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a b s t r a c t

Many macroeconomic and financial variables are integrated of order one (or I(1)) processes and
are correlated with each other but not necessarily cointegrated. In this paper, we propose to use
a semiparametric varying coefficient approach to model/capture such correlations. We propose two
consistent estimators to study the dependence relationship among some integrated but not cointegrated
time series variables. Simulations are used to examine the finite sample performances of the proposed
estimators.
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1. Introduction

In this paper we consider a semiparametric varying coefficient
model as follows:

Yt = X⊤

t θ(Zt) + ut , t = 1, 2, . . . , n, (1.1)

where Xt (a d × 1 vector) and ut (a scalar) are integrated series;
i.e., Xt =

∑t
s=1 ζs + X0 and ut =

∑t
s=1 ϵs + u0, and ζt and ϵt

are stationary processes with zero means and finite long-run
variances and satisfy some memory and moment conditions to be
given in Section 3. Also, X0 and u0 are Op(1) random variables with
Xt ≡ 0 and ut ≡ 0 for t < 0. And, θ (·) is a d × 1 vector of smooth
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measurable and squared integrable functions of a scalar stationary
variable Zt .1 When Yt and Xt are cointegrated in a model either
with a (parametric) nonlinear or with a (semiparametric) varying
cointegration vector of functions of time or of some other
stationary covariates, its limiting theories have been studied by
Juhl (2005), Cai et al. (2009), and Xiao (2009). In this paper,
we extend this literature by allowing the dependent variable Yt
to be not cointegrated with the I(1) regressors Xt in the above
semiparametric framework; that is, this paper considers the case
that ut is an integrated process such that model (1.1) depicts a
semiparametric regression model that can be used to measure the
correlation of integrated but not cointegrated variables.

Model (1.1) is of interest because many macro and financial
time series are I(1) and correlated, but not necessarily cointe-
grated. For instance, let Y be the exchange rates between two
countries, X be the price indices and Z be the interest rate dif-
ferentials of these two countries. Should purchasing power parity
(PPP) hypothesis holds, ut will be I(0). However, empirical stud-
ies often fail to support the PPP hypothesis (e.g., Taylor and Taylor

1 It is straightforward to generalize the results to a vector Zt case. For expositional
simplicity, we will only consider the scalar Zt case in this paper, as allowing Zt to be
a high-dimensional variable will not shed extra insight in to our theory.
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(2004)), but this does not mean that exchange rates are not related
to the inflation rates. Similarly, one can consider Y and X as stock
market indices and Z be the interest rate differential. With per-
fect information and arbitrage, the law of one price would imply
Yt − Xtθ(Zt) = ut , where ut is an I(0) process. However, imper-
fect information andmanydomestic factors could also lead to stock
market indices to move in different directions so that ut might be
an I(1) process. Nevertheless, θ(Zt) remains of interest in the in-
vestigation of the spill-over effects from the variation of Xt to that
of Yt . Similar examples can be found in the investigation of interest
rate parity (e.g. Mark (2001)) or equity parity (e.g. Gavin (1989)).2

Another example that model (1.1) could be of interest is that
(Yt , X⊤

t ,Wt) are individually I(1) processes and cointegrated so
that

Yt = X⊤

t θ(Zt) + Wtδ + ϵt = X⊤

t θ(Zt) + ut ,

where ϵt is I(0), and

1, −θ(Zt)⊤, δ


are the cointegrating vectors.

However, if Wt is not observable, then the composite error in
model (1.1), ut = Wtδ + ϵt , is an I(1) process, and Yt and Xt
are not cointegrated. Therefore, the I(1) error term ut may be due
to omitted variables and/or measurement errors. Indeed, many
macroeconomic and financial data are measured with errors; e.g.,
Barnett and Serletis (1990) and Blundell and Stoker (2005), where
with integrated aggregate data, the measurement errors could be
either I(0) or I(1) processes. Also, poor proxy could arise when the
true data are not directly observable; e.g. consumer demand and
consumer consumption may not be the same. When facing poor
proxy problems, it seems plausible that I(1) measurement errors
are of concern; see the debate on the PPP hypothesis in Xu (2003)
andTaylor andTaylor (2004),where the test and forecasting results
of the PPP hypothesis heavily rely on the carefully-chosen price
indices among several alternatives.

In this paper, we show that it is possible to obtain consistent
estimator of the unknown smooth function θ (·) even when
ut is an I(1) process. Thus, the theory obtained in this paper
provides a general method for estimating the dependence among
non-cointegrated I(1) processes in a flexible semiparametric
framework not limited tomodel (1.1). It can be used by researchers
to expand their repertoire to find meaningful relations among
integrated variables even when the researchers suspect the
possibility of persistent measurement errors in their data or
of non-cointegration due to missing relevant integrated factors.
For instance, stock market volatilities are highly persistent and
can be viewed as I(1), or near I(1) processes (say, fractionally
integrated processes).3 Ray and Tsay (2000) found strong evidence
of the existence of common factors generating persistent stock
volatilities and the volatilities of stocks of companies in the same
business sector sharing more in volatility persistency. Although
the existence of common factors can lead to co-movement of
stock volatilities, there are also many other (domestic) factors
that affect a domestic market’s volatility. It is rare that the
domestic stock market volatility is cointegrated with a foreign
stock market volatility even though the volatilities from different
national stock markets are likely to be related with each other,
especially during globally bearish market periods.4 Furthermore,

2 We owe Chan for the references of Mark (2001) and Gavin (1989).
3 Bollerslev and Mikkelsen (1996) and Baillie et al. (1996) treated conditional

volatilities as fractionally integrated processes, and Christensen and Nielsen (2007)
suggested to use changes of volatility as the M-term to estimate a GARCH-M type
return model.
4 Using a different approach, Koutmos and Booth (1995) and Karolyi (1995)

studied volatility spillovers across international stock markets via multivariate
GARCH-type models. GARCH setup and its various extensions are widely used in
modeling stock volatility; see Davidson (2004) on some of the recent theoretical
results on GARCH-type models.
the relation between national stockmarket volatilitiesmaywell be
time-varying depending on the varying risk premium. For instance,
changes in exchange rate may lead to changes in risk premium,
hence may enhance the volatility of stock markets; see Aloui
(2007) and Bali and Wu (2010). Therefore, a varying coefficient
model, with exchange rate changes as the (nonparametric) state
variable entering the varying coefficient function, may provide a
flexible approach to examine the spill-over effects of stock market
volatility. Monte Carlo simulations reported in Section 4.2 show
that our proposed estimators perform quitewell when the data are
near I(1) processes.

The remaining parts of the paper is organized as follows. Sec-
tion 2 presents the model and discusses the estimation methods.
Section 3 provides asymptotic results of our proposed estimators.
In Section 4, we report Monte Carlo simulation results to examine
the finite sample performance of the proposed estimators. Finally,
Section 5 concludes the paper. All the mathematical proofs are rel-
egated to the Appendix.

2. The model and the proposed estimators

As explained in the introduction section, we aim to find
a consistent nonparametric estimator of θ(·) in the following
semiparametric varying coefficient model,

Yt = X⊤

t θ(Zt) + ut , (2.1)
where Xt (a d × 1 vector) and ut (a scalar) are all non-stationary
I(1) processes, Zt is a scalar stationary process, and θ(·) is a d × 1
vector of unspecified smooth (three-time differentiable) functions
to be estimated. The increments (or first differences) of all the
I(1) variables have zero means and finite long-run variances, and
the unknown coefficient function θ(·) has a constant finite mean
and variance. We will delay more detailed assumptions regarding
model (2.1) to Section 3.

Below we first examine the OLS estimator’s behavior if
one estimates model (2.1) by the least squares method. We
assume that the multivariate functional central limit theorem
applies to the (d + 1)-dimensional vector of the partial sums
n−1/2X⊤

[nr], n
−1/2u[nr]

⊤
H⇒


BX (r)⊤ , Bu (r)

⊤
for r ∈ [0, 1],

where

BX (r)⊤ , Bu (r)

⊤
is the (d + 1)-dimensional Brownian

motion processes with a zero mean vector and finite and
nonsingular variance–covariancematrix, [a] is the integer part of a
positive number a, and ‘‘H⇒’’ denotes the weak convergence with
respect to the Skorohod metric.

The OLS estimator of model (2.1) is given by

θ̂0 =


n−

t=1

XtX⊤

t

−1 n−
t=1

Xt

X⊤

t θ(Zt) + ut


= An1 + An2, (2.2)

where An1 =
∑n

t=1 XtX⊤
t

−1∑n
t=1 XtX⊤

t θ(Zt) and An2 =
∑n

t=1

XtX⊤
t

−1∑n
t=1 Xtut . It is well established that under some

regularity conditions (as given in Section 3) and applying the
multivariate functional central limit theorem and continuous
mapping theorem, we have

An2 =


n−2

n−
t=1

XtX⊤

t

−1

n−2
n−

t=1

Xtut

d
→

[∫ 1

0
BX (r)BX (r)⊤dr

]−1 ∫ 1

0
BX (r)Bu(r)dr

def
= θ̄1, (2.3)

where θ̄1 is an Oe (1) random variable.5 We show in the Appendix
that

5 For any positive non-stochastic sequence an , we say that a random variable is
Oe(an), if it is Op(an) but not op(an). It means that the random variable has an exact
probability order of an .
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An1 =


n−2

n−
t=1

XtX⊤

t

−1

n−2
n−

t=1

XtX⊤

t θ(Zt)

= E [θ(Zt)] +


n−2

n−
t=1

XtX⊤

t

−1

n−2
n−

t=1

XtX⊤

t α(Zt)

p
→ E [θ(Zt)] . (2.4)

Therefore, taking together (2.2)–(2.4), we obtain

θ̂0 − E [θ(Zt)]
d

→ θ̄1. (2.5)
The above result states that when ut is an I(1) process, the

OLS estimator θ̂0 deviates from the average value of the random
coefficient by a variable of stochastic order of Oe (1). However, in
the Appendix (see the arguments given at the end of the proof
of Lemma A.2), we show that one could consistently estimate
E [θ(Zt)] by the OLS estimator θ̂0 if the error terms ut were an I(0)
process.

Phillips (2009) showed that the kernel estimator is inconsistent
estimator for nonparametric spurious regression models. One
naturally expects that such inconsistency result will be carried
over to our semiparametric regression model because of the I(1)
error term. This conjecture is supported by our theory. Consider
the standard local constant kernel estimator of θ(z) given by

θ̌ (z) =


n−

t=1

XtX⊤

t Ktz

−1 n−
t=1

XtYtKtz, (2.6)

where Ktz = K((Zt − z)/h), K(·) is the kernel function satisfying
conditions given in Section 3, and h is the smoothing parameter. In
the Appendix, we establish the following result:

θ̌ (z) − θ(z)

d
→

[∫ 1

0
BX (r)BX (r)⊤dr

]−1 ∫ 1

0
BX (r)Bu(r)dr

def
= θ̄2, (2.7)

where θ̄1 and θ̄2 have the same distribution. As θ̄2 = Oe (1), θ̌ (z) is
not a consistent estimator of θ(z) due to the I(1) error term ut .

