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Data-Driven Bandwidth Selection for
Nonstationary Semiparametric Models

Yiguo SUN
Department of Economics, University of Guelph, Guelph, ON, Canada N1G 2W1 (yisun@uoguelph.ca)

Qi LI
Department of Economics, Texas A&M University, College Station, TX 77843-4228 (qi@econmail.tamu.edu)

This article extends the asymptotic results of the traditional least squares cross-validatory (CV) bandwidth
selection method to semiparametric regression models with nonstationary data. Two main findings are that
(a) the CV-selected bandwidth is stochastic even asymptotically and (b) the selected bandwidth based on
the local constant method converges to 0 at a different speed than that based on the local linear method.
Both findings are in sharp contrast to existing results when working with weakly dependent or independent
data. Monte Carlo simulations confirm our theoretical results and show that the automatic data-driven
method works well.

KEY WORDS: Integrated time series; Local constant; Local linear; Semiparametric varying-coefficient
model.

1. INTRODUCTION

It is well known that the capability of selecting the opti-
mal smoothing parameter is crucial to the application of non-
parametric estimation techniques. For independent and weakly
dependent data, plug-in methods and (generalized) cross-
validation (CV) methods have been incorporated into many
popular software packages, and the corresponding asymptotic
theory has been well developed (e.g., Härdle and Marron 1985).
However, to the best of our knowledge, no asymptotic analy-
sis exists for studying the performance of bandwidth selection
methods when integrated time series data are involved, even
though nonparametric/semiparametric estimation of regression
models with integrated processes has recently attracted much
attention among econometricians and statisticians (see, e.g.,
Juhl 2005; Karlsen, Myklebust, and Tjostheim 2007; Cai, Li,
and Park 2009; Phillips 2009; Wang and Phillips 2009a, 2009b;
Xiao 2009). This article aims to fill this gap.

We focus on a particular type of semiparametric model, the
semiparametric varying-coefficient model with integrated re-
gressors. Cai, Li, and Park (2009) and Xiao (2009) derived
the asymptotic properties of kernel estimators for this model,
but used ad hoc methods for selecting the smoothing parame-
ter. In this article we suggest using the least squares CV (LS–
CV) method to choose the smoothing parameter and examine
the asymptotic properties of this data-driven method–selected
smoothing parameter. We consider the following semiparamet-
ric model:

Yt = XT
t β(Zt) + ut, 1 ≤ t ≤ n, (1.1)

where Yt, Zt, and ut are scalars, Zt and ut are stationary variables
with E(ut|Zt) = 0 for all t, Xt is a p × 1 vector containing some
nonstationary components, and β(Zt) is a p × 1 vector of un-
specified smooth functions. In situations where all of the vari-
ables are weakly dependent or iid, model (1.1) was considered
by Chen and Tsay (1993), Cai, Fan, and Yao (2000), and Zhou
and Liang (2009), among others. When Zt = t, Equation (1.1)
was considered by Robinson (1989) and Cai (2007). Model

(1.1) adds extra flexibility to a linear cointegrating regression
model by allowing the cointegrating vector to be smooth func-
tions of some stationary variables. If some or all of the coeffi-
cient functions are constant, then model (1.1) becomes a par-
tially linear or linear cointegrating regression model. Thus our
asymptotic result also covers the popular partially linear model;
see Section 2.4 for a more detailed discussion of this.

To estimate the unknown coefficient curve β(·) in model
(1.1), we apply both the local constant and the local linear re-
gression approaches. The local constant (LC) estimator of β(z)
is given by

β̂(z) =
[

n∑
t=1

XtX
T
t Kh,tz

]−1 n∑
t=1

XtYtKh,tz, (1.2)

where Kh,tz = h−1K(Zt−z
h ), K(·) is a kernel function, and h is

the smoothing parameter. The local linear estimator of β(z),
along with the estimator of its derivative function β(1)(z) =
dβ(z)/dz, is given by

(
β̂(z)

β̂(1)(z)

)
=
[

n∑
t=1

Kh,tz

(
1 Zt − z

Zt − z (Zt − z)2

)
⊗ (XtX

T
t )

]−1

×
n∑

t=1

Kh,tz

(
Xt

Xt(Zt − z)

)
Yt, (1.3)

where “⊗” denotes the Kronecker product.
In this article we are interested in studying the asymptotic

properties of the LS–CV–selected bandwidth for both the local
constant and the local linear estimator defined earlier when Xt

contains integrated covariates. We show that the CV-selected
bandwidth is stochastic even asymptotically, and that the CV-
selected bandwidth for the local constant estimator and the local
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linear estimator converge to 0 at different speeds. Both findings
are in sharp contrast to the existing results obtained for indepen-
dent and weakly dependent data cases. We show that the local
linear estimation method has smaller estimated mean squared
error than the local constant estimation method. We also show
that the asymptotic properties of the CV-selected bandwidth re-
main unchanged when the I(1) regressor is correlated with the
error term ut, provided that the correlation between the I(1) re-
gressor and the error term ut is not overly persistent [see Equa-
tion (2.7) for the detailed condition].

To simplify notation/proofs without affecting the essence of
our results, we give our theories and proofs for scalar cases; that
is, Xt is a scalar I(1) variable in Section 2, and Xt = (Xt1,Xt2)

T

is a 2 × 1 vector, with Xt1 an I(0) variable and Xt2 an I(1) vari-
able in Section 3. Allowing higher dimensions in Xt will only
make the mathematical representation of the asymptotic results
more complicated without providing any additional insight into
the problem.

The rest of the article is organized as follows. Section 2 de-
scribes the cross-validation method and derives asymptotic re-
sults when Xt in model (1.1) is an I(1) variable. Section 3 pro-
vides asymptotic analysis when Xt = (Xt1,Xt2)

T , where Xt1 is
an I(0) variable and Xt2 is an I(1) variable. Section 4 presents
Monte Carlo simulations. We relegate all mathematical proofs
to two appendices.

2. CROSS–VALIDATION METHOD WITH
AN I(1) COVARIATE

2.1 The CV Function and Regularity Conditions

Let ĥ be the data-driven bandwidth selected to minimize the
following LS–CV function:

CV(h) = 1

n2

n∑
t=1

[Yt − XT
t β̂−t(Zt)]2M(Zt), (2.1)

where 0 ≤ M(·) ≤ 1 is a nonnegative weight function that trims
out observations near the boundary of the support of Zt and
β̂−t(Zt) is the leave-one-out local constant or local linear es-
timator of β(Zt) defined in Section 1. Apparently, scaling the
CV function by n−2 rather than the conventional choice of n−1

is introduced purely for theoretical reasons, and this does not
affect the value of the selected bandwidth minimizing (2.1).
With a scale of n−2, CV(h) asymptotically has the same order
as
∫
(β̂(z)−β(z))2M(z)dz, because sup1≤t≤n ‖Xt‖2/n = Op(1).

Thus, CV(h) with the scale of n−2, can be roughly viewed as a
weighted version of the average squared error of the nonpara-
metric estimator β̂(·); we provide a more detailed discussion of
this point later.

To simplify notation, we write βt = β(Zt), β̂−t = β̂−t(Zt),
and Mt = M(Zt) for all t. Substituting (1.1) into (2.1) gives

CV(h) = 1

n2

∑
t

[XT
t (βt − β̂−t)]2Mt

+ 2

n2

∑
t

utX
T
t (βt − β̂−t)Mt + 1

n2

∑
t

u2
t Mt, (2.2)

where the last term does not depend on h. Thus minimiz-
ing CV(h) over h is equivalent to minimizing CV0(h), where
CV0(h) consists of the first two terms of CV(h),

CV0(h)
def= n−2

∑
t

[XT
t (βt − β̂−t)]2Mt

+ 2n−2
∑

t

utX
T
t (βt − β̂−t)Mt

= CV0,1 + 2CV0,2, (2.3)

where the definitions of CV0,1 and CV0,2 should be appar-
ent. In Appendix A we show that CV0,1 is the leading term

of CV0(h). With CV0,1 = n−1∑
t[ XT

t√
n
(βt − β̂−t)]2Mt, and by

supt |Xt|/√n = Op(1), we would expect CV0,1 to have the same
order as

∫
(β(z) − β̂(z))2M(z)dz.

