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Cai, Li, and Park (Journal of Econometrics, 2009) and Xiao (Journal of Economet-
rics, 2009) developed asymptotic theories for estimators of semiparametric varying
coefficient models when regressors are integrated processes but the smooth coef-
ficients are functionals of stationary processes. Using a recent result from Phillips
(Econometric Theory, 2009), we extend this line of research by allowing for both
the regressors and the covariates entering the smooth functionals to be integrated
variables. We derive the asymptotic distribution for the proposed semiparametric
estimator. An empirical application is presented to examine the purchasing power
parity hypothesis between U.S. and Canadian dollars.

1. INTRODUCTION

Econometric analysis involving integrated time series is quite popular in macroe-
conometrics and financial econometrics. With the availability of useful technical
tools developed for integrated time series analysis by Jeganathan (2004), Wang
and Phillips (2009a, 2009b), Phillips (2009), and Kasparis and Phillips (2012),
researchers can apply flexible nonparametric/semiparametric techniques to an-
alyze integrated time series data; see Juhl (2005), Wang and Phillips (2009a,
2009b), Phillips (2009), Cai, Li, and Park (2009), Xiao (2009), and Kasparis and
Phillips, among many others.
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In this note we consider the semiparametric functional coefficient model

Yt = X T
t β(Zt )+ut , (1)

where both Xt (a d × 1 vector) and Zt (a scalar) are integrated variables
(i.e., I(1) variables), ut is a stationary process, and β(·) = (β1(·), . . . ,βd(·))T is
a d × 1 vector of unknown functional coefficients. Asymptotic theories of local
linear estimator of β(·) have been developed in the literature under three cases:
(i) both Xt and Zt are stationary by Cai, Fan, and Yao (2000); (ii) Zt is I(0) and
Xt contains both I(0) and I(1) variables by Cai et al. (2009) and Xiao (2009); and
(iii) Zt is I(1) and Xt is I(0) by Cai et al. (2009). However, to the best of our
knowledge, asymptotic analysis for the case that both Xt and Zt are I(1) variables
is not available in the existing literature. In this note we close this gap by provid-
ing asymptotic theories of the local linear estimator of β(·) for the case that both
Xt and Zt are I(1) variables.

2. THE LOCAL LINEAR ESTIMATOR AND ASYMPTOTIC RESULTS

Denote the j th derivative of β (z) by β( j) (z) = ∂ jβ (z)/∂z j , where j is a positive
integer. For each l = 1, . . . ,d, we have the Taylor expansion of βl(Zt ) at z0 ∈ R,

βl(Zt ) = βl(z0)+β
(1)
l (z0)(Zt − z0)+β

(2)
l (z0)(Zt − z0)

2/2+ rl(Zt , z0), (2)

where z0 is either a fixed constant or z0 = zn,0 = c0
√

n for some nonzero constant
c0 (so that z0 = O(

√
n)). Our estimator solves the minimization problem(

â
b̂

)
= arg min

(a,b)

n

∑
t=1

[
Yt −aT Xt −bT Xt

(
Zt − z0

)]2
K

(
Zt − z0

h

)
, (3)

where â = β̂(z0) estimates β(z0) and b̂ = β̂(1)(z0) estimates β(1) (z0). Let θ̂ (z0) =(
β̂(z0)

T , β̂(1)(z0)
T
)T and θ(z0) = (β(z0)

T ,β(1)(z0)
T
)T . Then it is easy to see

that

θ̂ (z0) = θ(z0)+ An1(z0)
−1 [An2(z0)+ An3(z0)+ An4 (z0)] , (4)

where An1(z0) = ∑n
t=1 K

(
Zt −z0

h

)
Qt QT

t , An2(z0) = 1
2 ∑n

t=1 K
(

Zt −z0
h

)
(Zt − z0)

2

Qt X T
t β(2)(z0), An3(z0) = ∑n

t=1 K
(

Zt −z0
h

)
Qt X T

t r (Zt , z0), An4 (z0) = ∑n
t=1

K
(

Zt −z0
h

)
Qt ut , Qt = (X T

t , X T
t (Zt − z0))

T , r (·, ·) = [r1 (·, ·) , . . . ,rd (·, ·)]T , and

rl (·, ·) is defined in (2) for l = 1, . . . ,d.
Define a (2d)× (2d) diagonal matrix Hn = diag(Id ,hId), where Id denotes a

d ×d identity matrix. We will show that

n3/4h1/2 Hn

(
θ̂ (z0)− θ(z0)−h2C(z0)

)
d→ M N ,

where M N is a mixed normal random vector, and C(z0) is a nonstochastic con-
stant depending on z0 and is defined in Theorem 1 below.
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The result of this paper heavily relies on a recent covariance asymptotic result
provided by Phillips (2009). In particular, Phillips (2009) develops a limit theory
for the sample covariance of the form