The OLS estimator inconsistently estimating the average value
of the coefficient function and the kernel estimator inconsistently
estimating the unknown coefficient function are both due to
the same reason: the error term is an integrated process whose
impact is non-ignorable even asymptotically. Comparing (2.5)
with (2.7), it is natural to conjecture that one can asymptotically
cancel out the persistency of the I(1) error terms by taking the
difference of the kernel estimator θ̌ (z) and the OLS estimator θ̂0.
However, taking the difference between the two estimators not
only asymptotically cancels out the impact of the non-stationary
error terms but also removes the mean value of the unknown
coefficient function. Therefore, in doing so, the best one can do is to
estimateα(z)

def
= θ(z)−E[θ(Zt)], the zeromean random coefficient

function. Therefore, we will aim to show

θ̌ (z) − θ̂0
p

→ θ(z) − c0 = α(z), (2.8)
where c0 = E[θ(Zt)]. This motivates our first estimator of α(z)
given by

α̃(z) = θ̌ (z) − θ̂0, (2.9)

where θ̂0 and θ̌ (z) are defined in (2.2) and (2.6), respectively.
Our second estimator of α(z) is given by

α̂(z) = θ̌ (z) − n−1
n−

t=1

θ̌ (Zt)Mnt , (2.10)

where Mnt = Mn(Zt) is the trimming function that trims away
observations near the boundary of the support of Zt . We will
discussmore on theneed of the trimming function in theAppendix.
The estimation ofα(·)may itself be of interest because it implies
that one can consistently estimate the partial effects, ∂

∂z θ(z) =

∂
∂z α(z). Indeed, this may be the main interest in many studies.
However, naturally, one may also want to know the average value
of the varying coefficient curve, c0. We therefore illustrate our
estimator of c0 below, delaying to Section 3 its consistency result.

To obtain an estimator for c0, we replace θ(Zt) by its identity
θ(Zt) = c0 + α(Zt) and rewrite (2.1) as

Yt = X⊤

t c0 + X⊤

t α (Zt) + ut . (2.11)

Then, adding/subtracting X⊤
t α̃(Zt) in (2.11) gives

Ỹt
def
= Yt − X⊤

t α̃(Zt) = X⊤

t c0 + vt , (2.12)

where vt = X⊤
t


α (Zt) − α̃(Zt)


+ut . Because α̃(Zt) is a consistent

estimator of α(Zt), Ỹt mimics the stochastic properties of Yt −

X⊤
t α (Zt), and the stochastic property of vt is dominated by that

of ut .
Taking a first difference of (2.12), we obtain

1Ỹt = ζ⊤

t c0 + 1vt , (2.13)

where 1Ỹt = Ỹt − Ỹt−1, ζt = Xt − Xt−1, and 1vt = vt − vt−1.
Then, regressing 1Ỹt on ζt by the least squares method gives the
OLS estimator of c0 below,

c̃0 =


n−

t=2

ζtζ
⊤

t

−1 n−
t=2

ζt1Ỹt . (2.14)

With α̃(z) and c̃0, we obtain an estimator of θ(z) given by

θ̃ (z) = α̃(z) + c̃0. (2.15)

The consistency of θ̃ (z) follows directly from the consistencies of
α̃(z) and c̃0.

Alternatively, one can use α̂(Zt) to replace α̃(Zt) in the above
calculation; i.e., one can replace Ỹt by Ŷt = Yt − XT

t α̂(Zt) in (2.12).
Wewill use ĉ0 to denote the resulting estimator of c0 and denote by
θ̂ (z) = ĉ0 + α̂(z) an alternative estimator of θ (z). The additional
assumptions ensuring the consistency of c̃0 and θ̃ (·) (or ĉ0 and θ̂ (·))
aswell as the asymptotic results of our proposed estimators ofα(z)
are the subject of the next section.

3. The asymptotic analysis

We first introduce some notation. For any q > 0 and an m × 1
vector ξt , we denote by ‖ξt‖q =

∑m
j=1 E

ξjt q1/q the Lq-norm,
and we use ‘‘‖·‖’’ without any subscript to denote the Euclidean
norm; Im is the m × m identify matrix; ‘‘

d
→’’ and ‘‘

p
→’’ denote

convergence in distribution and convergence in probability,
respectively. For a differentiable function g : R → Rm, we denote
g(s)(z) = dsg(z)/dzs. Also, we use M to denote a finite positive
constant whose value may change from place to place.

We now list regularity conditions sufficient for establishing the
consistency of α̃(z) and α̂(z).

(A1) Let ηt =

ζ⊤
t , ϵt , Zt

⊤ be a (d + 2)-dimensional random
vector, where ζt = Xt − Xt−1 and ϵt = ut − ut−1 have zero
means. ηt is a strictly stationary, α-mixing sequence of size
−p/ (p − 2)with a finite, positive definite, long-run variance
matrix, and ‖ηt‖4 < M < ∞, where p = 2+δ for some small
δ > 0. Also, both X0 and u0 are of order Op (1) with Xt ≡ 0
and ut ≡ 0 for t < 0.

(A2) (i) The variable Zt has a Lebesgue density f (z) and
infz∈S f (z) > 0, where S, the support of Zt , is a compact
subset of R. Also, (Zs, Zt) has a Lebesgue joint density
function fs,t (z1, z2).
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(ii) f (z), θ (z), E (ζt |z), and E

‖ζt‖

2
|z


are three times
continuously differentiable in the vicinity of an interior
point z ∈ S. And, fs,t (z1, z2) are three times continuously
differentiable in the vicinity of the interior point (z, z) ∈

S × S.
(iii)

ζ⊤
t θ (Zt)


2+δ̃

< M < ∞ and ‖θ (Zt)‖2+δ̃ < M < ∞

for some δ̃ > δ > 0.
(A3) The kernel function K(u) is a bounded, symmetric (around

zero) probability density function on interval [−1, 1]. Also,
we denote µj =


ujK (u) du and vj =


ujK 2 (u) du.

(A4) h → 0, nh → ∞ and nh5
= O (1) as n → ∞.

Assumption A1 ensures that the multivariate functional central
limit theorem can be applied to


X⊤

[nr], u[nr]
⊤ for any r ∈ [0, 1];

see Lemma 3.1 below. It allows ζt and ϵt to be contemporaneously
correlated such as cov(ζt , ϵt) ≠ 0, provided that they areα-mixing
processes with the mixing coefficients satisfying some rate of
decaying condition, and that ηt satisfies somemoment conditions.
Assumption A2 requires that the density is bounded below by
a positive constant in the compact support of Zt . It also gives
regularity conditions on smoothness and moment restrictions of
the density function and some other functionals of Zt . The three-
time differentiable conditions ensure that these functions have
Taylor expansions up to the third order so as to yield a leading
asymptotic center term of the form J(z)h2

+ Op(h3), where J(z)
is a leading asymptotic center defined in Theorem 3.1 below.
The kernel function having a compact support in Assumption
A3 is not essential and can be removed at the cost of lengthy
proofs. Specifically, the Gaussian kernel is allowed. Assumption A4
ensures that the proposed estimators are consistent as sample size
n → ∞, and nh5

= O(1) allows for optimal smoothing, but it rules
out the under-smoothing data case.

DenoteKtz = K

h−1 (Zt − z)


and K̆tz = Ktz−EKtz .We need the

following lemma for deriving the limiting results of the proposed
estimators with the proof delayed to the Appendix.

Lemma 3.1. Under Assumptions A1–A4, the following multivariate
functional central limit theorem holds

n−1/2
[nr]−
t=1

ζt

n−1/2
[nr]−
t=1

ϵt

[nhv0f (z)]−1/2
[nr]−
t=1

K̆tz


H⇒

 BX (r)
Bu (r)
WK (r)

 , (3.1)

where

BX (r)⊤ , Bu (r) ,WK (r)

⊤
is a (d + 2)-dimensional Brow-

nian motion with a zero mean vector and finite covariance
matrix

Σ 0
0 1


. (3.2)

Note that in Lemma 3.1, WK (·) is a standard Brownian motion
process independent of


BX (·)⊤ , Bu (·)

⊤
.

Theorems3.1 and3.2 belowgive asymptotic results for α̃(z) and
α̂(z), respectively. The proofs are delayed to Appendix A.1.

Theorem 3.1. Under Assumptions A1–A4, we have, for all interior
point z ∈ S,
√
nh[α̃(z) − α(z) − h2J(z)]

d
→ Λ,
where

Λ =


ν0

f (z)


B−1

(X,2)

∫ 1

0
BX (r)Bu(r)dWK (r)

− B−1
(X,2)

∫ 1

0
BX (r) BX (r)⊤ dWK (r) B−1

(X,2)B(X,u)


, (3.3)

B(X,2) =
 1
0 BX (r)BX (r)⊤dr, B(X,u) =

 1
0 BX (r)Bu(r)dr, and J(z) =

µ2[θ
(1)(z)f (1)(z)/f (z) + θ (2)(z)/2].

The derivation of Theorem 3.1 does not require zero contempo-
raneous correlation between the increments of the I(1) processes,
1ut and 1Xt . Therefore, Xt is allowed to be endogenous.

In (2.10), α̂(z) = θ̌ (z) − n−1∑n
t=1 θ̌ (Zt)Mnt requires the cal-

culation of θ̌ (Zt) for all t = 1, . . . , n. Therefore, the continuously
differentiable condition in the vicinity of the interior point z ∈

S as imposed by Assumption A2 (i) will not be sufficient to ensure
the consistency of α̂(z), and we need to strengthen it to a uniform
condition. In addition, to obtain the limiting distribution of α̂(z),
we need to strengthen our assumption further.

(A2∗) (i) The variable Zt has a Lebesgue density f (z) and
infz∈S f (z) > 0, where S, the support of Zt , is a compact
subset of R. Also, (Zs, Zt) has a Lebesgue joint density
function fs,t (z1, z2).

(ii) f (z), θ (z), E (ζt |z), and E

‖ζt‖

2
|z

are continuous on S

and three times continuously differentiable in the interior
of S. And, fs,t (z1, z2) is continuous on S ×S and three times
continuously differentiable along the diagonal line (or at all
interior points (z, z)) in S × S.

(A5) (i) The sequences {(ζt , ϵt)}
n
t=1 and {Zt}nt=1 are independent

of each other. (ii) {Zt}nt=1 is a strictly stationary β-mixing
process with the β-mixing coefficients satisfying β(t)
= O(t−τ ) for all t , where τ > 2λ−1 (1 + λ) for some λ ∈

(0, 1). (iii) E (ϵt |ζt) = 0 and E

ζtζ

⊤
t


is nonsingular.

Assumption A2∗ strengthens Assumption A2 to the support of
Zt . Note that Assumption A5 impliesβ(t)λ/(1+λ)

= O(t−ρ) for some
λ ∈ (0, 1) andρ > 2. As aβ-mixing condition implies anα-mixing
condition, Assumption A5(ii) is stronger than Assumption A1.

Theorem 3.2. Under Assumptions A1–A5, and A2∗, we have, for all
interior point z ∈ S,
√
nh

α̂(z) − α(z) − h2 [J(z) − E(J(Zt))]


= Λ̊,

where Λ̊ has the same distribution as Λ defined in (3.3).

Assumptions A1–A4 are sufficient to show the consistency
of α̂(z); i.e., α̂(z) − α(z) − h2 [J(z) − E(J(Zt))] = op (1). The
independence between {(ζt , ϵt)}

n
t=1 and {Zt}nt=1 of Assumption

A5(i) is a sufficient but not a necessary condition to show that
Λ̊ and Λ have the same distribution, although this assumption
significantly simplifies our proof of the limiting distribution in
Theorem 3.2. Note that the asymptotic center of α̂(z) is smaller
than that of α̃(z) on average.

With the above additional assumptions, we are now ready to
present the consistency results for c̃0, θ̃ (z), ĉ0 and θ̂ (z).

Theorem 3.3. Under Assumptions A1–A5 and A2∗ we have

(i) c̃0 − c0 = Op(h2
+ (nh)−1/2),

θ̃ (z) − θ(z) = Op(h2
+ (nh)−1/2);

(ii) ĉ0 − c0 = Op(h2
+ (nh)−1/2),

θ̂ (z) − θ(z) = Op(h2
+ (nh)−1/2).
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The proof of Theorem 3.3 is given in Appendix A.2. Again,
Assumption A5(i) is stronger than necessary, it can be relaxed
to E(ϵt |ζt , Zt) = 0 and E [(ζt+1 − ζt) J(Zt)] = 0. However, we
would like to emphasize that Assumption A5 (iii) is necessary for
Theorem 3.3 to hold. To see this, noting that c̃0 is the OLS estimator
of c0 based on (2.13), where1vt contains a term equal to1ut = ϵt ,
we need E(ϵt |ζt) = 0 (i.e., AssumptionA5(iii)) such that the impact
of this term vanishes asymptotically.