We make the following assumptions:

A1 {Zt} is a strictly β-mixing stationary sequence of size
−(2 + δ′)/δ′ for some 0 < δ′ < δ < 1, and E|Zt|2+δ <

M < ∞. Define M = {z ∈ R : M(z) > 0} [the support
of the weight function M(·)]. We require that M be a
compact subset of R. Let f (z) be the pdf of Zt. Then
f (z) has bounded derivatives (uniformly in z ∈ M) up
to the fourth order, and infz∈M f (z) > 0.

A2 β(z) is not a linear function and is continuously differ-
entiable up to the fourth order over z ∈ M.

A3 Let Fnt = σ(Xi+1,Zi+1,ui : i ≤ t) be the smallest sigma
field containing the past history of {(Xi+1,Zi+1,ui)}t

i=0.
Here (ut, Fnt) is a martingale difference sequence with
E(u2

t |Fn,t−1) = σ 2
u < ∞ for all t and supt E(|ut|q|

Fn,t−1) < ∞ for some q > 2. In addition, the error
terms ut are independent of {(Xt,Zt)}n

t=1.
A4 The kernel function K(·) is a symmetric (around 0)

bounded probability density function on the interval
[−1,1].

A5 nh3(ln n)2 → 0, h[ln(n)]4 → 0, and n1−εh → ∞ for
some (arbitrarily) small ε > 0, as n → ∞.

A6 Let vt = �Xt = Xt − Xt−1 and ηt(z) = et(z) − E(et(z)),
where et(z) = (β(Zt) − β(z))Kh,tz and Kh,tz = h−1 ×
K((Zt − z)/h). The partial sums of the vector process
(vt, ηt,utKh,tz) follow a multivariate invariance princi-
ple,

[ Bn,x(r)
Bn,β,z(r)
Bn,u,z(r)

]
=
⎡
⎢⎣

n−1/2∑[nr]
t=1 vt

(nh)−1/2∑[nr]
t=1 ηt(z)√

h/n
∑[nr]

t=1 utKh,tz

⎤
⎥⎦


⇒
[ Bx(r)

Bβ,z(r)
Bu,z(r)

]
def= BM(0,�), (2.4)

where BM(0,�) denotes a Brownian motion with
mean 0 and finite nonsingular variance–covariance ma-
trix �. Here [a] is the integer part of a and r ∈ [0,1].

A6* On a suitable probability space, there exists a vector
Brownian process, BM(0,�), with mean 0 and finite
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nonsingular variance–covariance matrix such that

(i) sup
r∈[0,1]

|Bn,x(r) − Bx(r)| = op(1),

sup
1≤t≤n

|Xt| = O
(√

n ln ln n
)

almost surely; (2.5)

(ii) sup
z∈M

sup
r∈[0,1]

∣∣∣∣
[

Bn,β,z(r)
Bn,u,z(r)

]
−
[

Bβ,z(r)
Bu,z(r)

]∣∣∣∣
= op(1). (2.6)

Assumptions A1 and A2 impose a β-mixing weak depen-
dence condition on Zt and some moments and smoothness con-
ditions on f (z) and β(z). Assumption A3 assumes that ut is a
martingale difference process independent of {(Xt,Zt)}n

t=1, and
this assumption significantly simplifies our proofs. Later we
discuss how to relax Assumption A3 in two ways: (a) allow-
ing for ut to be a stationary mixing process in Assumption A3′,
which relaxes the martingale difference assumption, and (b) al-
lowing ut to be correlated with (Xt,Zt) in Assumption A3′′,
which removes the independence assumption. Assumptions A4
and A5 impose mild conditions on the kernel function and the
bandwidth h. The kernel function with a compact support is not
essential and can be removed at the cost of a lengthy proof. As-
sumption A5 implies that nh/[ln(n)]d → ∞ for any constant
d > 0.

In Assumption A6, the weak convergence of the vector of the
partial sums holds under some standard regularity conditions,
such as strong mixing of {(vt,Zt,ut)} with some moment con-
ditions. Assumption A6* imposes strong convergence results
on the partial sums. Similar conditions were used by Wang and
Phillips (2009a). Note that Equation (2.6) in Assumption A6*
requires a uniform convergence result of (Bn,β,z(r),Bn,u,z(r))
over z ∈ M. Equation (2.5) is a result of the functional law of
the iterated logarithm (see Rio 1995).

Under Assumptions A1–A3, Bx(r), Bβ,z(r), and Bu,z(r) are
independent of one another because the asymptotic covariances
between each pair of the partial sums Bnx(r), Bn,u,z(·), and
Bn,β,z(·) are 0, with the variances of Bβ,z(r) and Bu,z(r) given
by σ 2

1 (z) = limn→∞ var(
∑[nr]

t=1(nh)−1/2η1,nt(z)) = ν2(K) ×
[β(1)(z)]2f (z) and σ 2

2 (z) = limn→∞ var(
√

h/n
∑[nr]

t=1 utKh,tz) =
σ 2

u v0(K)f (z), respectively, with νj(K) = ∫ ujK2(u)du. In Sec-
tion 2.3, we show that the independence between Bx(r) and
Bu,z(r) also holds under the “weaker” Assumption A3′′. Write
Wβ(r) = Bβ,z(r)/σ1(z) and Wu(r) = Bu,z(r)/σ2(z). Then
(Wβ(r),Wu(r)) is a bivariate standard Brownian motion vec-
tor independent of the stochastic process Bx(r).

The foregoing assumptions exclude the cases where the er-
ror term ut is serially correlated and the integrated variables
are endogenous. These assumptions are imposed to simplify the
proofs and can be replaced by the weaker Assumption A3′, or
by Assumption A3′′.

A3′ Same as Assumption A3 with this exception: Instead of
assuming that ut is a martingale difference process, ut
is a strictly stationary α-mixing process with mean 0,
variance σ 2

u < ∞, and mixing coefficients α(τ) ≡ ατ

satisfying ατ = O(τ−p) for some p > δ1/(δ1 − 2) and
δ1 > 2. Also, E(|ut|δ1) is finite.

The following (endogeneity) assumption is motived by
Saikkonen’s (1991) idea. Assumption 2 of Wang and Phillips
(2009b) is in a similar spirit but more general than ours, be-
cause their assumption 2 allows a potential nonlinear relation
between ut and vs.

A3′′ The following representation of ut allows Xt to be en-
dogenous:

ut =
k0∑

j=−k0

αjvt−j + εt, (2.7)

where {εt}n
t=1 is independent of {(vt,Zt)}n

t=1 and k0 is
a nonnegative integer. In addition, ωt = (εt, vt)

T is a
strictly stationary β-mixing process with mean 0 and
mixing coefficients β(τ) ≡ βτ satisfying βτ = O(τ−q)

for some q > 2(1 + δ′)/δ′ and 0 < δ′ < δ < 1, and ωt

has a finite fourth moment. In addition, lim var(n−1/2 ×∑n
t=1 ωt) is a finite, positive definite matrix. Moreover,

E(u2
t |zt = z) is continuously differentiable up to the sec-

ond order over z ∈ M.

Here we mainly use Assumption A3 (along with other as-
sumptions) to prove the main results of the article. In supple-
mental Appendix B (available from the authors on request), we
briefly discuss how the proofs can be modified so that our re-
sults remain valid even when Assumption A3 is replaced by
Assumption A3′ or by Assumption A3′′.

