∗
p(1) to mean that, for all ε >

0, P∗[|B∗n| > ε] = op(1). It is easy to check that if E∗[|B∗n|] = op(1),
thenB∗n = o

∗
p(1). Now from I

∗

1n = −
2

n(n−1)

∑n
i=1 Kγ̂ ,x∗i ,y∗i , andnoting

that E∗[|Kγ̂ ,x∗i ,y∗i |] ≤ E
∗
[Wĥ,x∗i ,y∗i ] = (2n)−2

∑2n
i=1
∑2n
j=1Wĥ,zi,zj =

Op(1), we obtain

I∗1n = −
2

n(n− 1)

n∑
i=1

Kγ̂ ,x∗i ,y∗i = O
∗

p(n
−1). (A.15)

Next, we consider

I∗2n =
2

n(n− 1)

n∑
i=1

n∑
j>i

[
Kγ̂ ,x∗i ,x∗j + Kγ̂ ,y∗i ,y∗j − Kγ̂ ,x∗i ,y∗j − Kγ̂ ,x∗j ,y∗i

]
≡

2
n(n− 1)

n∑
i=1

n∑
j>i

H∗n,ij,

where H∗n,ij = Kγ̂ ,x∗i ,x∗j + Kγ̂ ,y∗i ,y∗j − Kγ̂ ,x∗i ,y∗j − Kγ̂ ,x∗j ,y∗i . I
∗

2n is a
degenerate U-statistic because
E∗[H∗n,ij|X

∗

i , Y
∗

i ] = E[Kγ̂ ,x∗i ,x∗j |X
∗

i ]−E[Kγ̂ ,x∗i ,y∗j |X
∗

i ]+E[Kγ̂ ,y∗i ,y∗j |Y
∗

i ]

− E[Kγ̂ ,x∗j ,y∗i |Y
∗

i ] =
1
2n

∑2n
j=1 Kγ̂ ,x∗i ,zj −

1
2n

∑2n
j=1 Kγ̂ ,x∗i ,zj +

1
2n

∑2n
j=1 Kγ̂ ,y∗i ,zj −

1
2n

∑2n
j=1 Kγ̂ ,zj,y∗i = 0 for almost all sample paths

(X1, Y1, X2, Y2, . . .).
Let U∗n,ij = [2/n(n − 1)]H

∗

n,ij, and define U
∗
n =

∑
i
∑
j>i U

∗

n,ij ≡

I∗2n. We apply the CLT of de Jong (1987) for generalized quadratic
forms to derive the asymptotic distribution of U∗n |{Xi, Yi}

n
i=1.

By de Jong (1987, Proposition 3.2) we know that, conditional on
{Xi, Yi}ni=1, U

∗
n /S
∗
n → N(0, 1) in distribution if G∗I , G

∗

II and G
∗

IV are
all op(S∗4n ), where S

∗2
n = E

∗
[U∗2n ], G

∗

I =
∑
i
∑
j>i E

∗
[U∗4n,ij], G

∗

II =∑
i
∑
j>i
∑
l>j>i[E

∗(U∗2n,ijU
∗2
n,il) + E

∗(U∗2n,jiU
∗2
n,jl) + E

∗(U∗2n,liU
∗2
n,lj)], and

G∗IV = (1/2)
∑
i
∑
j>i
∑
s
∑
t>s E

∗(U∗n,isU
∗

n,sjU
∗

n,tiU
∗

n,js).
We will use the notation An ∼ Bn to denote that An and Bn have

the same (probability) order of magnitude, and use the notation
An = Oe(an) to denote an exact order, i.e., it means that An =
Op(an), but An 6= op(an). Then we have

E∗[H∗2n,ij] ∼ E
∗
[K ∗2γ̂ ,x∗i ,x∗j ] + E

∗
[K ∗2γ̂ ,y∗i ,y∗j ] + E

∗
[K ∗2γ̂ ,x∗i ,y∗j ] + E

∗
[K ∗2γ̂ ,x∗j ,y∗j ]

= 4(2n)−2
2n∑
i=1

2n∑
j=1

K 2γ̂ ,zi,zj = Oe
(
(ĥ1 . . . ĥq)−1

)
.