Theorems 3.1–3.3 show that our proposed semiparametric
curve estimators have the same rate of convergence as in the case
with stationary data. In fact, it can be shown that our estimators
are robust to whether the error terms are an I(0), a near I(1) or an
I(1) process.

Assumption A5 requires that the innovations that generate Xt
and ut to be independent of the stationary covariate Zt sequence.
However, the regularity conditions on the consistency of α̃(·) is
quite weak and standard. If the main interest is to estimate the
marginal effects dθ(z)/dz, the stronger condition A5 is not needed
as dα(z)/dz = dθ(z)/dz and α̃(z) is a consistent estimator of α(z)
without the need of Assumption A5.

Also, in some cases, Assumption A5 (i) may be relaxed to
that (ζt , Zt) is uncorrelated with ϵt or E(ϵt |ζt , Zt) = 0; hence,
conditional heteroskedastic error is allowed. For example, when
P(Zt = Zt−1) > 0. To see this, we take the first difference to both
sides of Eq. (1.1), which gives

1Yt = X⊤

t θ(Zt) − X⊤

t−1θ(Zt−1) + ϵt . (3.4)

Applying to the sub-data set satisfying Zt = Zt−1, we obtain

1Yt = 1X⊤

t θ(Zt) + ϵt , (3.5)

where Eq. (3.5) is a standard varying coefficient model with all
the variables being stationary. The asymptotic results for various
semiparametric estimators (local linear or local constant) can be
found in Cai et al. (2000), Fan et al. (2000), Li et al. (2002), Fan et al.
(2003), among others. The assumption that P(Zt = Zt−1) > 0 is
not unrealistic even for time series data. For instance, if one has
monthly observations of Zt , the Federal Reserve fund rate, then for
most months, Zt = Zt−1 as the Fed does not change the fund rate
on a monthly basis.

Even when P(Zt = Zt−1) = 0, one may not need the complete
independence between {(ζt , ϵt)}

n
t=1 and {Zt}nt=1 at all the times. Let

us rewrite Eq. (3.4) as

1Yt = 1X⊤

t θ(Zt) + X⊤

t−1[θ(Zt) − θ(Zt−1)] + ϵt . (3.6)

Multiplying both sides of Eq. (3.6) by a kernel weight function
K((Zt − Zt−1)/h), one may derive a consistent estimator of the
smooth coefficient function θ(·). That is, only data with |Zt −

Zt−1| ≤ h will be used in estimating the regression model. With
Zt−1 close to Zt , we have θ(Zt−1) close to θ(Zt), and the term
XT
t−1[θ (Zt) − θ(Zt−1)] can be made negligible by choosing some

small value of h. However, in order for the term associated with
the I(1) regressor Xt−1 to be negligible, some under-smoothing
condition such as

√
nh2

= o(1)may be needed because Xt−1 needs
to be divided by

√
n to make it an Op(1) random variable. In

addition to the undesired under-smoothing condition, thismethod
also suffers more of the ‘curse of dimensionality’ problem because
one effectively only uses the data satisfying both |Zt − z| ≤ h and
|Zt−1 − z| ≤ h when estimating θ(z), while our earlier estimator
only requires the condition |Zt − z| ≤ h. We leave it as a future
research topic to find an alternative consistent estimator of θ(z) (or
c0) under conditions weaker than Assumption A5(i) and without
triggering the ‘curse of dimensionality’ problem.
Up until now,we only consider the case that all the components
of Xt are I(1) processes, which rules out the case that Xt can contain
a constant. Consider the following model,

Yt = (1, X⊤

t )


γ (Zt)
θ(Zt)


= γ (Zt) + X⊤

t θ(Zt) + ut ,

t = 1, 2, . . . , n. (3.7)

In this case, one can ignore the γ (Zt) term and treat γ (Zt) + ut
as the composite error term. It can be shown that our proposed
estimators α̃(z) and α̂(z) remain consistent with the same
asymptotic distributions. This is similar to the linear regression
model case, where the OLS estimator for the coefficients associated
with I(1) variables remains consistent even if one ignores the
presence of I(0) regressors.

We summarize the above analysis in a proposition below and
give a brief proof in Appendix A.2.

Proposition 3.4. The conclusions of Theorems 3.1–3.3 remain
unchanged if Yt is generated by (3.7) provided that γ (z) is a
uniformly bounded differentiable function over z ∈ S.

4. Monte Carlo simulations

In this section, we examine the finite sample performances of
the semiparametric estimators α̂(·), α̃(·) as well as ĉ0 and θ̂ (·).6
In Section 4.1 we consider the case that both Xt and ut are I(1)
processes, and in Section 4.2 we consider the case that Xt and ut
are near I(1) processes.

4.1. Xt and ut are I(1) processes

We consider the following data generating process (DGP):

Yt = Xtθ(Zt) + ut , (t = 1, . . . , n),

where Xt and ut are both I(1) variables, and Zt is stationary.
Specifically, Xt = Xt−1 + ζt with X0 = 0 and ζt is i.i.d. N(0, σ 2

ζ );
ut = ut−1 + ϵt with u0 = 0 and ϵt is i.i.d. N(0, σ 2

ϵ ); zt =

vt + vt−1 and vt is i.i.d. uniform [0, 2]. We consider two different
α(·) functions: (a) α(z) = sin(πz) − E[sin(πZt)] and (b) α(z) =

z − .5z2 − E

Zt − .5Z2

t


(so that E[α(Zt)] = 0). In both cases,

we have θ(z) = c0 + α(z), and we choose c0 = 1 and 2. It is
easy to show that α̃(·) and α̂(·) are invariant to different c0 values
as c0 is canceled out by construction of the estimators. Hence, we
only report the case of c0 = 1 for brevity. We choose two different
combinations for (σϵ, σζ ): (i) The case of (σϵ, σζ ) = (1, 2) means
that the increment of ut has a smaller variance relative to that of
Xt (small noise to signal ratio); (ii) The case of (σϵ, σζ ) = (1, 1)
corresponds to an equal variance case for the increments of Xt and
ut . The sample sizes are n = 100, 200 and 400. The number of
replications is 10,000. We use a standard normal kernel function
with the smoothing parameter equal to h = σ̂zn−1/5, where σ̂z is
the sample standard deviation of {Zt}nt=1.

We compute the sample average mean squared errors (or
AMSEs) for α̂(·), α̃(·), θ̂ (·) and ĉ0 as follows:

AMSE(α̂(·)) = J−1
J−

j=1


n−1

n−
t=1


α̂j(Zt) − α(Zt)

2
,

AMSE(α̃(·)) = J−1
J−

j=1


n−1

n−
t=1


α̃j(Zt) − α(Zt)

2
,

6 The performances of c̃0 and θ̃ (·) are very similar to those of ĉ0 and θ̂ (·);
therefore, we omit these results to save space.
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Table 1
Average mean squared errors when α(z) = sin(πz) − E[sin(πZt )].

n (σϵ = 1, σζ = 2) (σϵ = 1, σζ = 1)
α̃(·) α̂(·) θ̂(·) ĉ0 α̃(·) α̂(·) θ̂(·) ĉ0

100 .0821 .0799 .1537 .0830 .1388 .1356 .2403 .1083
200 .0428 .0422 .0848 .0443 .0767 .0749 .1306 .0577
400 .0234 .0225 .0436 .0224 .0428 .0418 .0703 .0297
Table 2
Average mean squared errors when α(z) = z − .5z2 − E(Zt − .5Z2

t ).

(σϵ = 1, σζ = 2) (σϵ = 1, σζ = 1)
n α̃(·) α̂(·) θ̂(·) ĉ0 α̃(·) α̂(·) θ̂(·) ĉ0

100 .00868 .00552 .00945 .00762 .0654 .0609 .0909 .0331
200 .00487 .00319 .00551 .00435 .0372 .0350 .0504 .0172
400 .00275 .00188 .00325 .00235 .0221 .0210 .0297 .0095
AMSE(θ̂(·)) = J−1
J−

j=1


n−1

n−
t=1


θ̂j(Zt) − θ(Zt)

2
,

AMSE(ĉ0) = J−1
J−

j=1


ĉ0,j − c0

2
,

where J is the number of replications (J = 10,000), and the
subscript j refers to the result from the jth replication. The
estimation results are reported in Tables 1 and 2.

Both Tables 1 and 2 show the following features. First, all the
AMSEs of α̂(·), α̃(·), θ̂ (·) and ĉ0 are much smaller in magnitude for
the case of (σϵ, σζ ) = (1, 2) than the case of (σϵ, σζ ) = (1, 1).
This is expected since the former has a smaller noise to signal
ratio. Second, the AMSE for each and every estimator decreases
as the sample size increases, which shows the consistency of the
estimator. When comparing the results in Table 1 with those in
Table 2, we see the latter much smaller than the former. This is
because quadratic function θ(z) (or α(z)) in Table 2 is smoother
than the sine function θ(z) (or α(z)) in Table 1.

The above simulations results assume that Zt follows a short
memoryMA(1) process. Belowwe report results on some different
processes for Zt . First we let Zt follow an AR(1) process: (i) Zt =

ρzZt−1 + vt , where vt is i.i.d. uniform [−1, 1] and ρz = 0.5.7 Also,
Assumption A2 implies that Zt has a bounded support.We now use
Monte Carlo simulations to examine whether this assumption can
be relaxed to an unbounded support case. We consider two more
different data generating processes for Zt : (ii) Zt is i.i.d. N(0, 1)
which has an unbounded support butwith a quite thin tail; (iii) Zt is
i.i.d. t(3) (or a Student’s t-distribution with 3 degrees of freedom),
which is a fat-tailed distribution with no finite moment of order
greater than two. Xt and ut are generated the same way as above.
To save space, we only consider the case of (σϵ, σζ ) = (1, 2) and
θ(z) = 1+α(z)withα(z) = sin(πz)−E[sin(πZt)]. The simulation
results are reported in Table 3.

First, we examine the results for case (i), where Zt follows an
AR(1) process with a density function bounded away from zero
in its support. Comparing the results of Table 1 with those of
Table 3, we observe that the sample AMSEs for an AR(1) Zt case
are very similar to those of an MA(1) Zt case. This shows that our
estimators are not sensitive to the serial correlation pattern of Zt ,
provided that Zt is a stationary process with a density function that
is bounded away from zero in its support.

7 As we set Z0 = 0, and the i.i.d. innovations vt are drawn independent of Z0 , the
theorem in Athreya and Pantula (1986, p. 187), ensures that the stationary AR(1)
process Zt generated this way is a geometric strong mixing sequence.
Next, we investigate case (ii) that Zt is i.i.d. N(0, 1). First, we
observe that the sample AMSEs decrease as sample size n increases
for all the three estimators: α̂(·), θ̂ (·) and ĉ0. This suggests that
our proposed estimators are likely to be consistent when Zt has an
unbounded support with a thin tail distribution such as a N(0, 1)
distribution. However, when comparing case (ii) with case (i), we
see that the sample AMSEs for case (ii) are significantly larger than
those of case (i) where the distribution of Zt has a bounded support
with the density function bounded away from zero in its support.

Finally, we examine the result that Zt has a fat-tailed t(3)
distribution. In this case, Zt has a finite second moment but does
not have any finite moments of order higher than two. Table 3
clearly shows the inconsistency of θ̂ (·) and α̂(·) in this case. The
AMSEs of θ̂ (·) and α̂(·) do not decrease, and in fact, they increase
as sample increases.