2.2 Main Results

In this section we present the asymptotic results of ĥ min-
imizing (2.1) where the leave-one-out estimator can be either
the local constant or the local linear estimator. The results are
given in Theorem 2.1 for the local constant estimation case and
in Theorem 2.2 for the local linear estimation case.

Theorem 2.1. Let ĥlc denote the cross-validation–selected
bandwidth based on the local constant estimation method. Un-
der Assumptions A1–A5 and A6*, and assuming that β(z) is
not a constant function, we have

(i) CV(h)− 1

n2

n∑
t=1

u2
t M(zt)−CVlc,L(h) = op(h/n+(n2h)−1),

(2.8)

where

CVlc,L(h) = h

n
ν2(K)B−1

x,(2)

[∫
M(z)

(
β(1)(z)

)2
dz

]
ζ 2
β,2

+ 1

n2h
ν0(K)σ 2

u

∫
M(z)dz B−1

x,(2)ζ
2
u,1, (2.9)

Bx,(2) = ∫ 1
0 B2

x(r)dr, ζi,j = ∫ 1
0 Bj

x(r)dWi(r) for i = β,u and j =
1,2;

(ii)
√

nĥlc − σu

√√√√ ζ 2
u,1ν0(K)

∫
M(z)dz

ζ 2
β,2ν2(K)

∫
M(z)[β(1)(z)]2 dz

p→ 0.

(2.10)
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The proof of Theorem 2.1 is given in Appendix A. The-
orem 2.1(i) states that, apart from a term (n−2∑

t u2
t Mt) that

does not depend on h, CVlc,L(h) is the leading term of CV(h).
This leading term consists of two parts: the Op(h/n) term cor-
responding to the leading bias term, and the (n2h)−1 term from
the leading variance term. The selected bandwidth balances
these two terms, and we obtain ĥlc = Op(n−1/2), as stated in
Theorem 2.1(ii).

A fundamental difference between the result presented in
Theorem 2.1 and previously reported results (when dealing with
independent or weakly dependent data) is that the “optimal”
bandwidth is stochastic even asymptotically. More specifically,
let the CV-selected bandwidth be ĥlc = ĉn−α . With weakly de-
pendent or independent data, it is well known that α = 1/5 and

ĉ
p→ copt, where copt > 0 is a nonstochastic (optimal) constant

so that ĥlc/hopt
p→ 1, and hopt = coptn−1/5 is the nonstochastic

benchmark (optimal) bandwidth (see Härdle, Hall, and Marron
1992). In contrast, when Xt is an I(1) process, Theorem 2.1
states that α = 1/2, and that ĉ does not converge to a non-
stochastic constant, but instead ĉ has a well-defined nondegen-
erate limiting distribution. Simulation results in Section 4 con-
firm the theoretical results of Theorem 2.1. There we show that,
as the sample size n increases, ĥlc shrinks to 0, whereas ĉ has a
stable nondegenerate distribution. The next theorem describes
the asymptotic behavior for the LL–CV–selected bandwidth.

Theorem 2.2. Let ĥll denote the CV-selected bandwidth
based on the local linear estimation method. Under Assump-
tions A1–A5 and A6*, we have

(i) CV(h) − n−2
n∑

t=1

u2
t Mt − CVll,L(h) = op(h

4 + (n2h)−1),

(2.11)

where

CVll,L(h) = (1/4)h4Bx,(2)κ
2
2 E
[(

β
(2)
t
)2

Mt
]

+ (n2h)−1ν0(K)σ 2
u B−1

x,(2)ζ
2
u,1

∫
M(z)dz, (2.12)

κ2 = ∫ v2K(v)dv, and β
(2)
t = d2β(z)/dz2|z=Zt ;

(ii) n2/5ĥll −
(4σ 2

u ν0(K)
∫

M(z)dz ζ 2
u,1

B2
x,(2)κ

2
2 E[(β(2)

t )2Mt]

)1/5
p→ 0. (2.13)

The proof of Theorem 2.2 is given in supplemental Ap-
pendix B, where we show that CVll,L(h) = Op(h4 + (n2h)−1).
The Op(h4) term corresponds to the leading bias term, and the
Op(n2h)−1 term is the leading variance term. The “optimal”
h balancing the two terms has an order of n−2/5. We explain
why the leading bias term from the LL estimation method dif-
fers from that obtained from the LC estimation method in Sec-
tion 2.3.

Theorems 2.1 and 2.2 imply that CVlc,L(ĥlc) = Op(n−3/2)

and CVll,L(ĥll) = Op(n−8/5), respectively. Thus the LC–CV
method gives stochastically a larger average squared error than
that obtained from the LL–CV method, indicating that the LL–
CV method dominates the LC–CV method. This is in sharp
contrast to the existing results obtained for independent or

weakly dependent data, because it is well known that for inde-
pendent or weakly dependent data cases, the CV functions for
the local constant and the local linear methods have the same
rate of convergence.

Note that the result of Theorem 2.1 requires that β(z) be a
nonconstant function, and that Theorem 2.2 assumes that β(z)
is nonlinear in z. Here we briefly comment on what happens if
these assumptions are violated. First, if Pr{β(Zt) = c} = 1 for
some constant c, then the true model reduces to a linear coin-
tegration model. Ideally, one would like to select a sufficiently
large h in this case, because when h = +∞, β̂(z) becomes the
least squares estimator of the constant parameter c. However,
it can be shown that neither ĥlc nor ĥll will converge ∞ in this
case. Moreover, h will not converge to 0, so our Theorems 2.1
and 2.2 do not cover the case where β(·) is a constant function.
We conjecture that the CV-selected bandwidth has a tendency
to take large positive values but will not diverge to infinity even
as n → ∞. Simulations reported in Section 4 support our con-
jecture. The asymptotic behavior of the CV-selected bandwidth
when the true regression model is linear (β is a constant) is
quite complex, and it is beyond our present capabilities to de-
rive the asymptotic distribution of the CV-selected bandwidth
in this case.

Next, if Pr{β(Zt) = a + bZt} = 1, or β(z) is a linear func-
tion in z, then it can be shown that in this case, Theorem 2.1
still holds true so that ĥlc = Op(n−1/2) (ĥlc still converges to 0),
whereas ĥll converges to neither 0 nor ∞. In Section 4 we use
simulations to investigate the behavior of ĥcv when β(z) = a
and β(z) = a + bz. We also examine a spurious regression case
where β(z) ≡ 0 and ut is an I(1) process. The theoretical in-
vestigation of ĥcv under a spurious regression model is quite
complicated and is beyond the scope of this article.

2.3 Endogenous Regressor Case

For a linear cointegration model, it is well known that when
Xt and ut are correlated, the ordinary least squares (OLS) esti-
mator of the cointegrating coefficient is still n-consistent but has
an additional bias term of order n−1 (see Phillips and Hansen
1990; Phillips 1995). Recently, Wang and Phillips (2009b, the-
orem 3.2) considered a nonparametric cointegration model and
showed that the asymptotic analysis remains unchanged even
when Xt is correlated with ut, provided that the correlation is
not overly persistent. However, Wang and Phillips’ framework
is quite different from the semiparametric model that we con-
sider here, because in their model, the nonstationary variable
enters the model nonparametrically, whereas in our semipara-
metric model, the nonparametric component Zt is a stationary
variable. To the best of our knowledge, in the framework of a
semiparametric varying-coefficient model with I(1) regressors,
the endogeneity issue has not been addressed. A priori, it is not
clear whether an endogenous regressor will lead to a nonneg-
ligible bias term. In this section we show that the asymptotic
distribution of β̂(z) remains unchanged when Xt is correlated
with ut under some standard regularity conditions. For exposi-
tional simplicity, we consider only the local constant estimator
in this section; a similar result can be shown to hold true for the
local linear estimator.
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Let Kh,tz = h−1K((Zt − z)/h). Then the local constant esti-
mator of β(z) is given by

β̂(z) = β(z) +
(

1

n2

n∑
t=1

X2
t Kh,tz

)−1

×
{

1

n2

n∑
t=1

X2
t

(
β(Zt) − β(z)

)
Kh,tz + 1

n2

n∑
t=1

XtutKh,tz

}

≡ β(z) + A−1
1n (A2n + A3n), (2.14)

where the definitions of Ajn should be apparent (j = 1,2,3). Al-
lowing Xt and ut to be correlated may affect the asymptotic be-
havior only of A3n, because other terms do not depend on ut. We
show that the asymptotic behavior of A3n remains unchanged
when Assumption A3 is replaced by Assumption A3′′. There-
fore, our result remains the same even when Xt is correlated
with ut.