1√
nh

n

∑
t=1

g

(
Xt√

n

)
T

(
Zt − z0

h

)
d→
∫ ∞
−∞

T (r)dr
∫ 1

0
g(BX (s))d L BZ (s,c0), (5)

where T (·) is an integrable function, (BX , BZ ) is a vector of Brownian motion,
L BZ is the local time of BZ , and c0 = limn→∞(z0/

√
n) is a finite constant (c0 = 0

if z0 is a finite constant). For the Brownian motion BZ (·), its local time is defined
by L BZ (t,s) = limε→0 (2ε)−1 ∫ t

0 I {|BZ (r)− s| < ε}dr .
We now turn to the derivation of the asymptotic theory of θ̂ (z0) =(

β̂(z0)
T , β̂(1)(z0)

T
)T . We first list some regularity conditions. Let ψt =(

X T
t+1, Zt+1,Vt

)T
be a column vector of partial sums of dimension m = d + 2;

i.e., ψt = ψ0 +∑t
i=1 ηt for 1 ≤ t ≤ n , n ≥ 1, where ηt = (ηT

x,t+1,ηz,t+1,ut
)T with

ηx,t+1 = Xt+1 − Xt , ηz,t+1 = Zt+1 − Zt , and ut = Vt − Vt−1 for all t . We will use
Theorem 1 of Phillips (2009) to study the asymptotic behaviors of An, j (z0) for
j = 1,2,3. Below we list sufficient conditions to ensure the use of Theorem 1 of
Phillips (2009).

Assumption A1. Assume {ηt } is a zero-mean, strictly stationary, α-mixing
sequence of size −p/(p −2) with p = 2 + δ and ‖ηt‖2+δ̃ < C < ∞ for some

small 0 < δ < δ̃ ≤ 1. In addition, limn→∞ n−1
E
(
ψnψT

n

) = 
η < ∞ and ψ0 =
Op(1).

Under Assumption A1 and by Corollary 4.2 of Wooldridge and White (1988),
we apply the multivariate functional central limit theorem to the vector of trian-
gular arrays ψt,n = ψt/

√
n for 1 ≤ t ≤ n such that

ψ[nr ],n√
n

= ψ0√
n

+ 1√
n

[nr ]

∑
t=1

ηt ⇒ B(r) for r ∈ [0,1], (6)

where [a] denotes the integer part of a, B (·) is an m-dimensional multivariate
Brownian motion with zero mean and covariance matrix 
η, and “⇒ ” denotes
the weak convergence on the Skorohod space D[0,1]m . Partitioning B(r) con-

formably with ψt gives B(r) = (BX (r)T , BZ (r), Bu(r)
)T

. Throughout this note,
we use C to denote a genetic finite positive constant, which may take different
values at different places.

Assumption A2. The kernel function K (v) is a symmetric (around zero)
bounded probability density function with a bounded support [-1,1].

Assumption A3. (i) Assume β (z) is three-time continuously differentiable,
and β(3) (z) satisfies a Hölder condition: For all z, z′ ∈R,

∥∥β(3) (z)−β(3)
(
z′)∥∥≤

C
∣∣z − z′∣∣α for some α > 0, where ‖·‖ is the Euclidean norm. (ii) When z0 = zn,0 =√
nc0 with c0 �= 0, limn→∞ β( j)

(
zn,0
)

is finite for j = 2,3.
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We denote by f x
t (x) the probability density function of Xt/

√
t and f z

s,t (z|x)
the conditional probability density function of (Zt − Zs)/

√
t − s conditional on

(n−1/2 Xs,Fn,s) for 0 ≤ s < t ≤ n, where we set Z0 = 0 for simplicity, and
Fn,s = σ {ηi : 1 ≤ i ≤ s} is the smallest sigma field containing the past history
of {ηi : 1 ≤ i ≤ s ≤ n}.

Assumption A4. (i) Assume max0≤s<t≤n supz∈R supx∈Rd f z
s,t (z|x) ≤ C < ∞.

Also, for all x ∈ Rd and 0 ≤ s < t ≤ n and for some l > 0, we have (a local

Hölder condition) supx

∣∣∣ f z
s,t

(
hu+z0√

t−s
|x
)

− f z
s,t

(
z0√
t−s

|x
)∣∣∣ ≤ C

∣∣∣ hu√
t−s

∣∣∣l . (ii) There

is a nonnegative function f (x) satisfying f x
t (x) ≤ f (x) for all t and

∫ ‖x‖q

f (x)dx < ∞ for some q > 2.

Assumption A5. Assume nh2 → ∞ and h → 0 as n → ∞.

Note that if z0 is a fixed constant, Assumption A3(i) is a mild assumption, as it
only requires that β(z) is three-time continuously differentiable at z0. However,
when z0 = √

nc0 with c0 �= 0, Assumption A3(ii) also requires that β( j)(·) is a
bounded function for j = 2,3. Assumption A4 is a modification of Assumption
2.3 in Phillips (2009). Assumption A5 ensures that the smoothing parameter h
converges to zero at a proper rate for the application of Theorem 1 of Phillips
(2009).