Therefore, one needs to be cautious in practice if one is
suspicious that Zt may have a fat-tailed distribution. One way to
avoid a fat-tail distributed Zt is to trim out data with extreme Zt
values so that f (z) is bounded away from zero on the trimmed set.

4.2. Xt and ut are near I(1) processes

In this section, we consider exactly the same data generating
processes as discussed in Section 4.1 except that now Xt and ut
are near I(1) rather than I(1) processes. Specifically, we generate
Xt and ut by Xt = ρxXt−1 + ζt with ζt being drawn from an i.i.d.
N(0, σ 2

ζ ) and X0 fromN(0, σ 2
ζ /(1−ρ2

x )), and ut = ρuut−1+ϵt with
ϵt being drawn from an i.i.d. N(0, σ 2

ϵ ) and u0 from N(0, σ 2
ϵ /(1 −

ρ2
u )). In addition, Zt = vt + vt−1, and vt is drawn from an i.i.d.

uniform [0, 2].
To save space, we only consider the case that α(z) = sin(πz)−

E[sin(πZt)]. Since all data are stationary now, θ̌ (z) is a consis-
tent estimator of θ(z), and c̄0

def
= n−1∑n

t=1 θ̌ (Zt) is a consistent
estimator of c0. We compare the finite sample performances of
θ̌ (·) and c̄ with our proposed estimator θ̂ (·) and ĉ0 for (ρx, ρu) =

(0.90, 0.90), (0.95, 0.95), (0.97, 0.97), (0.99, 0.99). Usually the
first lag autocorrelation coefficient of national stock volatility is
around 0.95 to 0.98 (e.g., Sun et al. (2010)). Hence, our choice of
ρx and ρu are consistent with the empirical stock volatility data.
The simulation results are reported in Table 4.

From Table 4, we observe the followings. (i) Our proposed
estimators θ̂ (·) and ĉ0 have smaller AMSEs than those of θ̌ (·) and
c̄0 for all the different (ρx, ρu) combinations and all the different
sample sizes considered. (ii) As the data becomes closer to I(1)
processes, the relative performances of our proposed estimators
improve more over the conventional estimators. For example, for
the case of n = 400, when (ρx, ρu) = (.90, .90), the AMSE of
θ̌ (·) is only about 20% higher than that of θ̂ (·). However, when
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Table 3
Three different distributions for Zt .

n (i) Zt ∼ AR(1) (ii) Zt ∼ N(0, 1) (iii) Zt ∼ t(3)
α̂(·) θ̂(·) ĉ0 α̂(·) θ̂(·) ĉ0 α̂(·) θ̂(·) ĉ0

100 .0747 .1372 .0718 .1739 .3453 .1175 .4299 .7804 .3528
200 .0488 .0875 .0426 .1239 .2357 .1140 1.496 1.803 .3076
400 .0304 .0556 .0278 .0845 .1625 .0794 4.217 4.457 .2417
Table 4
Xt and ut are near I(1) processes.

n (ρx, ρu) = (.90, .90) (ρx, ρu) = (.95, .95)
θ̌(·) θ̂(·) c̄0 ĉ0 θ̌ (·) θ̂(·) c̄0 ĉ0

100 .2987 .2445 .0977 .0366 .3883 .2517 .1872 .0535
200 .1987 .1613 .0502 .0149 .2472 .1665 .0998 .0210
400 .1286 .1094 .0249 .0067 .1534 .1114 .0499 .0090

(ρx, ρu) = (.97, .97) (ρx, ρu) = (.99, .99)
100 .4870 .2603 .2858 .0721 .7515 .3251 .5490 .1255
200 .3088 .1734 .1621 .0285 .5472 .2025 .4009 .0575
400 .1855 .1143 .0821 .0119 .3250 .1275 .2219 .0252
(ρx, ρu) = (.97, .97), the AMSE of θ̌ (·) is almost doubled that of
θ̂ (·). Moreover, the AMSE of θ̌ (·) becomesmore than double that of
θ̂ (·) when (ρx, ρu) = (.99, .99). The improvement for estimating
c0 is even more dramatic. For n = 100, the AMSE of c̄0 is about
four times as large as the AMSE of ĉ0 when (ρx, ρu) = (.90, .90),
and this AMSE ratio becomes almost 10 fold when (ρx, ρu) =

(.99, .99).
The simulation results reported in this section are consistent

with our theoretical analysis. When the error term ut is an I(1) or a
near I(1) process, the conventional kernel-based estimator of θ(·)

becomes inconsistent or inaccurate, while our proposed estimator
is consistent and accurate regardless of whether the error term ut
is an I(1) or a near I(1) process.

5. Conclusions

Most macroeconomic and finance variables show strong
persistency, and many of them are measured with errors or even
unobservable. This may render correlated but not cointegrated
time series for actually observed or artificially constructed proxy
variables, although the variables with true values could be
cointegrated as predicted by economic or finance theory. In
this paper we suggest using a flexible semiparametric varying
coefficient model to capture the correlation among integrated but
not cointegrated variables. We propose two consistent estimators
to estimate the unknown smooth coefficient function and establish
the consistency of the proposed estimators.

The current study is limited to the case that the nonparametric
component Zt has a density function that is bounded away from
zero in its support. It would be useful to extend the asymptotic
analysis to the case that Zt has an unbounded support such as
a normal distribution case. The simulation results reported in
Section 4 show that our proposed estimators do not lead to
consistent estimation of θ(·) when Zt has a fat-tailed distribution.
It would be very useful if alternative estimation methods can
be found that are robust to the fat-tailed distribution of Zt . The
theoretical results of this paper may also be useful in developing
new cointegration tests based on semiparametric models with
an I(1) error term. Finally, we hope to be able to generalize the
consistent model specification tests to our framework; i.e., testing
the null hypothesis of a parametric functional form of θ(·) by
allowing the error term ut to be an I(1) process. These challenging
problems are left as future research topics.
Appendix. Mathematical proofs

This Appendix contains two subsections. Appendix A.1 provides
the proofs for Theorems 3.1 and 3.2, and Appendix A.2 gives proofs
for Theorem 3.3 and Proposition 3.4.

A.1. Mathematical proofs of Theorems 3.1 and 3.2

Throughout this Appendix, we denote B(X,2) =
 1
0 BX (r)BX (r)⊤

dr, B(X,u) =
 1
0 BX (r)Bu(r)dr, Ktz = K


h−1 (Zt − z)


, K̆tz = Ktz −

EKtz, θt = θ (Zt), and αt = θt − E (θt). Also, we use the short-
hand notation

∑
t and

∑
t
∑

s≠t to denote
∑n

t=1 and
∑n

t=1
∑n

s≠t ,
respectively.

For readers’ convenience, below we give modified versions of
the strong mixing inequality of Lemma 2.1 of McLeish (1975) and
Theorem 3.2 of de Jong and Davidson (2000). The presentation will
be based on the assumptions imposed in this paper.

Denote by Ft = σ (ωt : i ≤ t, n ≥ 1) the smallest σ -field
containing the past history of {ωt} for all t ≤ n, n ∈ N , the set
of natural number. For 1 ≤ p1 ≤ p2 < ∞ and anym > 0, McLeish
(1975) strong mixing inequality states that

‖E (ωt+m|Ft) − E (ωt)‖p1

≤ 2

21/p1 + 1


[α (m)]p

−1
1 −p−1

2 ‖ωt‖p2 . (A.1)

de Jong and Davidson (2000) gave a different proof of
the multivariate functional central theorem under quite weak
regularity conditions.

Theorem 3.2 of de Jong and Davidson (2000): Let Wnt be an
d × 1 vector of array and assume that for every d-vector ξ of unit
length, W̃nt = ξ⊤Wnt , and Un (r) =

∑[nr]
t=1 Wnt for r ∈ [0, 1].

Then, Un H⇒ U , where U is a d-dimensional Gaussian process
having almost sure continuous sample paths and independent
increments, if there exists a positive constant array cnt such that
the following condition holds for W̃nt :

(i) E

W̃nt


= 0,

∑n
t=1 W̃nt


2

= 1, and

W̃nt/cnt


is Lp-

bounded uniformly in t and n;
(ii)

W̃nt − E

W̃nt |F

t+m
n,t−m


2

≤ dntv (m), where F t+m
n,t−m = σ

Wn,t−m, . . . ,Wn,t+m


is the smallest σ -field containing
Wn,t−m, . . . ,Wn,t+m


for all n, dnt/cnt is bounded uniformly

in t and n, and v (m) = O

m−1/2−ϵ


for some small ϵ > 0;
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(iii) For some sequence bn such that bn = o (n) and b−1
n =

o (1), letting rn =

nb−1

n


,Mni = max(i−1)bn+1≤t≤bncnt and

Mn,rn+1 = maxrnbn+1≤ncnt ,max1≤i≤rn+1Mni = o

b−1/2
n


and∑rn

i=1 M
2
nt = O


b−1
n


;

(iv) limn→∞ E[Un (r)2] is finite for all r ∈ [0, 1], and limϕ→0

supr∈[0,1−ϕ] lim supn→∞

∑[n(r+ϕ)]
[nr]+1 c2nt = 0.

Note that under Assumptions A1 and A2, the σ -field defined
here, F t+m

n,t−m, only needs to depend on the information sets
of

Wn,t−m, . . . ,Wn,t+m


, while de Jong and Davidson (2000)

considered more general case than cited here.

Proof of Lemma 3.1. By Assumptions A1 and A2, we can verify
the conditions required by Corollary 4.2 of Wooldridge and White
(1988) or Theorem 3.2 of de Jong and Davidson (2000) and obtain
the followingmultivariate functional central limit theorem, for any
r ∈ [0, 1],
n−1/2

[nr]−
t=1

ζ⊤

t , n−1/2
[nr]−
t=1

ϵt , (nhv0f (z))−1/2
[nr]−
t=1

K̆tz

⊤

H⇒

BX (r)⊤ , Bu (r) ,WK (r)

⊤
, (A.2)

where

BX (r)⊤ , Bu (r)

⊤
is a (d + 1) × 1 column vector of

Brownian motion process with a zero mean and covariance matrix
of rΣ and is independent of the Standard BrownianmotionWK (r).
Here, Σ is a finite nonsingular matrix under Assumption A1.

The result that (nhv0f (z))−1/2∑[nr]
t=1 K̆tz is asymptotically

independent of the other two terms and has an asymptotic
variance r is obtained from the following results: (i) The asymptotic
covariance between (nh)−1/2∑[nr]

t=1 K̆tz and any one of the other

two terms in the lemma is of orderO
√

h

; (ii) UnderAssumptions

A1–A4, the variance of (nh)−1/2∑n
t=1 K̆tz converges to v0f (z). This

completes the proof of Lemma 3.1. �

The following two lemmas are used to obtain the limiting
property of the OLS estimator under model (2.1). Both the proof
of Theorem 4.2 in Hansen (1992) and the proof of Theorem
4.1 in de Jong and Davidson (2000) can be used to show weak
convergence to stochastic integral results, while the latter uses
weaker assumptions than the former. As we imposed similar
assumptions as in Hansen (1992), we will use Hansen’s (1992)
method to show the weak convergence to stochastic integral
results below.

Lemma A.1. If Assumptions A1 and A2 hold, we have

n−3/2
n−

t=1

XtX⊤

t α (Zt) = Op (1) . (A.3)

Proof. If θ (Zt) ≡ c0, a vector of constants, we have n−3/2∑n
t=1

XtX⊤
t α (Zt) ≡ 0, and the lemma holds true for this trivial case.

Below, we prove this lemma for the case that θ (·) is a vector of
non-constant measurable smooth functions.