Using Xt =∑t
s=1 vt, we have A3n = n−2∑n

t=2 Xt−1utKh,tz +
n−2∑n

t=1 vtutKh,tz, where the stochastic property of vt is de-
scribed in Assumption A3′′. If ut is a martingale difference
sequence as defined in Assumption A3, or if Xt is strictly ex-
ogenous with E(ut|Zt) = 0, we have E(A3n) = 0. However, al-
lowing Xt to be endogenous and ut to be serially correlated
generally leads to E(A3n) = 0. Assumption A3′′ ensures that
supz∈M n−1∑n

t=1 |vtut|Kh,tz = Op(1), and applying Assump-
tion A6 and theorem 4.1 of De Jong and Davidson (2000) gives

n
√

hA3n =
n∑

t=1

Xt√
n

ut√
n

√
hKh,tz

d→
∫ 1

0
Bx(r)dBu,z(r) + �,

(2.15)

where � = limn→∞ �n with �n ≡ E(
√

h/n
∑n

t=1 Xt−1utKh,tz).
We show � = 0 below. Let E(·|z) = E(·|Zt = z). We assume

that both E(v2
t |z) and E(u2

t |z) are bounded by a function (of z)
that has a finite second moment. By Assumptions A1 and A3′′,
{(Zt, vt,ut)}n

t=1 is a β-mixing process. Thus, applying lemma 1
of Yoshihara (1976), we obtain

|�n| ≤
√

h

n

n∑
t=1

t−1∑
s=1

|E(vsutKh,tz)|

≤ M

√
h

n

n∑
t=1

t−1∑
s=1

h−δ/(1+δ)|t − s|−qδ/(1+δ)

= O
(√

hh−δ/(1+δ)
(
1 − n1−qδ/(1+δ)

))= o(1). (2.16)

Hence, �n = o(1) and this implies that � = limn→∞ �n = 0.
Therefore, the bias term due to the correlation between

Xt and ut is asymptotically negligible, which differs from
the linear regression model case. Replacing Kh,tz by 1 in
(2.14), we obtain the OLS estimator of β . It is easy to see

that for a linear cointegration model, the bias term is �0
def=

E(n−1∑n
t=1 Xtut) = 0. In fact, it is easy to see that if both vs and

ut are iid series but with E(vtut) = 0, we have �0 = E(vtut) =
0. For our semiparametric model, even if E(vtut) = 0, we have
� = 0, because our bias term has an additional factor

√
hKh,tz

and E[√hKh,tz] = O(
√

h) = o(1).

We use the foregoing decomposition to provide an intuitive
explanation of Theorem 2.1 as to why CVlc,L(h) = Op(h/n +
(n2h)−1). Applying Hansen’s (1992) theorem 3.3 yields

A1n = n−2
n∑

t=1

X2
t Kh,tz = n−2

n∑
t=1

X2
t E(Kh,tz) + op(1)

d→ f (z)
∫ 1

0
B2

x(r)dr = Oe(1).

Here the notation Oe(an) means an exact probability order of
Op(an), but is not op(an).

Next consider A2n. By adding/subtracting terms, we rewrite
A2n = A2n,1 + A2n,2, where

A2n,1 = 1

n2

n∑
t=1

X2
t E
[
(β(zt) − β(z))Kh,tz

]

= c1n[h2 Bias(z) + O(h4)] (2.17)

with c1n = n−2∑n
t=1 X2

t , Bias(z) = (1/2)κ2[f (z)β(2)(z) +
f (1)(z)β(1)(z)], and κ2 = ∫ K(v)v2 dv. By Assumption A6 and
the independence between Bx(·) and Wβ(·), we have

A2n,2 =
√

h

n

∑
t

X2
t−1

n

ηt(z)√
nh

+
√

h

n

∑
t

Xt−1√
n

vtηt(z)√
nh

+ n−2
∑

t

v2
t ηt(z)

=
√

h

n

∑
t

X2
t−1

n

ηt(z)√
nh

+ Op
(
n−1

√
h + n−1h2)

=
√

h

n

[
f (z)
(
β(1)(z)

)2
ν2(K)

×
∫ 1

0
Bx(r)

2 dWβ(r) + op(1)

]
, (2.18)

where ηt(z) = et(z) − E(et(z)) and et(z) = (β(Zt) − β(z))Kh,tz.
Equation (2.17) shows that the order of A2n,1 is related to

E[et(z)], the mean part of et(z), whereas Equation (2.18) tells
us that the order of A2n,2 is determined by the variance part
of et(z) as ηt(z) has mean 0. With weakly dependent data, it
is well known that the mean part of et(z) dominates the vari-
ance part of et(z). However, if the local constant estimation
method is used to analyze integrated time series, then the vari-
ance part of et(z) dominates the mean part of et(z). To see
this, we square each term to get rid of the square root ex-
pressions, which gives A2

2n,1 = Op(h4), A2
2n,2 = Op(h/n), and

A2
3n = Op((n2h)−1). These results imply that A2

2n,2 + A2
3n =

Op(h/n + (n2h)−1) has a stochastic order larger than that of
A2

2n,1 = Op(h4).
The foregoing analysis also provides an explanation as to

why the leading term of the CV function, CVlc,L(h), con-
tains two terms of orders Op(h/n) and Op((n2h)−1), which
are related to the variances of et(z) and utKh,tz, respectively.
The Op(h4) term corresponding to the squared mean of et(z)
is asymptotically negligible. However, if the local linear esti-
mation method is used instead of the local constant method,

β(Zt)−β(Zs) must be replaced by R(Zt,Zs)
def= β(Zt)−β(Zs)−
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β(1)(Zt)(Zt − Zs). In this case the two leading terms, Op(h4)

and Op((n2h)−1) [of CVll,L(h)], correspond to the (squared)
mean of R(Zt,Zs)Kh,tz and the variance of utKh,tz, whereas the
term related to the variance of R(Zt,Zs)Kh,tz, which has order
Op(h4/n) (this term differs from the LC case), is asymptotically
negligible. Therefore, the reason for the different convergence
rates of CVlc(h) and CVll(h) is that, unlike in the weakly de-
pendent data case, the LC and the LL estimator have different
stochastic orders in An2.

It can be shown that the results of Theorems 2.1 and 2.2 hold
true when Xt and ut are correlated, but the proofs will be lengthy
and tedious and will provide no additional insight into the prob-
lem. Thus to save space, we do not pursue proofs for Theo-
rems 2.1 and 2.2 for the endogenous Xt case. In Section 4 we
report Monte Carlo simulations that allow Xt to be correlated
with ut. The simulation results reported there support the fore-
going theoretical analysis and show that the estimation results
are virtually unaffected whether or not Xt and ut are correlated.