Hence, S∗2n =
4

n2(n−1)2
∑n−1
i=1

∑n
j>i E

∗
[H∗2n,ij] ∼

1
n2(n−1)2

∑2n
i=1∑2n

j=1 K
2
γ̂ ,zi,zj

= Oe(n−2(ĥ1 . . . ĥq)−1).

Thus we have, 1/S∗2n = Oe(n2(ĥ1 . . . ĥq)) and 1/S∗4n =

Oe(n4(ĥ1 . . . ĥq)2).
Next,

E∗[H∗4n,ij] ∼ E
∗
[K 4γ̂ ,x∗i ,x∗j ] + E

∗
[K 4γ̂ ,y∗i ,y∗j ]

= 2(2n)−2
2n∑
i=1

2n∑
j=1

K 4γ̂ ,zi,zj = Oe((ĥ1 . . . ĥq)
−3).

Hence, we have

G∗I = [16/n
4(n− 1)4]

∑
i

∑
j>i

E∗[U∗4n,ij]

∼ [1/n4(n− 1)4]
2n∑
i=1

2n∑
j=1

K 4γ̂ ,zi,zj = Op(n
−6(ĥ1 . . . ĥq)−3).
From the above calculation it should be apparent that the
probability orders of G∗I , G

∗

II and G
∗

IV are solely determined by the
factor of n’s and (ĥ1 . . . ĥp)’s through Kij,γ̂ . Therefore, tedious but
straightforward calculations show that

G∗II ∼ n
−8

2n∑
i=1

2n∑
j=1

2n∑
s=1

[K 2ij,γ̂ K
2
is,γ̂ + K

2
js,γ̂ K

2
ji,γ̂ + K

2
si,γ̂ K

2
sj,γ̂ ]

= Op(n−5(ĥ1 . . . ĥq)−2),

G∗IV ∼ n
−8

2n∑
i=1

2n∑
j=1

2n∑
s=1

2n∑
t=1

[Ksi,γ̂ Ksj,γ̂ Kti,γ̂ Ktj,γ̂ ]

= Op(n−4(ĥ1 . . . ĥq)−1).

Therefore, G∗k/S
∗4
n = op(1) for all k = I, II, IV . This

means that for any subsequence U∗n′/S
∗

n′ , there exists a further
subsequence U∗n′′/S

∗

n′′ such that (U
∗

n′′/S
∗

n′′ |X1, Y1, X2, Y2, . . .) con-
verges to (N(0, 1)|X1, Y1, X2, Y2, . . .) for almost every sequence
(X1, Y1, X2, Y2, . . .). Or equivalently, we have that

U∗n /S
∗

n → N(0, 1) in distribution in probability. (A.16)

Next, define V ∗n,γ̂
def
=

2(ĥ1...ĥq)
n(n−1)

∑
i
∑
j6=i E

∗
[H∗2n,ij], and V̂

∗

n,γ̂
def
=

2(ĥ1...ĥq)
n(n−1)

∑
i
∑
j6=i H

∗2
n,ij. Similar to the analysis of S

∗2
n , one can show

that V̂ ∗n,γ̂ − V
∗

n,γ̂ = o
∗
p(1) and that V

∗

n,γ̂ − (n
2ĥ1 . . . ĥq)S∗2n = o

∗
p(1).

These results together with (A.16) tell us that

n(ĥ1 . . . ĥq)1/2I∗2n/
√
V̂ ∗n,γ̂ → N(0, 1) in distribution in probability.