Simple calculations give

1
n3/2

n−
t=1

XtX⊤

t αt =
1

n3/2

n−
t=1

(Xt−1 + ζt) (Xt−1 + ζt)
⊤ αt

=
1

n3/2

n−
t=1

Xt−1X⊤

t−1αt +
1

n3/2

×

n−
t=1

Xt−1ζ
⊤

t αt +
1

n3/2

n−
t=1

ζtX⊤

t−1αt
+
1

n3/2

n−
t=1

ζtζ
⊤

t αt

= Γn1 + Γn2 + Γn3 + Γn4, (A.4)

where the definitions of Γnj for j = 1, 2, 3, 4 should be obvious
from the context. Below, we will show that Γn1, Γn2 and Γn3 are all
of order Op (1), but Γn4 = Op


n−1/2


.

Consider Γn4 first. Under Assumption A1 and applying Lemma
2.1 of White and Domowitz (1984), we obtain that ζtζ

⊤
t αt is an

α-mixing process of size −p/ (p − 2). Then, applying Hölder’s in-
equality, we have E (‖Γn4‖) ≤ n−1/2E


‖ζt‖

ζ⊤
t αt

 ≤ n−1/2 ‖ζt‖2ζ⊤
t αt


2 < M < ∞ under Assumptions A1 and A2(ii). Therefore,

we obtain Γn4 = O

n−1/2


.

Now, we consider Γn2. Decomposing Γn2 into two components
yields Γn2 =

∑n
t=1 Xt−1E


ζ⊤
t αt


+ n−3/2∑n

t=1 Xt−1et , where et =

ζ⊤
t αt − E


ζ⊤
t αt


and E (et) = 0. Applying Hölder’s inequality

and McLeish’s strong mixing inequality (A.1), we obtain E[n−1∑n
t=1 |et |] ≤ 2E

ζ⊤
t αt

 < M < ∞ and Var

n−1∑n

t=1 et


=

Op

n−1


by Assumptions A1 and A2(ii). Then, denoting Unt =

n−1/2Xt and closely following the proof of Theorem 3.3 of Hansen
(1992), we obtain n−3/2∑n

t=1 Xt−1et = op (1). It follows

Γn2 = n−3/2
n−

t=1

Xt−1E

ζ⊤

t αt

+ op (1)

d
→

∫ 1

0
BX (r) drE


ζ⊤

t αt

. (A.5)

Similarly, we obtain

Γn3 = E

ζtα

⊤

t


n−3/2

n−
t=1

Xt−1 + op (1)

d
→ E


ζtα

⊤

t

 ∫ 1

0
BX (r) dr. (A.6)

Finally, we will derive the limiting result of Γn1, applying the
method used in the proof of Theorem 4.2 in Hansen (1992). For
r ∈ [0, 1], let Un (r) = Un,[nr] = n−1X[nr]X⊤

[nr] and Vn (r) =

n−1/2∑[nr]
t=1 αt . Under Assumption A1, we actually can extend

Lemma 3.1 such that Vn (r) H⇒ Bα (r) holds jointly with the par-
tial sums appearing in Lemma3.1,where (BX (r)⊤ , Bu (r) , Bα (r)⊤ ,
WK (r))⊤ is a (2d + 2)-dimensional Brownian motion with a zero
mean and finite and nonsingular covariance matrix.

Then, applying Theorem 3.1 of Hansen (1992), we have
n−3/2∑[nr]

t=1 Xt−1X⊤

t−1αt =
 r
0 Un (s) dVn (s) =

 r
0 Un (s) dQn (s) +

Λ∗

n,[nr], where
 r
0 Un (s) dQn (s)

d
→
 r
0 BX (s) BX (s)⊤ dBα (s) = Op (1)

and

Λ∗

n,t = n−1/2
t−

i=1


Un,i − Un,i−1


wi − n−1/2Un,twt+1 (A.7)

with wi =
∑

∞

k=1 E (αi+k|Fi) and Ft = σ (Unt , Zt : i ≤ t, n ≥ 1)
being the smallest sigma-field containing the past history of
{(Unt , Zt)} for all n. It remains to show Λ∗

n,[nr] H⇒ rΛ, a finite
vector.

Applying Minkowski’s inequality and McLeish’s strong mixing
inequality of (A.1), we obtain for some λ2 > λ1 > 2,

‖wi‖λ1 ≤

∞−
k=1

‖E (αi+k|Fi)‖λ1

≤

∞−
k=1

6α (k)1/λ1−1/λ2 ‖αi+k‖λ2

≤ 6M
∞−
k=1

k−p/(p−2)(1/λ1−1/λ2) ‖αi+k‖λ2
< M < ∞, (A.8)
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if ‖αi‖λ2 < ∞ and p/ (p − 2) (1/λ1 − 1/λ2) > 1. Let 1/λ1 − 1/λ2

= δ̃/

2 + δ̃


for some δ̃ > δ > 0. Then, λ1 and λ2 s.t. λ2 > λ1 =

2 + δ̃


λ2/

2 + (1 + λ2) δ̃


> 2 can be used to obtain (A.8).

Applying Chebyshev’s inequality, we can obtain for any given small
ξ > 0, Pr


sup1≤i≤n ‖wi‖ >

√
nξ


≤
∑n

i=1 Pr

‖wi‖ >

√
nξ


≤∑n
i=1

√
nξ
−λ1 E ‖wi‖

λ1 ≤ Mn1−λ1/2ξ−λ1 → 0 as n → ∞, it
then follows that sup1≤i≤n ‖wi‖ = op

√
n

. Therefore, we obtain

sup
1≤t≤n

n−1/2Un,twt+1


≤ sup
1≤t≤n

n−1XtX⊤

t

 sup
1≤t≤n

n−1/2wt+1
 p

→ 0. (A.9)

Next, we have

n−1/2
t−

i=1


Un,i − Un,i−1


wi = n−3/2

t−
i=1


XiX⊤

i − Xi−1X⊤

i−1


wi

= n−3/2
t−

i=1


Xi−1ζ

⊤

i + ζiX⊤

i−1 + ζiζ
⊤

i


wi,

where n−3/2∑t
i=1 ζiζ

⊤

i wi = Op

n−1/2


as E sup1≤t≤n

n−3/2∑t
i=1 ζiζ

⊤

i wi
 ≤ n−1/2 ‖ζi‖

2
2λ1/(λ1−1) × ‖wi‖λ1 = Op


n−1/2


by (A.8). Then following the proof of Γn2, we obtain n−3/2∑t

i=1
Xi−1ζ

⊤

i + ζiX⊤

i−1


wi = n−3/2∑t

i=1 Xi−1E

ζ⊤

i wi

+E


ζiw

⊤

i


n−3/2∑t

i=1 Xi−1 + op (1) = Op (1). Therefore, we have shown Λ∗
n,t =

Op (1).
Combining the results above completes the proof of

Lemma A.1. �

Lemma A.2. If Assumptions A1 and A2 hold, we have

θ̂0 − E [θ (Zt)]
d

→ B−1
(X,2)B(X,u). (A.10)

Proof. As

n−2
n−

t=1

XtYt = n−2
n−

t=1

XtX⊤

t θt + n−2
n−

t=1

Xtut

= n−2
n−

t=1

XtX⊤

t E(θt) + n−2
n−

t=1

Xtut + n−2
n−

t=1

XtX⊤

t αt ,

we have

θ̂0 =

−
t

XtX⊤

t

−1−
t

XtYt

= c0 +


n−2

−
t

XtX⊤

t

−1

n−2
n−

t=1

Xtut

+


n−2

−
t

XtX⊤

t

−1

n−2
n−

t=1

XtX⊤

t αt

= c0 +


n−2

−
t

XtX⊤

t

−1

n−2
n−

t=1

Xtut + Op(n−1/2), (A.11)

where the last equality follows from Lemma A.1.
By Lemma 3.1 and the continuous mapping theorem, we have

n−2
n−

t=1

XtX⊤

t = n−1
n−

t=1


Xt
√
n


Xt
√
n

⊤
d

→ B(X,2) (A.12)

n−2
n−

t=1

Xtut = n−1
n−

t=1

Xt
√
n

ut
√
n

d
→ B(X,u). (A.13)
Combining the results above, we obtain

θ̂0 − c0
d

→ B−1
(X,2)B(X,u).

This completes the proof of Lemma A.2. �

From the proof of Lemma A.2, it is obvious that, if ut were
an I(0) process, θ̂0 − c0 = Op


n−1/2


; i.e., if Yt and Xt were

cointegrated with the varying cointegration vector θ(Zt), then the
OLS estimator, θ̂0, would consistently estimate c0 = E[θ(Zt)].
Therefore, substantial difference between the OLS estimator θ̂0 and
the semiparametric estimator ĉ0 (or c̃0) would suggest that Yt and
Xt are not cointegrated; i.e., ut is not an I(0) process.

The following three lemmas are used to derive the limiting
properties of the proposed kernel estimators of model (2.1).

Lemma A.3. If Assumptions A1–A4 hold, we have
n3hv0f (z)

−1/2
n−

t=1

XtX⊤

t K̆tz

d
→

∫ 1

0
BX (r) BX (r)⊤ dWK (r). (A.14)

Proof. Simple calculations give

Γn =
1

√
n3h

n−
t=1

XtX⊤

t K̆tz =
1

√
n3h

n−
t=1

Xt−1X⊤

t−1K̆tz

+
1

√
n3h

n−
t=1

Xt−1ζ
⊤

t K̆tz

+
1

√
n3h

n−
t=1

ζtX⊤

t−1K̆tz +
1

√
n3h

n−
t=1

ζtζ
⊤

t K̆tz

= Γn1 + Γn2 + Γ ⊤

n2 + Γn3,

where we will show Γn1 = Op (1) , Γn2 = Op

√
h

, and Γn3 =

Op
√

h/n

. Therefore, Γn1 is the leading term of Γn.

Consider Γn3 first. We have E
n−1∑n

t=1 ζtζ
⊤
t K̆tz

 ≤ Eζtζ⊤
t

 K̆tz

 ≤ E

E
ζtζ⊤

t

 |Zt

Ktz


+ E
ζtζ⊤

t

 E (Ktz) =

O (h) by Assumptions A1 and A2(i). It follows n−1∑n
t=1 ζtζ

⊤
t K̆tz =

Op (h). Therefore, we have

Γn3 = Op


h/n


. (A.15)

Consider Γn2 =

n3h

−1/2∑n
t=1 Xt−1E


ζ⊤
t K̆tz


+

n3h

−1/2∑n
t=1 Xt−1etz , where etz = ζ⊤

t K̆tz − E

ζ⊤
t K̆tz


and E (etz) = 0.

Following the Proof of Theorem3.3 of Hansen (1992), we show that
(nh)−1∑n

t=1 n
−1/2Xt−1etz = op (1). Therefore,

h−1/2Γn2 =
1
n

n−
t=1

Xt−1
√
n

E

ζ⊤
t K̆tz


h

+ op (1)

d
→

∫ 1

0
BX (r) drE


ζ⊤

t |z

f (z) ,

which gives Γn2 = Op

√
h

.

Now, consider Γn1 =

n3h

−1/2∑n
t=1 Xt−1X⊤

t−1K̆tz . For r ∈

[0, 1], let Un (r) = Un,[nr] = n−1X[nr]X⊤

[nr] and Vn (r) = (nhv0

f (z))−1/2∑[nr]
t=1 K̆tz . Then,


n3hv0f (z)

−1/2∑[nr]
t=1 Xt−1X⊤

t−1K̆tz = r
0 Un (s) dVn (s) =

 r
0 Un (s) dQn (s)+Λ∗

n,[nr], where by Lemma 3.1
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and Theorem 3.1 of Hansen (1992), we have
 r
0 Un (s) dQn (s)

d
→
 r
0

BX (s) BX (s)⊤ dWK (s) and

Λ∗

n,t = (nh)−1/2
t−

i=1


Un,i − Un,i−1


wi − n−1/2Un,twt+1 (A.16)

with wi = (v0f (z))−1/2∑∞

k=1 E

K̆i+k,z |Fi


. It remains to show

Λ∗

n,[nr] = op (1) for any r ∈ [0, 1].
Following the proof of Lemma A.1, we can show that

‖wi‖λ1 = O

h1/λ2


for all i, where λ2 > λ1 > 2. Applying

Chebyshev’s inequality, we obtain for any given small ξ > 0,
Pr

sup1≤i≤n ‖wi‖ >

√
nhξ


≤
∑n

i=1 Pr

‖wi‖ >

√
nhξ


≤
∑n

i=1√
nhξ

−λ1
E ‖wi‖

λ1 ≤ M (nh)1−λ1/2 ξ−λ1 → 0 as n → ∞, it then

follows that sup1≤i≤n ‖wi‖ = op
√

nh

. Consequently, we have

sup
1≤t≤n

(nh)−1/2 Un,twt+1


≤ sup
1≤t≤n

n−1XtX⊤

t

 sup
1≤t≤n

(nh)−1/2 wt+1
 p

→ 0.