2.4 A Partially Linear Varying-Coefficient Model

In this section we consider the CV selection of the band-
width h when estimating the following partially linear varying-
coefficient model:

Yt = ST
t γ + Xtβ(Zt) + ut, (2.19)

where St is a (d − 1) × 1 vector of I(1) variables, and γ is
a (d − 1) × 1 vector of constant parameters. For expositional
simplicity, we assume that Xt is a scalar I(1) variable. Note that
the foregoing partially linear model is a special case of a general
varying-coefficient model Yt = ST

t α(Zt) + Xtβ(Zt) + ut, where
the restriction that α(z) ≡ γ , a vector of constant parameters, is
imposed.

We propose using a profile least squares approach to esti-
mate γ . First, we treat γ as if it were known and rewrite (2.19)
as Yt − ST

t γ = Xtβ(Zt) + ut. Then the local constant estimator
of β(Zt) is given by

β̃(Zt) =
(∑

s

X2
s Kh,ts

)−1∑
s

Xs(Ys − ST
s γ )Kh,ts

≡ A2t − AT
1tγ, (2.20)

where A1t = (
∑

s X2
s Kh,ts)

−1∑
s XsSsKh,ts and A2t = (

∑
s X2

s ×
Kh,ts)

−1∑
s XsYsKh,ts. Note that β̃(Zt) defined in (2.20) is in-

feasible, because it depends on the unknown parameter γ . We
provide a feasible estimator for β(Zt) in (2.23). Replacing β(Zt)

by β̃(Zt) in (2.19) and rearranging terms, we obtain

Yt − XtA2t = (St − XtA1t)
Tγ + εt, (2.21)

where εt ≡ Yt − XtA2t − (St − XtA1t)
Tγ . Applying the OLS

method to model (2.21) leads to

γ̂ =
[∑

t

(St − XtA1t)(St − XtA1t)
T
]−1

×
∑

t

(St − XtA1t)(Yt − XtA2t). (2.22)

Replacing γ with γ̂ in (2.20), we obtain a feasible leave-one-
out estimator of β(Zt) given by

β̂−t(Zt) =
(∑

s =t

X2
s Kh,st

)−1∑
s =t

Xs(Ys − ST
s γ̂ )Kh,st. (2.23)

It can be shown that ST
t (γ − γ̂ ) has a stochastic order smaller

than Xt(βt − β̂−t). Thus the leading term of CV γ̂ (h) = n−2 ×∑n
t=1[Yt − ST

t γ̂ − Xtβ̂−t(Zt)]2Mt is given by CVγ (h) = n−2 ×∑n
t=1[Yt − ST

t γ − Xtβ̂−t(Zt)]2Mt. Obviously, CVγ (h) is the
same as CV(h) defined in (2.1). This is because if we de-
fine Ỹt = Yt − ST

t γ , then model (2.19) can be written as Ỹt =
Xtβ(Zt) + ut, which is identical to model (1.1). Thus the re-
sults of Theorem 2.1 remain valid for the partially linear model
(2.19).

The foregoing discussion is based on the local constant esti-
mation method. The local linear estimation method could be
used as well. In this case, β̃(z) in (2.20) is replaced by the
local linear estimator, which is also linear in γ . The remain-
ing estimation steps are similar to the local constant estimation
case discussed earlier. The asymptotic behavior of the LS–CV–
selected h is the same as presented in Theorem 2.2.

3. X t CONTAINS BOTH I(0) AND I(1) COMPONENTS

The results in Section 2 are obtained assuming that Xt con-
tains only I(1) components. This assumption simplifies our the-
oretical analysis and makes it easier to see why the LC and LL
estimation methods lead to different rates of convergence. How-
ever, in practice, a cointegration model also may include an
intercept term and some other stationary variables in addition
to some I(1) regressors. Therefore, in this section we investi-
gate the asymptotic behavior of the LS–CV–selected bandwidth
when Xt contains both I(0) and I(1) components. Specifically,
we consider Xt = (X1t,X2t)

T with X1t and X2t being I(0) and
I(1) variables, respectively. We replace Assumption A6* by the
following assumption:

B Let Xt = (X1t,X2t)
T , where X2t satisfies Assumption A6*

given in Section 2 and X1t is a strictly stationary β-mixing
sequence of size −(2 + δ′)/δ′ for some 0 < δ′ < δ with
E(|X1t|2+δ) < M < ∞. In addition, both E(X1t|Zt = z)
and E(X2

1t|Zt = z) are twice continuously differentiable
over z ∈ M.

Given that the local linear method has a smaller asymptotic
MSE than the local constant method, we consider only the local
linear estimation method in this section.

Theorem 3.1. Let ĥ denote the CV-selected bandwidth via
the local linear method. Under Assumptions A1–A5 and B, we
have

n2/5ĥ − c3n
p→ 0, (3.1)

where c3n is a well-defined Oe(1) random variable that is deter-
mined by (B1.2) and (B.13) in supplemental Appendix B.

Comparing the result of Theorem 3.1 with that of Cai, Li,
and Park (2009), we see that ĥ (defined in Theorem 3.1) is op-
timal for estimating β2(·), the coefficient function associated
with the integrated variable, because Cai, Li, and Park (2009)
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showed that the optimal h for estimating β1(·) should have an
order of n−1/5. The reason that the CV method selects an op-
timal h for estimating β2(·) is because XT

2tβ2(Zt) is the dom-
inant component of XT

1tβ1(Zt) + XT
2tβ2(Zt). Thus, to minimize

the CV function, one must choose an h that is optimal for es-
timating β2(·), the coefficient function of the I(1) covariate. In
the next section, we examine a two-step estimation method as
suggested by Cai, Li, and Park (2009) via Monte Carlo simula-
tions, where after obtaining β̂1(Zt) and β̂2(Zt) in the first step,
we use Yt − X2tβ̂(Zt) as the new dependent variable and esti-
mate β1(Zt) using a new CV-selected smoothing parameter in
the second step. We show that this two-step method leads to
improved estimation results for β1(z).

4. MONTE CARLO SIMULATIONS

4.1 Case (a): X t Is I(1)

We consider the following data-generating process (DGP):

Yt = Xtβ(Zt) + ut, Zt = 0.5Zt−1 + η3t, and

ut = (η2t + θη1t)/
√

1 + θ2,

where Xt = Xt−1 + η1t, (η1t, η2t)
T is iid N(0, I2), η3t is

iid Uniform[0,1], and X0 = 0. The data-generating mechanism
for ut is the same as that of Wang and Phillips (2009b). It is
easy to show that corr(�Xt,ut) = θ/

√
1 + θ2. We take two val-

ues for θ , θ = 0 and θ = 0.2, where the former case implies
that Xt and ut are independent of one another, whereas the lat-
ter case gives that corr(�Xt,ut) = 0.1961. Zt is a stationary
AR(1) process with the innovation η3t taking values in [0,1].

We consider four different DGPs and index them by DGPi,j,
specifically, i = 1 if θ = 0, i = 2 if θ = 0.2, j = 1 if β(z) =
1 + z + 2z2 whose value increases as z increases, and j = 2 if
β(z) = sin(3z), which is not monotone and has more curvature
than the quadratic function. Comparing DGP1,j with DGP2,j for
j = 1 and 2, we aim to show that Xt is allowed to be correlated
with ut as discussed in Section 2.3. Comparing DGPi,1 with
DGPi,2 for i = 1 and 2, we examine how extra curvature of
a coefficient function affects the finite-sample performance of
our proposed CV method.

The sample sizes are n = 100, 200, and 400. The number of
simulations is m = 1000. We report the square root of the av-
erage squared error, RMSE = √

AMSE, and the mean absolute
bias, MABIAS, where for the lth simulation, we define AMSEl =
n−1∑n

t=1(β(zt) − β̂l(zt))
2 and MABIASl = n−1∑n

t=1 |β(zt) −
β̂l(zt)|.