Since I∗2n is the leading term of I∗n , we conclude that

n(ĥ1 . . . ĥq)1/2I∗n/
√
V̂ ∗n,γ̂ has the same asymptotic distribution as

that of n(ĥ1 . . . ĥq)1/2I∗2n/
√
V̂ ∗n,γ̂ . Hence, we have that

n(ĥ1 . . . ĥq)1/2I∗n/
√
V̂ ∗n,γ̂ → N(0, 1) in distribution in probability.

�

Proof of Theorem 3.1. We know that ĥs = h0s + op(h
0
s ) for

s = 1, . . . , q; and λ̂s = λ0s + op(λ
0
s ) for s = 1, . . . , r , where

hs0 = a0s n
−ζ and λ0s = b0s n

−2ζ for some ζ > 0. We will only
prove Theorem 3.1 for the non-stochastic smoothing parameter
case, i.e., for (h1, . . . , hq, λ1, . . . , λr) = (h01, . . . , h

0
q, λ

0
1, . . . , λ

0
r ),

since the cross-validated smoothing parameter case follows by
stochastic equicontinuity arguments analogous to those used in
the proof of Theorem 2.2.
For expositional simplicity, we will assume that n1 = n2 = n.5

We write

Jn = J1n + J2n, (A.17)

where J1n = − 2
n2 p̂f p̂g

∑
w∈Sw

∑n
i=1 K̄γ ,xi,yi Iui,wIvi,w , and J2n = Jn −

J1n. Using n−2 = [n(n− 1)]−1 + O(n−3)we can write J2n as

J2n =
1

n(n− 1)

n∑
i=1

n∑
j6=i

∑
w∈Sw

{
K̄γ ,xi,xj Iui,wIuj,w

p̂2f
+
K̄γ ,yi,yj Ivi,wIvj,w

p̂2g

−
1
p̂f p̂g

[
K̄γ ,xi,yj Iui,wIvj,w + K̄γ ,xj,yi Iuj,wIvi,w

] }
+ Op(n−1).

(A.18)

5 The proof for the general n1 6= n2 case is similar, but much more tedious
notationally.
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Using the fact that p̂−1 = Op(1) (p̂ = p̂f (w) or p̂ = p̂g(w)) and
by the same argument used in the proof of I1n = Op(n−1), one can
easily show that J1n = Op(n−1).
Next, we consider J2n. Using the fact that p̂ − p = Op(n−1/2)

(p = pf (w) or p = pg(w)), the following expansion immediately
follows:

1
p̂
=
1
p
+
p− p̂
p2
+ Op(n−1),

1
p̂2
=
1
p2
+
2(p− p̂)
p3

+ Op(n−1).
(A.19)

Define the leave-two-out estimators p̂f ,−(ij) = (n −
2)−1

∑n
l6=i,j Iul,w , and p̂g,−(ij) = (n − 2)−1

∑n
l6=i,j Ivl,w . From p̂f =

n−1
∑n
l=1 Iul,w and p̂g = n

−1∑n
l=1 Ivl,w , it is easy to see that p̂f =

p̂f ,−(ij) + Op(n−1) and p̂g = p̂g,−(ij) + Op(n−1) (uniformly in i, j =
1, . . . , n). Hence, we can replace p̂f and p̂g in (A.18) by p̂f ,−(ij) and
p̂g,−(ij) without affecting the asymptotic behavior of J2n.
Hence, substituting (A.19) into (A.18), and using the leave-two-

out estimators p̂f ,−(ij) and p̂g,−(ij) to replace p̂f and p̂g , we obtain

J2n = Ja2n + J
b
2n + Op(n

−1), (A.20)

where Ja2n is obtained from J2n by replacing p̂f and p̂g by pf and pg
in J2n, i.e.,

Ja2n =
1

n(n− 1)

n∑
i=1

n∑
j6=i

∑
w∈Sw

[
K̄γ ,xi,xj Iui,wIuj,w

p2f
+
K̄γ ,yi,yj Ivi,wIvj,w

p2g

−
1
pf pg

[
K̄γ ,xi,yj Iui,wIvj,w + K̄γ ,xj,yi Iuj,wIvi,w

] ]