Moreover,

(nh)−1/2
t−

i=1


Un,i − Un,i−1


wi

=

n3h

−1/2
t−

i=1


Xi−1ζ

⊤

i + ζiX⊤

i−1 + ζiζ
⊤

i


wi

=

n3h

−1/2
t−

i=1


Xi−1ζ

⊤

i + ζiX⊤

i−1


wi + op


(nh)−1/2 ,

where

n3h

−1/2∑t
i=1 ζiζ

⊤

i wi = op

(nh)−1/2 as

E sup
1≤t≤n

n3h
−1/2

t−
i=1

ζiζ
⊤

i wi


≤ M (nh)−1/2

‖ζi‖
2
2λ1/(λ1−1) ‖wi‖λ1 = Op


(nh)−1/2 h1/λ2


.

Following the proof of Γn2 in Lemma A.1, we can show
that


n3h

−1/2∑t
i=1


Xi−1ζ

⊤

i + ζiX⊤

i−1


wi = Op

√
h

. Therefore,

taking together the results above gives Λ∗
n,t = op (1).

Hence, we have

(v0f (z))−1/2 Γn1 =

∫ 1

0
Un (s) dQn (s) + op (1)

d
→

∫ 1

0
BX (s) BX (s)⊤ dWK (s) = Op (1) . (A.17)

This completes the proof of Lemma A.3. �

Lemma A.4. If Assumptions A1–A4 hold, and z is an interior point of
S, then we have

(nh)−3/2
n−

t=1

XtX⊤

t θ̆tz = Op (1) , (A.18)

where θ̆tz = [θt − θ (z)] Ktz − E {[θt − θ (z)] Ktz}.

Proof. Let Vn (r) =

nh3

−1/2∑[nr]
t=1 θ̆tz and Un (r) = n−1X[nr]X⊤

[nr]
for any r ∈ [0, 1]. The proof will closely follow that of Lemma A.3
with some tedious calculations. Therefore, we omit the proof
here. �
Lemma A.5. If Assumption A1–A4 hold, and z is an interior point
of S, we have


n3hv0f (z)

−1/2
n−

t=1

Xtut K̆tz
d

→

∫ 1

0
BX (r) Bu (r) dWK (r) . (A.19)

Proof. As both Xt and ut are I(1) processes, applying the Proof of
Lemma A.3 with XtX⊤

t replaced by Xtut proves Lemma A.5. �

Lemma A.6. If AssumptionA1–A4hold,we have for all interior points
z ∈ S,

θ̌ (z) − θ(z) − h2J(z)
d

→ B−1
(X,2)B(X,u), (A.20)

where J(z) = µ2[θ
(1)(z)f (1)(z)/f (z) + θ (2)(z)/2].

Proof. By adding and subtracting terms, we have

θ̌ (z) =

−
t

XtX⊤

t Ktz

−1−
t

XtYtKtz

=

−
t

XtX⊤

t Ktz

−1−
t

Xt(X⊤

t θt + ut)Ktz

= θ(z) +

−
t

XtX⊤

t Ktz

−1

×

−
t

Xt

X⊤

t [θt − θ(z)] + ut

Ktz .

It follows that

θ̌ (z) − θ(z) =

−
t

XtX⊤

t Ktz

−1−
t

XtX⊤

t [θt − θ(z)] Ktz

+

−
t

XtX⊤

t Ktz

−1−
t

XtutKtz

≡ B1n(z) + B2n(z), (A.21)

where the definitions of B1n(z) and B2n(z) should be apparent.
By Lemma A.3, we have (n2h)−1∑

t XtX⊤
t Ktz = (n2h)−1∑

t

XtX⊤
t E (Ktz) + Op


(nh)−1/2. By Lemma A.4, we have


n2h3

−1∑
t XtX⊤

t [θt − θ(z)] Ktz =

n2h3

−1∑
t XtX⊤

t E {[θt − θ(z)] Ktz} +

Op


nh3

−1/2

. It follows that

B1n(z) =

−
t

XtX⊤

t Ktz

−1−
t

XtX⊤

t [θt − θ(z)] Ktz

= h2




n2h
−1−

t

XtX⊤

t E(Ktz)

−1

+ Op((nh)−1/2)


×


n2h3−1−

t

XtX⊤

t E [(θt − θ(z))Ktz]

+Op


nh3−1/2


= E[(θt − θ(z))Ktz]/E(Ktz) + Op(


h/n)

≡ h2J(z) + Op(h4) + Op(

h/n). (A.22)
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By Lemmas A.3 and A.5, we have

B2n(z) =

−
t

XtX⊤

t Ktz

−1−
t

XtutKtz

=




n2h
−1−

t

XtX⊤

t E (Ktz)

−1

+ Op((nh)−1/2)


×


n2h

−1−
t

XtutE (Ktz) + Op((nh)−1/2)



=


n−2

−
t

XtXT
t

−1

n−2
−
t

Xtut + Op((nh)−1/2)

d
→ B−1

(X,2)B(X,u). (A.23)

This completes the proof of Lemma A.6. �

Remark. We see that because ut is I(1), θ̌ (z) − θ(z) does not
converge to zero.

Proof of Theorem 3.1. Combining (A.11) and (A.21)–(A.23), if
nh5

= O (1), h → 0 and nh → ∞ as n → ∞, we have
√
nh(α̃(z) − α(z) − h2J(z))

=
√
nh

−
t

XtX⊤

t Ktz

−1−
t

XtutKtz

−

−
t

XtX⊤

t

−1−
t

Xtut

+ Op(
√
h)

=
√
nh

n−2
−
t

XtX⊤

t
Ktz

EKtz

−1

−


n−2

−
t

XtX⊤

t

−1
 n−2

−
t

Xtut

+


1

n2h

−
t

XtX⊤

t Ktz

−1−
t

Xtut

n
K̆tz

√
nh

+ Op(
√
h)

= Πn1 + Πn2 + Op(
√
h), (A.24)

where applying (A.14) and (A.19) and the continuous mapping
theorem, we have

Πn2 =


1

n2h

−
t

XtX⊤

t Ktz

−1−
t

Xtut

n
K̆tz

√
nh

=

EKtz

n2h

−
t

XtX⊤

t

−1

+ Op

(nh)−1/2

×

−
t

Xtut

n
K̆tz

√
nh

d
→


ν0

f (z)
B−1

(X,2)

∫ 1

0
BX (r)Bu(r)dWK (r). (A.25)

Next, let 1n = n−2∑
t XtX⊤

t Ktz/EKtz = 1n1 + 1n2, where
1n1 = n−2∑

t XtX⊤
t and 1n2 = n−2∑

t XtX⊤
t K̆tz/E (Ktz). By

Theorem 4.3 in Poirier (1995, p. 627), we have 1−1
n = 1−1

n1 −

1−1
n1 1n2


1−1

n1 1n2 + Id
−1

1−1
n1 . Then, we have
Πn1 =
√
nh

1−1

n − 1−1
n1


n−2

−
t

Xtut

= −
√
nh1−1

n1 1n21
−1
n1 n

−2
−
t

Xtut

1 + op (1)


as 1n1 = Op (1) and 1n2 = Op


(nh)−1/2 by (A.14). Applying

Lemmas 3.1 and A.3 and the continuous mapping theorem, we
obtain

Πn1
d

→ −


ν0

f (z)
B−1

(X,2)

∫ 1

0
BX (r) BX (r)⊤ dWK (r) B−1

(X,2)B(X,u).

(A.26)

Taking all the results above completes the proof of Theo-
rem 3.1. �

Proof of Theorem 3.2. Before proving Theorem 3.2, we first
briefly discuss the need of the trimming function Mnt = Mn(Zt).
Without loss of generality, we assume that S = [a, b], where
−∞ < a < b < ∞, a and b are constants. To avoid boundary bias
problem, we chooseMnt = 1(a+ δn ≤ Zt ≤ b− δn), where 1(A) is
an indicator function taking value 1 if A holds true and 0 otherwise.
δn is a non-stochastic sequence of real numbers that satisfies the
conditions: δn → 0, h/δn → 0 asn → ∞. For example, δn =

√
h is

allowed. The use of the trimming function is needed (theoretically)
to avoid the slow convergence rate of θ̌ (z) when z falls into the
boundary region; i.e., [a, a + h] ∪ [b − h, b].

For notational simplicity, we will omit the trimming function
Mnt below. By (A.21), the proposed estimator is given by

α̂ (z) = θ̌ (z) − n−1
n−

t=1

θ̌ (Zt)

=


θ(z) − n−1

n−
t=1

θ(Zt)


+


B1n (z) − n−1

n−
t=1

B1n(Zt)



+


B2n (z) − n−1

n−
t=1

B2n(Zt)


= Λn1 (z) + Λn2 (z) + Λn3 (z) , (A.27)

where Λn1(z) = θ(z) − n−1∑n
t=1 θ(Zt), Λn2(z) = B1n (z) −

n−1∑n
t=1 B1n(Zt) andΛn1(z) = B2n (z)−n−1∑n

t=1 B2n(Zt).Λn1(z)
= α (z)+Op


n−1/2


since n−1∑n

t=1 θ(Zt) = E[θ(Zt)]+Op(n−1/2)

= c0 + Op(n−1/2). Below, we will show Λn2 (z) = Op

h2

and

Λn3 (z) = Op

(nh)−1/2.

We first denote Ět [g (Zs, Zt)] =

g (Zs, Zt) f (Zs) dZs, where

g (Zs, Zt) is a measurable function of (Zs, Zt). Then, let Kst =

K ((Zs − Zt) /h),

Ǩst = Kst − Ět (Kst) , est = Ǩst/Ět (Kst) ,

and θ̌st = (θs − θt) Kts − Ět [(θs − θt) Kst ] .
(A.28)

Obviously, Ktt = Ět (Ktt) = K (0), but ett = θ̌tt = 0. Denote

1n1 = n−2
n−

t=1

XtX⊤

t and

1n2 (Zt) = n−2
n−

s=1

XsX⊤

s Ǩst/Ět (Kst) .