Figure 1 plots the kernel density functions of the CV-selected
constant ĉ and the bandwidth ĥ, where ĥ = ĉn−α with α = 1/2
for the LC–CV method and α = 2/5 for the LL–CV method.
Figure 1 is obtained from DGP2,1, where the dotted line repre-
sents n = 100, the dashed line represents n = 200, and the solid
line represents n = 400. As predicted by Theorems 2.1 and 2.2,
we see that the CV-selected bandwidth ĥ becomes smaller as
sample size increases, and that ĉ does not converge to a con-
stant as the estimated density function for ĉ is rather stable for
different sample sizes.

Table 1 reports the mean and standard deviation (over the
1000 replications) of the RMSE and the MABIAS. Several in-
teresting patterns are observed. First, the LL–CV method has

Figure 1. Kernel density estimate of CV-selected constant and
bandwidth.

smaller (mean value of) RMSE and MABIAS compared with
the LC–CV method. This is consistent with our theory, be-
cause the LL–CV method has smaller asymptotic MSE than the
LC–CV method, as shown in Theorems 2.1 and 2.2. Second,
the estimation efficiency gain of the LL–CV method over the
LC–CV method is more pronounced for DGPi1 than for DGPi2
for i = 1,2 when the unknown curve has more curvature (i.e.,
more nonlinearity). Third, comparing the results of DGP1,j with
DGP2,j for j = 1 and 2 confirms our theoretical analysis pre-
sented in Section 2.3 that the CV method is valid even when ut

and Xt are contemporaneously correlated.
To show how the CV-selected bandwidth behaves when β(·)

is constant, Table 2 reports the first quartile, median, mean,
and third quartile of the CV-selected bandwidths, along with
the RMSE and the MABIAS for the LC and LL kernel estima-
tors, where β(z) ≡ 1. The results for θ = 0.2 and θ = 0 are very
similar, so we only report the results for θ = 0. In addition, the
bandwidth has an upper bound of five times the interquartile
range of Zt (i.e., 9.45), because allowing the bandwidth to in-
crease further will improve the CV value only beyond the sixth
decimal point. In this case, with a much larger selected band-
width, the LC–CV method gives smaller RMSE and MABIAS
than the LL–CV method. We also see that the median value
of the LC–CV–selected h is quite stable and does not seem to
change as n increases. This result is consistent with our earlier
finding that when β(z) is a constant function, the CV method
tends to choose a large value of h, but the CV-selected h will
converge neither to ∞ nor to 0.

Table 3 reports the results when Xt and Yt are two indepen-
dent random-walk processes without drift (a spurious regres-
sion model). In this case the CV(h) objective function is quite
flat, and the RMSE and the MBIASE do not change much even
when the h changes substantially, resulting a wide range of se-
lected ĥcv, as shown in Table 3. Taken together, the results in
Tables 2 and 3 show that an unusually large LC–CV–selected
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Table 1. The LC–CV vs. the LL–CV method when Xt is an I(1) variable

RMSE MABIAS RMSE MABIAS

Method n Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

DGP11 DGP21

CV–LC 100 0.2828 0.0513 0.0213 0.0462 0.2864 0.0477 0.0224 0.0251
200 0.2203 0.0392 0.0174 0.2197 0.2223 0.0364 0.0137 0.0872
400 0.1701 0.0277 0.0073 0.0983 0.1714 0.0262 0.0043 0.0023

CV–LL 100 0.2229 0.0539 0.0114 0.0157 0.2325 0.0557 0.0148 0.0224
200 0.1669 0.0391 0.0052 0.0105 0.1737 0.0411 0.0066 0.0061
400 0.1249 0.0273 0.0022 0.0013 0.1296 0.0283 0.003 0.0014

DGP12 DGP22

CV–LC 100 0.2429 0.0508 0.0131 0.0159 0.2468 0.0504 0.0164 0.0241
200 0.1861 0.0365 0.0058 0.0107 0.1888 0.0366 0.0071 0.0058
400 0.1428 0.0263 0.0025 0.0025 0.1448 0.0263 0.0033 0.0022

CV–LL 100 0.2274 0.0524 0.0124 0.0156 0.2315 0.0525 0.0154 0.0109
200 0.1704 0.0385 0.0055 0.0108 0.1735 0.0383 0.0069 0.0064
400 0.1291 0.0272 0.0024 0.0018 0.1309 0.0271 0.0032 0.0017

ĥ may indicate β(z) = c, a constant, or may suggest a spurious
relationship between Yt and Xt. Further diagnostics are needed
to distinguish these two possibilities.

4.2 Case (b): X t Contains Both I(0) and I(1) Variables

We consider the following DGP:

Yt = X1tβ1(Zt) + X2tβ2(Zt) + ut, (4.1)

where X2t = X2,t−1 + η1t, X1t = 1 + 0.5X1,t−1 + η4t with
η4t ∼ iid N(0,1), ut and Zt are generated as in Section 4.1,
β1(z) = 1 + z + 2z2, and β2(z) = sin(3z). We use DGP3 and
DGP4 to denote the cases where θ = 0 and θ = 2, respectively.
For DGP4, corr(�X2t,ut) = 0.8944, a rather high contempora-
neous correlation.

Table 4 presents simulation results for two estimators: β̂(·),
the LL–CV estimator using the LL–CV–selected bandwidth ĥ,
and β̃1(·), the two-step LL–CV estimator for β1(·) in which we
construct a new dependent variable Yt − X2tβ̂2(Zt) and rees-
timate β1(Zt) in the second stage, where β̂2(Zt) is the first-
stage estimator of β2(Zt). We also selected a new bandwidth
via the LL–CV method in the second-stage estimation. We ob-
serve the following. First, the coefficient curve β2(·) associated
with the I(1) variable is estimated more accurately than the co-
efficient curve β1(·) associated with the I(0) variable. Second,

the second-step estimation of β1(·) by the LL–CV method per-
forms slightly better than the one-step estimation result of β1(·).
Finally, Table 4 also indicates that we do not need the strictly
exogenous assumption to validate the CV method.

APPENDIX A: PROOF OF THEOREM 2.1

We use the notation An = Bn +(s.o.) to denote that An = Bn +
terms are of smaller order than Bn. We denote βt = β(zt), β

(j)
t =

β(j)(zt) = djβ(z)/dzj|z=zt , β̂−t = β̂−t(zt), Kh,ts = h−1K((zt −
zs)/h) , ft = f (zt), Mt = M(zt), and

∑
s =t =∑n

s=1,s =t. Also,

νj(K) = ∫ ujK(u)2 du, κ2 = ∫ u2K(u)du, c1n = n−2∑n
t=1 x2

t ,
c2n = n−3∑n

t=1 x4
t , and M = {z ∈ R : M(z) > 0}.

Proof of Theorem 2.1

By (1.2), β̂−t = (
∑

s =t x2
s Kh,ts)

−1∑
s =t xsYsKh,ts. Replacing

Ys in β̂−t by Ys = xsβs +us = xsβt + xs(βs −βt)+us, we obtain

β̂−t = βt + Â−1
t (B̂t + Ĉt), (A.1)

where Ât = n−2∑
s =t x2

s Kh,ts, B̂t = n−2∑
s =t x2

s (βs − βt)Kh,ts,

and Ĉt = n−2∑
s =t xsusKh,ts.

Note that for cases of independent or weakly dependent data,
Â−1

t B̂t and Â−1
t Ĉt correspond to the bias and variance terms, re-

spectively. Therefore, for convenience we refer these two terms
as bias and variance terms.

Table 2. The LC–CV vs. the LL–CV method when Xt is an I(1) variable and β(z) ≡ 1

ĥ RMSE MABIAS

Method n h0.25 h0.5 hmean h0.75 Mean St. dev. Mean St. dev.