≡
1

n(n− 1)

n∑
i=1

n∑
j6=i

Han,ij,

where Han,ij =
∑

w∈Sw
{K̄γ ,xi,xj Iui,wIuj,w/p

2
f + K̄γ ,yi,yj Ivi,wIvj,w/p

2
g

− [K̄γ ,xi,yj Ivi,z Ivj,w + K̄γ ,xj,yi Iuj,wIvi,w]/(pf pg)}, and

Jb2n =
1

n(n− 1)(n− 2)

×

n∑
i=1

n∑
j6=i

n∑
l6=i,j

∑
w∈Sw

{
2(pf − Iul,w)

p3f
K̄γ ,xi,xj Iui,wIuj,w

+
2(pg − Ivl,w)

p3g
K̄γ ,yi,yj Ivi,wIvj,w −

[
(pg − Ivl,w)
pf p2g

+
(pf − Iul,w)
pgp2f

][
K̄γ ,xi,yj Iui,wIvj,w + K̄γ ,xj,yi Iuj,wIvi,w

]}
.

We will first analyze Ja2n. J
a
2n is a second order U-Statistic.

Below we show that it is a degenerate U-statistic. Letting Zi =
(Xi, Vi, Yi,Wi), we have

E
(
Han,ij|Zi

)
=

∑
w∈Sw

{
Iui,w
pf

[
p−1f E

(
K̄γ ,xi,xj Iuj,w|Zi

)
− p−1g E

(
K̄γ ,xi,yj Ivj,w|Zi

)]
+
Ivi,w
pg

[
p−1g E

(
K̄γ ,yi,yj Ivj,w|Zi

)
− p−1f E

(
K̄γ ,xj,yi Iuj,w|Zi

)] }
= 0, (A.21)

because p−1f E(K̄γ ,xi,xj Iuj,w|Zi)−p
−1
g E(K̄γ ,xi,yj Ivj,w|Zi) =

∫
[f (x, w)/

pz(w)]K̄γ ((x− xi)/h)dx−
∫
[g(x, w)/pg(w)]K̄γ ((x− xi)/h)dx = 0

since f (x, w)/pf (w) = g(x, w)/pg(w) under Hc0 .
By utilizing the CLT of Hall (1984) for degenerate U-statistics,
one can show that

(n2h1 . . . hq)−1/2Ja2n/σn,J → N(0, 1) in distribution, (A.22)

where

σ 2n,J =
2(h1 . . . hq)

n2

n∑
i=1

n∑
j6=i

∑
w∈Sw

E{(K̄γ ,xi,xj Iui,wIuj,w)
2pf (w)−4

+ (K̄γ ,yi,yj Ivi,wIvj,w)
2pg(w)−4 + [(K̄γ ,xi,yj Iui,wIvj,w)

2

+ (K̄γ ,yi,xj Ivi,wIuj,w)
2
](pf (w)pg(w))−2}.

It is straightforward to show that σ̂ 2n,J = σ 2n,J + op(1). Hence, we
have

(n2h1 . . . hq)−1/2Ja2n/σ̂n,J → N(0, 1) in distribution. (A.23)

Next, we consider Jb2n.Wewill show that J
b
2n has an order smaller

than that of Ja2n. Because we only need to evaluate the order of J
b
2n,

we will omit
∑

w∈Sw
to simplify notation. Alternatively, one can

observe that, for eachw ∈ Sw , we derive an upper bound for Jb2n(w)
for any fixed value of w. Since Sw is a finite set, the same bound
holds true for maxw∈Sw |J

b
2n(w)|.