(A.29)

By (A.22) and noting that Kst/Ět(Kst) = 1 + Ǩst/Ět(Kst), we
have
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n−1
n−

t=1

B1n(Zt)

= n−1
n−

t=1

−
s

XsX⊤

s Kst

−1−
s

XsX⊤

s (θs − θt) Kst

= n−1
n−

t=1


n−2

−
s

XsX⊤

s + n−2
−
s

XsX⊤

s
Ǩst

Ět (Kst)

−1

n−2

×

−
s

XsX⊤

s
(θs − θt) Kst

Ět (Kst)

= n−1
n−

t=1


1−1

n1 − 1−1
n1 1n2 (Zt)


1−1

n1 1n2 (Zt) + Id
−1

1−1
n1


n−2

×

−
s

XsX⊤

s
(θs − θt) Kst

Ět (Kst)

= 1−1
n1 n

−3
n−

t=1

−
s

XsX⊤

s
(θs − θt) Kst

Ět (Kst)
− 1−1

n1 n
−3

×

n−
t=1

1n2 (Zt) 1−1
n1

−
s

XsX⊤

s
(θs − θt) Kst

Ět (Kst)


1 + op (1)


= n−1

n−
t=1

Ět [(θs − θt) Kst ]

Ět (Kst)
− 1−1

n1 n
−1

n−
t=1

1n2 (Zt)

×
Ět [(θs − θt) Kst ]

Ět (Kst)


1 + op (1)


+ op


h2

= n−1
n−

t=1


Id − 1−1

n1 1n2 (Zt)
 Ě [(θs − θt) Kst ]

Ět (Kst)
+ op


h2

= h2n−1
n−

t=1

J(Zt) + op

h2 ,

where Lemmas A.3 and A.9 given in Appendix A.2 are used.
Therefore, taking this result with (A.22), we have

Λn2 (z) = B1n (z) − n−1
n−

t=1

B1n(Zt)

= h2
{B (z) − E [J(Zt)]} + op


h2

+ Op


h/n


. (A.30)

Now, denoting

πn1 = n−2
n−

s=1

Xsus and

πn2 (Zt) = n−2
n−

s=1

XsusǨst/Ět (Kst) ,

(A.31)

by (A.23), we have

n−1
n−

t=1

B2n(Zt) = n−1
n−

t=1

−
s

XsX⊤

s Kst

−1−
s

XsusKst

= n−1
n−

t=1

−
s

XsX⊤

s +

−
s

XsX⊤

s
Ǩst

Ět (Kst)

−1

×

−
s

Xsus
Kst

Ět (Kst)

= n−1
n−

t=1


1−1

n1 − 1−1
n1 1n2 (Zt)


1−1

n1 1n2 (Zt)
+ Id
−1

1−1
n1


n−2

−
s

Xsus
Kst

Ět (Kst)

= 1−1
n1 n

−3
n−

t=1

−
s

Xsus
Kst

Ět (Kst)

− 1−1
n1 n

−3
n−

t=1

1n2 (Zt) 1−1
n1

−
s

Xsus
Kst

Ět (Kst)


1 + op (1)


= 1−1

n1 πn1 + 1−1
n1 n

−1
n−

t=1

πn2 (Zt)

− 1−1
n1 n

−1
n−

t=1

1n2 (Zt) 1−1
n1 πn1


1 + op (1)


− 1−1

n1 n
−1

n−
t=1

1n2 (Zt) 1−1
n1 πn2 (Zt)


1 + op (1)


= 1−1

n1 πn1 + op

n−1h−1 ,

where the last equation results from Lemma A.9.
Taking this result with (A.24), we have

√
nhΛn3 (z) =

√
nh


B2n (z) − n−1

n−
t=1

B2n(Zt)



= Πn1 + Πn2 + op

(nh)−1/2

+ Op

√
h


, (A.32)

which completes the proof of Theorem 3.2. �

A.2. Mathematical proof for Theorem 3.3 and Proposition 3.4

As we will frequently use Lemma 3.1 of Yoshihara (1976) in
our proofs, we present Yoshihara’s (1976) Lemma 3.1 below for
readers’ convenience.

Lemma A.7. Let zt ∈ Rp be a strictly stationary β-mixing process,
i1 < i2 < · · · < ik be arbitrary integers, F(zi1 , . . . , zik) the
distribution function for (zi1 , . . . , zik). For any j (0 ≤ j ≤ k − 1),
dFj = dF(zi1 , . . . , zij)dF(zij+1, . . . , zik) and dF0 = dF(zi1 , . . . , zik).
Let hn(zi1 , . . . , zik) be a Borel function such that, for some λ >

0,


. . .

Rkp |hn(zi1, . . . , zik)|

1+λdF(zi1 , . . . , zij)dF(zij+1, . . . , zik) ≤

Mn. Then∫ · · ·

∫
Rkp

hn(zi1 , . . . , zik)dF0 −

∫
· · ·

∫
Rkp

hn(zi1 , . . . , zik)dFj


≤ 4M1/(1+λ)

n [β(ij+1 − ij)]λ/(1+λ).

In this section, Ǩst , Ět(Kst), est , 1n1, 1n2 (Zt) , πn1, and πn2 (Zt)
are defined the same way as in (A.28), (A.29) and (A.31). Also, we
denote χn = {X1, . . . , Xn, u1, . . . , un}. The following lemma is
used by the Proofs of Theorem 3.3 and Lemma A.9.

Lemma A.8. If Assumptions A1–A5 and A2* hold, we have

Dn
def
= n−4h−2

n−
t=1

n−
t ′=1

n−
s=1

n−
s′=1

|cov(est , es′t ′)| = O

n−2h−1 . (A.33)

Proof. LetDn = Dn1 +Dn2 +Dn3 +Dn4, where Dn1 is for the case
that t = t ′ and s = s′,Dn2 is for the case that t = t ′ but s ≠ s′,Dn3
is for the case that t ≠ t ′ but s = s′, and Dn4 is for the case that
t ≠ t ′ and s ≠ s′.

Firstly, as sups,t Var (est) = O (h), we have

Dn1 = n−4h−2
n−

t=1

n−
s=1

Var (est) = O

n−2h−1 . (A.34)
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Secondly, we will show that Dn2 and Dn3 are both of
o


n2h
−1

. We will give the detailed proof for Dn2 and omit

the proof for Dn3 due to similarity of the proofs. In this case,
Dn2 = n−4h−2∑n

t=1
∑n

s=1
∑

s′≠s |cov(est , es′t)|. Applying Berbee
(1979) coupling method, we rewrite cov(est , es′t) as follows

cov(est , es′t) =

cov(est , es′t) − cov∗(est , es′t)


+

cov∗(est , es′t) − cov(est , es′t)


+ cov(est , es′t), (A.35)

where the expectation for cov∗(est , es′t) is taken with respect to
the joint pdf fs′,s (Zs′ , Zs) f (Zt), and the expectation for cov(est , es′t)
is taken with respect to the joint pdf f (Zs′) f (Zs) f (Zt). Hence,cov(est , es′t) = 0. Therefore, applying Lemma A.7 gives

|cov(est , es′t)| ≤ Mh2/(1+λ)

×

βλ/(1+λ)


min


t − s, t − s′


+ βλ/(1+λ)


s − s′


,

and it follows that

Dn2 ≤ Mn−4h−2
−
t

−
s<t

−
s′<s

h2/(1+λ)

×

βλ/(1+λ) (t − s) + βλ/(1+λ)


s − s′


= O


n−2h(−2λ)/(1+λ)


= o


(n2h)−1 , (A.36)

under Assumption A5(ii) with λ ∈ (0, 1). Hence, we obtain Dn2 =

o

(n2h)−1


.

Finally, we will show Dn4 ≤ Mn−4h−2∑n
t=4
∑t−1

s=3
∑s−1

t ′=2∑t ′−1
s′=1 |cov(est , es′t ′)| = o


(n2h)−1


. Let m = [1/h1/3

] be the
integer part of 1/h1/3. We now bound Dn4 separately for three
cases: (i) t − s′ ≤ m; (ii) t − s′ > m and t − t ′ ≤ m; (iii) t − t ′ > m.
Conformably, we rewrite Dn4 = Dn4,(i) + Dn4,(ii) + Dn4,(iii).

For cases (i) and (ii), we have |cov(est , es′t ′)| ≤ E |estes′t ′ | +

|E (est) E (es′t ′)| ≤ Mh2. As the number of summations is of order
nm3 for case (i) and n2m2 for case (ii), we have

Dn4,(i) + Dn4,(ii) = O

nm3h2

+ n2m2h2 n−4h−2

= O

n−3h−1

+ O

n−2h−2/3

= o


n2h
−1


. (A.37)

For case (iii), applying Lemma A.7, we have |cov(est , es′t ′)| ≤

Mh2/(1+λ)βλ/(1+λ)

s − t ′


for t > s > t ′ > s′. The leading term of

n3h2Dn4,(iii) is given by

h2/(1+λ)
n−

t=4

t−1−
s=3

t−m−1−
t ′=2

t ′−1−
s′=1


s − t ′

−τλ/(1+λ)

∼ h2/(1+λ)

∫ n

4

∫ x−1

3

∫ x−m−1

2

∫ z−1

1
(y − z)−τλ/(1+λ)

× dsdzdydx

∼ n4−τλ/(1+λ)h2/(1+λ). (A.38)

Taking (A.37) and (A.38) together, we obtain

Dn4 = n−4h−2O

nm3h2

+ n2m2h2
+ n4−τλ/(1+λ)h2/(1+λ)


= o


n2h

−1


+ O


n2h
−1

n2−τλ/(1+λ)h(1−λ)/(1+λ)


= o


n2h
−1


,

if λ ∈ (0, 1) and τ > 2λ−1 (1 + λ). This completes the proof of
Lemma A.8. �
Lemma A.9. If Assumptions A1–A5 and A2* hold, we have

Γn1 = n−1
n−

t=1

πn2 (Zt) = op

n−1h−1 , (A.39)

Γn2 = n−1
n−

t=1

1n2 (Zt) = op

n−1h−1 , (A.40)

Γn3 = n−3
n−

t=1

−
s

XsX⊤

s θ̌st/Ět (Kst) = op

n−1 . (A.41)

Proof. Evidently, we only need to give the proofs for (A.39) and
(A.41). To simplify notation, without loss of generality, we treat Xt
as a scalar; otherwise the result holds for each element of Γn1 (and
Γn3).

Consider Γn1 first. Under Assumption A2, we have sup1≤t≤nh−1Ět (Kst) − f (Zt)
 = Op


h2

. Hence,

Γn1 =

n3h

−1
n−

t=1

n−
s=1

XsusǨst/f (Zt)

1 + op (1)


def
= Γ̃n1


1 + op (1)


.

By Assumption A5(i), we have E

Γ̃n1|χn


=

n3h

−1∑n
t=1
∑n

s=1

XsusE (est). As Ě (est) = 0 and for λ ∈ (0, 1) ,
  

Ǩst/f (Zt)
1+λ

f (Zt) f (Zs) dZtdZs ≤ Mh, applying Lemma A.7 gives

|E (est)| ≤ Mh1/(1+λ)β (|t − s|)λ/(1+λ) .

Hence, by

sup
1≤t≤n

|Xt | = Op
√

n


and sup
1≤t≤n

|ut | = Op
√

n

, (A.42)

we obtain

E

Γ̃n1|χn


= Op


n−2h−1 n−

t=1

n−
s=1

h1/(1+λ)βλ/(1+λ) (|s − t|)

= Op

n−1h−1h1/(1+λ)


= op


(nh)−1 (A.43)

because n−1∑n
t=1
∑n

s=1 βλ/(1+λ) (|s − t|) ≤ M under Assumption
A5(ii).

Now, we consider the conditional variance of Γ̃n1 given χn.
Again, by Assumption A5(i), we have

var(Γ̃n1|χn) = n−6h−2
n−

t=1

n−
t ′=1

n−
s=1

n−
s′=1

Xsusus′Xs′cov(est , es′t ′)

= Op

n−4h−2 n−

t=1

n−
t ′=1

n−
s=1

n−
s′=1

|cov(est , es′t ′)| .