CV–LC 100 8.0816 8.3528 8.3508 8.6341 0.0166 0.0168 0.0167 0.0166
200 8.3893 8.6057 8.5907 8.8187 0.008 0.0081 0.0082 0.0077
400 8.6099 8.7869 8.7863 8.9654 0.0037 0.0043 0.0041 0.0039

CV–LL 100 8.0823 8.3528 8.3588 8.634 0.0271 0.0214 0.0234 0.0186
200 8.3893 8.6057 8.5991 8.8187 0.0132 0.0104 0.0114 0.0088
400 8.6099 8.7869 8.7863 8.9654 0.0066 0.0055 0.0059 0.0046
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Table 3. The LC–CV vs. the LL–CV method when Xt and Yt are independent random walk processes

ĥ RMSE MABIAS

Method n h0.25 h0.5 hmean h0.75 Mean St. dev. Mean St. dev.

CV–LC 100 0.1355 0.3146 2.6275 7.8475 0.7366 0.6379 0.7156 0.6332
200 0.1347 0.2912 2.5119 7.8823 0.6990 0.6113 0.6863 0.6089
400 0.1589 0.3265 2.5747 6.3165 0.7014 0.6320 0.6941 0.6307

CV–LL 100 0.2393 0.7662 3.8878 8.2403 0.7538 0.6425 0.7233 0.6335
200 0.1943 0.5494 3.5212 8.4263 0.7157 0.6239 0.6923 0.6086
400 0.2195 0.7223 3.6277 8.5907 0.7133 0.6443 0.6981 0.6344

Substituting (A.1) into CV0,1 defined in (2.3), we obtain

CV0,1 = n−2
∑

t

(xtÂ
−1
t B̂t)

2Mt + n−2
∑

t

(xtÂ
−1
t Ĉt)

2Mt

+ 2n−2
∑

t

x2
t Â−2

t B̂tĈtMt

≡ CV1 + CV2 + 2CV3, (A.2)

where the definitions of CVj (j = 1,2,3) should be apparent.
In Lemmas A.2–A.4 we show that

CV1 = (h/n)B−1
x,(2)ν2(K)E

[
Mtf

−1
t

(
β

(1)
t
)2]

×
[∫ 1

0
B2

x(r)dWβ(r)

]2

+ op(h/n + h3), (A.3)

CV2 = ν0(K)σ 2
u

n2h
B−1

x,(2)

[∫ 1

0
Bx(r)dWu(r)

]2 ∫
M(z)dz

+ op((n
2h)−1), (A.4)

CV3 = op(h/n), (A.5)

where Bx,(2) = ∫ 1
0 Bx(r)2 dr and Bx(r), Wβ(r), and Wu(r) are

as defined in Section 2.1. Under Assumptions A1–A3 and A6,
Wβ(r) and Wu(r) are standard Brownian motions independent
of the stochastic process Bx(r). Using similar arguments, it can
be shown that [CV0,2 is as defined in (2.3)],

CV0,2 = op(h/n) + Op
((

n2h1/2)−1)= op(h/n). (A.6)

Combining (A.3)–(A.6), we see that the leading term of
CV0(h) defined in (2.3) is given by

CVlc,L(h) = (h/n)ν2(K)B−1
x,(2)

× E
[
Mtf

−1
t

(
β

(1)
t
)2][∫ 1

0
B2

x(r)dWβ(r)

]2

+ ν0(K)σ 2
u

n2h
B−1

x,(2)

[∫ 1

0
Bx(r)dWu(r)

]2

×
∫

M(z)dz. (A.7)

Obviously, CVlc,L(h) is minimized at

h0 = σun−1/2

√√√√ ζ 2
u,1ν0(K)

∫
M(z)dz

ζ 2
β,2ν2(K)

∫
M(z)(β(1)(z))2 dz

= Oe
(
n−1/2), (A.8)

where ζij = ∫ 1
0 Bj

x(r)dWi(r) for i = β,u and j = 1,2.
The foregoing result can be extended to suph∈Hn

|CV0(h) −
CVlc,L(h)| = op(n−1/2), where Hn = (an−0.6,bn−0.4) for some
a > 0 and b > 0. This completes the proof of Theorem 2.1.

Lemma A.1. Under Assumptions A1, A2, A4, A5, and A6,
we have

sup
zt∈M

|Ât − μ̃1(zt)| = Op

(
(ln n)1/2

(nh)1/4

)
, (A.9)

where μ̃1(z) = (n−2∑
t x2

t )f (z) ≡ c1nf (z).

Table 4. The LC–CV vs. the LL–CV method when X1t is an I(0) variable and X2t is an I(1) variable

θ = 0 θ = 2

MABIAS RMSE MABIAS RMSE

Estimator n Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

β̂2(z) 100 0.0724 0.0355 0.1407 0.1231 0.0777 0.0417 0.1482 0.1181
200 0.0395 0.0182 0.0869 0.0761 0.042 0.0211 0.0962 0.0969
400 0.0216 0.0093 0.0567 0.0547 0.0225 0.0105 0.0601 0.0565

β̂1(z) 100 0.1577 0.0955 0.3313 0.5636 0.1616 0.0842 0.3153 0.3329
200 0.1061 0.0563 0.2233 0.3771 0.1082 0.0487 0.2246 0.2297
400 0.0744 0.0349 0.1734 0.2541 0.0745 0.0314 0.163 0.1622

β̃1(z) 100 0.146 0.0685 0.244 0.1784 0.1543 0.0738 0.2647 0.2191
200 0.1016 0.0457 0.1786 0.1243 0.1056 0.0441 0.1982 0.1486
400 0.0717 0.0293 0.1337 0.0894 0.0737 0.0291 0.1518 0.1114
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Proof. By (2.5), we have �t = Ât − μ̃1(zt) = n−2∑
s =t x2

s ×
est + O(n−1 ln ln n), where est = Kh,ts − f (zt) and E|est| = O(1)

for all s = t. We follow the proof technique of Hansen (1992,
pp. 497–498). For any small λ ∈ (0,1), let N = [λ−1] ([λ−1]
denote the integer part of λ−1), sk = [kn/N]+ 1, s∗

k = sk+1 − 1,
N∗ = N − 1, and s∗∗

k = min{s∗
k ,n}. Also denote Mn,s = n−1x2

s
for any s and Mn(r) = Mn,[nr] for r ∈ [0,1]. By Assump-
tion A1, and applying the continuous mapping theorem, we
have Mn(·) ⇒ B2

x(·). We then have∣∣∣∣n−2
∑
s =t

x2
s est

∣∣∣∣

≤
∣∣∣∣∣n−1

N∗∑
k=0

s∗∗
k∑

s=sk
s =t

Mn,sk est

∣∣∣∣∣+
∣∣∣∣∣n−1

N∗∑
k=0

s∗∗
k∑

s=sk
s =t

(
Mns − Mn,sk

)
est

∣∣∣∣∣

≤ sup
r∈[0,1]

Mn(r)n
−1

N∗∑
k=0

∣∣∣∣∣
s∗∗
k∑

s=sk
s =t

est

∣∣∣∣∣
+ sup

|r−r′|≤λ

|Mn(r) − Mn(r
′)|n−1

∑
s =t

|est|

= Op

(
h2 +

√
ln(nλ)

nλh

)
+ Op

(√
λ lnλ−1

)

= Op

(
(ln n)1/2

(nh)1/4

)
, (A.10)

where the last equality follows by choosing λ = (nh)−1/2, and
we also use the following results: by Assumption A6, we have

sup
r∈[0,1]

Mn(r) = Op(1), (A.11)

sup
|r−r′|≤λ

|Mn(r) − Mn(r
′)| = sup

|r−r′|≤λ

|B2
x(r) − B2

x(r
′)| + (s.o.)