Noting that Jb2n contains three summations, it can therefore be
written as a third order U-statistic:

Jb2n =
1

3n(n− 1)(n− 2)

n∑
i=1

n∑
j6=i

n∑
l6=i,j

[
Jbn,ijl + J

b
n,jil + J

b
n,lji

]
≡

1
3n(n− 1)(n− 2)

n∑
i=1

n∑
j6=i

n∑
i6=j,l

Hbn,ijl,

where Hbn,ijl = J
b
n,ijl + J

b
n,jil + J

b
n,lji,

Jbn,ijl =
2
p3f
(pf − Iui,w)K̄γ ,xl,xj Iul,wIuj,w

+
2
p3g
(pg − Ivi,w)K̄γ ,yl,yj Ivl,wIvj,w

−

[
(pg − Ivi,w)
pf p2g

+
(pf − Iui,z)
pgp2f

]
×
[
K̄γ ,xl,yj Iul,wIvj,w + K̄γ ,xj,yl Iuj,wIvl,w

]
.

LetZi = (Xi, Yi,Ui, Vi). Belowwe show that E(Hbn,ijl|Zi) = 0 under
Hb0 . Note that

E(Hbn,ijl|Zi) = E(J
b
n,ijl|Zi)+ E(J

b
n,jil|Zi)+ E(J

b
n,lji|Zi).

From E(pf − Ivj,z) = 0 we immediately have E(J
b
n,jil|Zi) = 0 and

E(Jbn,lji|Zi) = 0. Now,

E
(
Jbn,ijl|Zi

)
= (pf − Iui,w)p

−2
f

[
2p−1f E

(
K̄γ ,xl,xj Iul,wIuj,w

)
− p−1g E

(
K̄γ ,xl,yj Iul,wIvj,w

)
− p−1g E

(
K̄γ ,xj,yl Iuj,wIvl,w

)]
+ (pg − Ivi,w)p

−2
g

[
2 p−1g E

(
K̄γ ,yl,yj Ivl,wIvj,w

)
− p−1f E

(
K̄γ ,xl,yj Iul,wIvj,w

)
− p−1f E

(
K̄γ ,xj,yl Iuj,wIvl,w

)]
= 0,

by the same arguments as we used in the proof of E(Han,ij|Zi) = 0
(since f (x, w)/pf (w) = g(x, w)/pg(w)). Hence, E(Han,ijl|Zi) = 0,
and Jbn is a degenerate U-statistic. Define H

b
n,ij = E(H

b
n,ijl|ZI ,Zj).

Then by a standard change-of-variables argument, one can show
that

1
n(n− 1)

n∑
i=1

n∑
j6=i

Hbn,ij
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=
1

n(n− 1)

n∑
i=1

n∑
j6=i

Hbn,ij,0 + Op(|h|
2n−1), (A.24)

where |h|2 =
∑q
s=1 h

2
s , and

Hbn,ij,0 = E(H
b
n,ijl|Zi,Zj) = 2p

−3
f (pf − Iui,w)f (xj, w)Iuj,w

+ 2p−3g (pg − Ivi,w)g(yj, w)Ivj,w

−

[
(pg − Ivi,w)
pf p2g

+
(pf − Iui,z)
pgp2f

]
×
[
f (yj, w)Ivj,w + g(xj, w)Iuj,w

]
.

Therefore, by the U-statistic H-decomposition (see Lee (1990)),
we have Jb2n = J

b
2n,0 + Op(n

−1), where Jb2n,0 =
1

n(n−1)

∑n
i=1
∑n
j6=i

Hbn,ij,0. Note that E(H
b
n,ij,0|Zi) = 0, i.e., Jb2n,0 is a degenerate

U-statistic. Also note that Hbn,ij,0 is unrelated to the smoothing
parameters (h1, . . . , hq). Then it is easy to show that E[(Jb2n,0)

2
] =

O(n−2), which implies that Jb2n,0 = Op(n−1). This together with
(A.24) lead to

Jb2n = Op
(
n−1

)
= op

((
n2h1 . . . hq

)−1/2)
. (A.25)

Combining (A.17), (A.20), (A.23) and (A.25), and the fact that
J1n = Op(n−1), this completes the proof of Theorem 3.1. �
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