Applying Lemma A.8 gives var(Γ̃n1|χn) = Op

n−2h−1


. By

Markov’s inequality, we then obtain Γ̃n1 − E

Γ̃n1|χn


= Op

(n−1h−1/2). By (A.43), we have Γ̃n1 = op


(nh)−1


. This com-

pletes the proof of (A.39).
Consider Γn3. Again, we have Γn3 =


n3h

−1∑n
t=1
∑

s X
2
s θ̌st/

f (Zt)

1 + op (1)

 def
= Γ̃n3


1 + op (1)


. As

  
θ̌st/f (Zt)

1+λ

f (Zt)

f (Zs) dZtdZs ≤ Mh2+λ for λ ∈ (0, 1) and Ě (ξst) = 0, where
ξst = θ̌st/f (Zt), applying Lemma A.7 gives

|E (ξst)| ≤ Mh(2+λ)/(1+λ)β (|t − s|)λ/(1+λ) .
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Hence, by (A.42), we obtain

E

Γ̃n3|χn


= Op


n−2h−1 n−

t=1

n−
s=1

h(2+λ)/(1+λ)βλ/(1+λ) (|s − t|)

= Op

n−1h1/(1+λ)


= op


n−1 . (A.44)

Moreover, we have

var(Γ̃n3|χn) = n−6h−2
n−

t=1

n−
t ′=1

n−
s=1

n−
s′=1

X2
s X

2
s′cov(ξst , ξs′t ′)

= Op

n−4h−2 n−

t=1

n−
t ′=1

n−
s=1

n−
s′=1

|cov(ξst , ξs′t ′)| .

Following the proof of Lemma A.8, we show var(Γ̃n3|χn) =

Op

n−2h


. Again, by Markov’s inequality, we obtain Γ̃n3 −

E

Γ̃n3|χn


= Op(n−1h1/2). Therefore, by (A.44), we have Γ̃n3 =

op(n−1). This proves (A.41). Hence, the proof of Lemma A.9 is
complete. �

Proof of Theorem 3.3. To simplify notation, we denote α̃t =

α̃(Zt) and θ̌t = θ̌ (Zt). By (2.14), we have c̃0 =
∑n

t=2 ζtζ
⊤
t

−1∑n
t=2 ζt1Ỹt , where 1Ỹt = Yt − Yt−1 − X⊤

t α̃t + X⊤

t−1α̃t−1 =

X⊤
t (αt − α̃t)−X⊤

t−1 (αt−1 − α̃t−1)+ζ⊤
t c0 +ϵt . Therefore, we have

c̃0 = c0 +


n−

t=2

ζtζ
⊤

t

−1 n−
t=2

ζtϵt +


n−

t=2

ζtζ
⊤

t

−1

×

n−
t=2

ζt

X⊤

t (αt − α̃t) − X⊤

t−1 (αt−1 − α̃t−1)


def
= c0 + An1 +


n−1

n−
t=2

ζtζ
⊤

t

−1

An2,

where An1 =
∑n

t=2 ζtζ
⊤
t

−1∑n
t=2 ζtϵt and An2 = n−1∑n

t=2 ζt
X⊤
t (αt − α̃t) − X⊤

t−1 (αt−1 − α̃t−1)

. An1 = Op


n−1/2


given

E (ϵt |ζt) = 0 and Var

n−1∑n

t=2 ζtϵt


= O

n−1


by McLeish’s

strong mixing inequality. Below, we will show

n−1∑n

t=2 ζtζ
⊤
t

−1

An2 = Op

h2

+ Op


(nh)−1/2.

Define 1n3 = n−2∑
t XtX⊤

t αt . Then (A.11) can be written as
θ̂0 = c0 + 1−1

n1 (πn1 + 1n3). Combining this with (A.21), we have

X⊤

t (αt − α̃t) − X⊤

t−1 (αt−1 − α̃t−1)

= X⊤

t


−B1n (Zt) − B2n (Zt) + 1−1

n1 πn1 + 1−1
n1 1n3


− X⊤

t−1


−B1n (Zt−1) − B2n (Zt−1) + 1−1

n1 πn1 + 1−1
n1 1n3


= ζ⊤

t 1−1
n1 (πn1 + 1n3) − X⊤

t [B1n (Zt) + B2n (Zt)]

+ X⊤

t−1 [B1n (Zt−1) + B2n (Zt−1)] .

Substituting the above result into An2, we can write An2 =

An2,1 + An2,2 + An2,3, where An2,1 = n−1∑
t ζt1

−1
n1 (πn1 + 1n3),

An2,2 = −n−1∑n
t=2 ζt


X⊤
t B1n (Zt) − X⊤

t−1B1n (Zt−1)

, and An2,3 =

−n−1∑n
t=2 ζt


X⊤
t B2n (Zt) − X⊤

t−1B2n (Zt−1)

.

Firstly, applying Lemma A.1 yields
n−1

n−
t=2

ζtζ
⊤

t

−1

An2,1 = 1−1
n1 πn1 + 1−1

n1 1n3

= 1−1
n1 πn1 + Op


n−1/2 . (A.45)
Secondly, we obtain

An2,2 = −n−1
n−

t=2

ζt

X⊤

t B1n (Zt) − X⊤

t−1B1n (Zt−1)


= n−1
n−1−
t=2

(ζt+1 − ζt) X⊤

t B1n (Zt) − n−1ζnX⊤

n B1n (Zn)

+ n−1ζ2X⊤

1 B1n (Z1)

= n−1
n−1−
t=2

(ζt+1 − ζt) X⊤

t B1n (Zt)

+Op

n−1/2h2 by (A.22)

= n−1h2
n−1−
t=2

(ζt+1 − ζt) X⊤

t B (Zt)

+ op

h2

+ Op

n−1/2h2

= Op

h2 , (A.46)

where following the proof of Lemma A.3, we can show n−1∑n−1
t=2

(ζt+1 − ζt) X⊤
t B (Zt) = Op (1) given the fact that E[(ζt+1 − ζt)

B(Zt)⊤] = 0 under Assumption A5(i).
Similar manipulations give

An2,3 = −n−1
n−

t=2

ζt

X⊤

t B2n (Zt) − X⊤

t−1B2n (Zt−1)


= n−1
n−1−
t=2

(ζt+1 − ζt) X⊤

t B2n (Zt) − n−1ζnX⊤

n B2n (Zn)

+ n−1ζ2X⊤

1 B2n (Z1)

= n−1
n−1−
t=2

(ζt+1 − ζt) X⊤

t B2n (Zt) + Op

n−1/2 by (A.23)

= n−1
n−1−
t=2

(ζt+1 − ζt) X⊤

t


n−

s=1

XsX⊤

s Kst

−1 n−
s=1

XsusKst

+Op

n−1/2

= n−1
n−1−
t=2

(ζt+1 − ζt) X⊤

t


n2h

−1
n−

s=1

XsX⊤

s Ět (Kst)

−1

×

n2h

−1
n−

s=1

Xsus


Ǩst + Ět (Kst)

 
1 + op (1)


+Op


n−1/2

=

An2,3,1 + An2,3,2

 
1 + op (1)


+ Op


n−1/2 ,

where

An2,3,1 = n−1
n−1−
t=2

(ζt+1 − ζt) X⊤

t

×


n2h

−1
n−

s=1

XsX⊤

s Ět (Kst)

−1

×

n2h

−1
n−

s=1

XsusĚt (Kst)

= n−1
n−1−
t=2

(ζt+1 − ζt) X⊤

t 1−1
n1 πn1

= −


n−1

n−
t=2

ζtζ
⊤

t


1−1

n1 πn1 + Op

n−1/2 , (A.47)



266 Y. Sun et al. / Journal of Econometrics 164 (2011) 252–267
and

An2,3,2 = n−1
n−1−
t=2

(ζt+1 − ζt) X⊤

t

×


n2h

−1
n−

s=1

XsX⊤

s Ět (Kst)

−1

×

n2h

−1
n−

s=1

XsusǨst

= n−1
n−1−
t=2

(ζt+1 − ζt) X⊤

t 1−1
n1


n2h

−1

×

n−
s=1

XsusǨst/f (Zt)

1 + op (1)

 def
= Γn


1 + op (1)


as sup1≤t≤n

h−1Ět (Kst) − f (Zt)
 = O


h2

by Assumptions A2 and

A3. Below, we will show Γn = Op

(nh)−1/2.

In the following proof, without loss of generality, we again treat
Xt as a scalar; otherwise the result holds for each element of Γn. By
Assumption A5(i), we have

E (Γn|χn) =

n3h

−1
n−1−
t=2

(ζt+1 − ζt) Xt1
−1
n1

n−
s=1

XsusE (est) ,

where applying Lemma A.7 gives

|E (est)| ≤ Mh1/(1+λ)β (|t − s|)λ/(1+λ) .

Hence, applying (A.42), we obtain

|E (Γn|χn)| = Op

n−3/2h−1 n−1−

t=2

|ζt+1 − ζt |

×

n−
s=1

h1/(1+λ)βλ/(1+λ) (|s − t|)

= Op

n−3/2h−1 h1/(1+λ)

n−1−
t=2

|ζt+1 − ζt |

×

n−
s=1

βλ/(1+λ) (|s − t|)

= Op

n−1/2h−1h1/(1+λ)


= op


(nh)−1/2 (A.48)

because E |ζt+1 − ζt | < M by Assumption A1 and n−1∑n−1
t=2

∑n
s=1

βλ/(1+λ) (|s − t|) ≤ M under Assumption A5(ii).
Now,we consider the conditional variance ofΓn givenχn. Again,

by Assumption A5(i), we have

Dn
def
= var(Γn|χn)

= n−6h−2
n−1−
t=2

n−1−
t ′=2

n−
s=1

n−
s′=1

(ζt+1 − ζt)

× XtXsusus′Xs′Xt ′ (ζt ′+1 − ζt ′) cov(est , es′t ′)

= Op

n−3h−2 n−1−

t=2

n−1−
t ′=2

n−
s=1

n−
s′=1

|cov(est , es′t ′)| , (A.49)

where the last equation is obtained by (A.42) and sup1≤t≤n
E ‖ζt+1 − ζt‖2 ≤ M < ∞. Applying Lemma A.8 gives
Dn = Op(n−1h−1). By Markov’s inequality, we obtain Γn −

E (Γn|χn) = Op((nh)−1/2). By (A.48), we have Γn = Op((nh)−1/2).
Hence, we have An2,3,2 = Op((nh)−1/2).
Taking together this result with (A.45)–(A.47) yields

c̃0 − c0 = Op(h2
+ (nh)−1/2). (A.50)

Also, Theorem 3.1 indicates α̃(z) = α (z) + Op(h2
+ (nh)−1/2). We

therefore obtain

θ̃ (z) = α̃(z) + c̃0 = θ (z) + Op(h2
+ (nh)−1/2),

which shows that θ̃ (z) is a consistent estimator of θ (z) under
Assumption A4.

The proof for the consistency of ĉ0 and θ̂ (z) are similar, and thus
are omitted here. This completes the proof of Theorem 3.3. �

Proof of Proposition 3.4. θ̌ (z) is still defined as in (2.6). When
there is a (varying) intercept term γ (Zt), θ̌ (z) contains the
following extra term:

Mn
def
=

−
t

XtXT
t Ktz

−1−
t

XtKtzγ (Zt).

Now,

√
nMn =

√
n

−
t

XtX⊤

t E(Ktz)

−1

×

−
t

XtE [Ktzγ (Zt)]

1 + op (1)


=


n−1

−
t

Xt
√
n
X⊤
t

√
n

−1

× n−1
−
t

Xt
√
n
[E(Ktz)]

−1E [Ktzγ (Zt)]

1 + op (1)


d

→

[∫ 1

0
BX (r)BX (r)⊤ dr

]−1 ∫ 1

0
BX (r)dr


γ (z)

= Op(1).

It follows that Mn =
∑

t XtX⊤
t Ktz

−1∑
t XtKtzγ (Zt) =

Op

n−1/2


uniformly over z ∈ S since supz∈S |γ (z)| ≤ M < ∞.

Hence, we have shown that Mn = Op(n−1/2) = op(h2
+ (nh)−1/2).

Therefore, the inclusion of an additive bounded function γ (·)
in the regression model is asymptotically negligible as far as
the estimation of θ(·) is concerned. This completes the proof of
Proposition 3.4. �
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