= Op
(√

λ ln(λ−1)
)
. (A.12)

In addition, in deriving the third line of Equation (A.10) we use
theorem 6 of Hansen (2008):

sup
zt∈M

n−1
N∗∑

k=0

∣∣∣∣∣
s∗∗
k∑

s=sk

est

∣∣∣∣∣ ≤ sup
zt∈M

sup
s =t

1

nλ

∣∣∣∣∣
s+[nλ]∑

j=s

ejt

∣∣∣∣∣
= Op

(
h2 +√ln([nλ])/([nλ]h)

)
.

Lemma A.2. Under Assumptions A1, A2, A4, A5, and A6*,
(A.3) holds true.

Proof. Define CV0
1 by replacing Ât with μ̃1(zt) = c1nft

in CV1; that is, CV0
1 = n−2∑

t[xtB̂t/μ̃1(zt)]2Mt = n−2c−2
1n ×∑

t x2
t B̂2

t Mtf
−2
t , where B̂t = n−2∑

s =t x2
s est and est = (βs −

βt)Kh,ts. Equation (A.9) implies that CV0
1 is the leading term

of CV1.
We decompose B̂t into two terms: B̂t = n−2∑

s =t x2
s E(est|

zt) + n−2∑
s =t x2

s [est − E(est|zt)] = ω1t + ω2t, where the def-

initions of ω1t and ω2t should be obvious. Thus,

CV0
1 = n−2c−2

1n

∑
t

x2
t ω

2
1tMtf

−2
t + 2n−2c−2

1n

∑
t

x2
t ω1tω2tMtf

−2
t

+ n−2c−2
1n

∑
t

x2
t ω

2
2tMtf

−2
t

≡ �n1 + �n2 + �n3. (A.13)

We evaluate �nj for j = 1,2,3 separately. First, we define
et(z) = (β(zt) − β(z))Kh(zt − z). Simple calculations show that
E(et(z)) = h2B(z) + O(h4) holds uniformly over z ∈ M, where
B(z) = (κ2/2)[β(2)(z) + β(1)(z)f (1)(z)/f (z)]. This gives

sup
zt∈M

|ω1t| = Op(h
2) and �n1 = Op(h

4). (A.14)

Second, applying the same proof technique used in the proof of
Lemma A.1, we can derive the stochastic order for ω2t. Specif-
ically, we have

|ω2t| ≤
∣∣∣∣∣n−1

N∗∑
k=0

s∗∗
k∑

s=sk
s =t

Mn,sk [est − E(est|zt)]
∣∣∣∣∣

+
∣∣∣∣∣n−1

N∗∑
k=0

s∗∗
k∑

s=sk
s =t

(Mns − Mn,sk)[est − E(est|zt)]
∣∣∣∣∣

≤ sup
r∈[0,1]

Mn(r)n
−1

N∗∑
k=0

∣∣∣∣∣
s∗∗
k∑

s=sk
s =t

[est − E(est|zt)]
∣∣∣∣∣

+ sup
|r−r′|≤λ

|Mn(r) − Mn(r
′)|n−1

∑
s =t

∣∣est − E(est|zt)
∣∣

= Op

(√
h ln(nλ)

nλ

)
+ Op

(
h
√

λ lnλ−1
)

= Op
(
h(nh)−1/4(ln n)1/2) (A.15)

by choosing λ = (nh)−1/2, where we again use (A.11) and
(A.12). Also, applying theorem 2 of Hansen (2008) gives

sup
z∈M

∣∣∣∣∣n−1
n∑

t=1

(
et(z) − E[et(z)]

)∣∣∣∣∣
= Op

(√
(h2 ln n)/(nh)

)
= Op

(√
(h ln n)/n

)
. (A.16)

Combining (A.15) and |ω1t| = Op(h2) yields

sup
zt∈M

|B̂t| ≤ sup
zt∈M

|ω1(zt)| + sup
zt∈M

|ω2(zt)|

= Op
(
h2 + h(nh)−1/4(ln n)1/2)

= Op
(
h(nh)−1/4(ln n)1/2). (A.17)

By n−2∑
s x2

s = Op(1), it is easy to see that

�n2 = Op(1) sup
zt∈M

|ω1tω2t| = Op
(
h3(nh)−1/4(ln(n))1/2)

= op(h
3). (A.18)
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Finally, we consider �n3 = n−2c−2
1n

∑
t x2

t ω
2
2tMtf

−2
t . By As-

sumption A6*, (2.6) with σ1(z) = |β(1)(z)|√ν2(K)f (z), we

have 1
σ1(z)

√
nh

∑
s

x2
s
n [es(z) − E(es(z))] − ∫ 1

0 B2
x(r)dWβ(r) =

op(1) uniformly over z ∈ M. Also note that when c1n =
n−2∑n

s=1 x2
s = Bx,(2) + op(1), where Bx,(2) = ∫ 1

0 Bx(r)2 dr, we
have

�n3 = (h/n)ν2(K)B−1
x,(2)E

[
Mtf

−1
t

(
β

(1)
t
)2][∫ 1

0
B2

x(r)dWβ(r)

]2

+ op(h/n). (A.19)

Combining (A.14), (A.18), and (A.19) completes the proof
of Lemma A.2.

Lemma A.3. Under Assumptions A1–A6*, (A.4) holds true.

Proof. Lemma A.1 implies that the leading term of CV2,
denoted by CV0

2, is obtained from CV2 by replacing Ât with
μ̃1(zt). That is, CV0

2 = n−2∑
t x2

t Ĉ2
t /μ̃

2
1(zt)Mt = n−2c−2

1n ×∑
t x2

t Ĉ2
t f −2

t Mt, where Ĉt = n−2∑
s =t xsusKh,ts. By Assump-

tion A6*, we have n
√

hĈt = σu
√

v0(K)f (zt)
∫ 1

0 Bx(r)dWu(r) +
op(1). Therefore, we obtain

n2hCV0
2 = σ 2

u v0(K)c−1
1n

[∫ 1

0
Bx(r)dWu(r)

]2 ∫
M(z)dz

+ op(1). (A.20)

This completes the proof of Lemma A.3.

Lemma A.4. Under Assumptions A1–A6, (A.5) holds true.

Proof. By definition, CV3 = n−4∑
t x2

t B̂tÂ
−2
t Mt ×∑s =t xs ×

usKh,ts. Assumption A3 implies that E(CV3) = 0 and {ut}n
t=1

are serially uncorrelated. Letting �3,n = E(CV2
3|{xt, zt}n

t=1),

we have �3,n = n−8σ 2
u
∑

t(x
2
t B̂tÂ

−2
t Mt)

2∑
s =t x2

s K2
h,ts + n−8 ×

σ 2
u
∑

t
∑

t′ =t x2
t B̂tÂ

−2
t Mtx2

t′ B̂t′ Â
−2
t′ Mt′

∑
s =t =t′ x2

s Kh,tsKh,t′s =
�3,1n + �3,2n.

Lemma A.1 and (A.17) imply that supzt∈M |Ât| = Oe(1) and

that supzt∈M |B̂t| = Op(hδn), where δn = (nh)−1/4(ln(n))1/2.
Applying the same technique used in the proof of Lemma A.1,
we can show that supzt∈M n−2∑

s =t x2
s K2

h,ts = Op(h−1). There-

fore, we have �3,1n = Op(h2δ2
n)n−5 supzt∈M

∑
s =t x2

s K2
h,ts =

Op(n−3hδ2
n) and �3,2n = Op(h2δ2

n)n−8∑
s x2

s
∑

t =s x2
t Kh,ts ×

Mt
∑

t′ =t =s x2
t′Kh,t′sMt′ = Op(n−2h2δ2

n) by Lemma A.1. Be-

cause n−1 = o(h), �3,2n asymptotically dominates �3,1n. Thus
we have shown that var(CV3|{(xt, zt)}n

t=1) = Op(n−2h2δ2
n).

This implies that CV3 = Op((h/n)δn) = op(h/n) by Markov’s
inequality.
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