In addition, although sup1≤t≤n |Zt | = Op (n), sup1≤t≤n |Zt | = O
(√

n ln lnn
)

holds almost surely (see Thm. 2 of Rio, 1995). Therefore, there is a small prob-
ability that Zt may take values at far tails beyond O

(√
n
)
. To avoid data spar-

sity, we estimate β(z) at z0 ∈Mn , where Mn = {z ∈ R : z/
√

n is bounded as
n → ∞}. Also, A ⊗ B refers to the Kronecker product. The direct application of
Theorem 1 of Phillips (2009) gives the following results, and the proof is delayed
to the Appendix.

LEMMA 1.

(i) Under Assumptions A1, A2, A4, and A5, for z0 ∈Mn, we have

H−1
n

An1(z0)

n3/2h
H−1

n
d→ Sμ ⊗ � (c0) ,

where Hn = diag{Id ,hId}, � (c0) = ∫ 1
0 BX (r)BX (r)T d L BZ (r,c0), Sμ =

diag{1,μ2} and μj = ∫∞
−∞ v j K (v)dv ( j is a nonnegative integer).

(ii) If Assumption A3 also holds, we have

H−1
n

An2(z0)

n3/2h3
d→
[
μ2� (c0)β

(2) (z0)/2
0d×1

]
and

H−1
n An3 (z0)

n3/2h4
d→
[

0d×1

μ4� (c0)β
(3) (z0)/6

]
,

where 0d×1 is a d ×1 vector of zeros.
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The results in Lemma 1 can be strengthened to convergence in the probability
result as shown in Phillips (2009) if the weak convergence result (6) is strength-
ened to the uniform convergence in the probability result. We will do so in the
Appendix when we prove the main result of this paper.

To obtain the limit result for An1(z0)
−1 An4 (z0), we make the following addi-

tional assumption.

Assumption B. Assume {ut } is a stationary process satisfying E
(
ut |Fn,t−1

)=
0, E
(
u2

t |Fn,t−1
) a.s.→ σ 2

u < ∞, and sup1≤t≤nE
(|ut |q |Fn,t−1

)
< C < ∞ for some

q > 2, where
a.s.→ denotes the convergence with probability one.

Assumption B implies that Xt and Zt are exogenous regressors. Given the re-
cent work of Wang and Phillips (2009b), who show that estimation consistency
can be achieved under endogeneity, we conjecture that Assumption B may be re-
laxed to allow for endogenous regressors. We leave this possible extension as a
future research topic. The main result of this note is given below, and the proof is
given in the Appendix.

THEOREM 1. Under Assumptions A1–A5 and B and n3/2h5 = O(1), for
z0 ∈Mn, we have(

H−1
n An1 H−1

n

)1/2 [
Hn

(
θ̂ (z0)− θ(z0)

)
−h2C(z0)

]
d→ N
(
0,
∗) , (7)

where C(z0) = ( 1
2μ2β

(2)(z0)
T , 01×d

)T
, 
∗ = σ 2

u diag
(
ν0,

ν2
μ2

)
⊗ I2d , νj =∫

K 2 (u)u j du, and 01×d is a 1×d vector of zeros.

By Lemma 1, we know that H−1
n An1 H−1

n = Op
(
n3/2h

)
. Hence, Theorem 1

implies that the asymptotic variance of β̂(z0) is of order O
(
n−1/2 (nh)−1). In

contrast, Cai et al. (2009) show that the asymptotic variance of β̂(z0) is of order
O
(
n1/2 (nh)−1) when Xt is I(0) and Zt is I(1), and it is of order O

(
n−1 (nh)−1)

when Xt is I(1) and Zt is I(0). Also, it is well known that the asymptotic variance
of β̂ (z0) is of order O

(
(nh)−1) when both Xt and Zt are I(0). Therefore, com-

bining the existing results with our Theorem 1, we learn that a nonstationary Zt

inflates the asymptotic variance by an order of n1/2 (for a given stochastic pro-
cess Xt ), while a nonstationary Xt deflates the asymptotic variance by an order of
n−1 (for a given stochastic process Zt ). Moreover, from the asymptotic result of
Theorem 1 that β̂ (z0)−β(z0) = h2β(2)(z0)μ2/2 +Op

(
n−3/4h−1/2

)
, we know

that β̂(z0)−β (z0) = Op
(
n−0.6

)
if one selects the bandwidth h = O

(
n−3/10

)
.

3. AN ILLUSTRATIVE EMPIRICAL APPLICATION

We reinvestigate the purchasing power parity (PPP) hypothesis using Canadian
and U.S. price index and exchange rate data. The PPP theory is typically tested
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under the setup

st = β0 +β1 pt +β2 p∗
t +ut , (8)

where st , pt , and p∗
t are the logarithms of the nominal exchange rate expressed

as Canadian dollars per unit of the U.S. dollar, the Canadian and U.S. aggregate
price levels, respectively. The PPP theory predicts that {ut } is an I (0) process.
One may further test that β0 = 0 and β1 = −β2 = 1.

We use monthly data for the period from January 1974 to December 2009.
The aggregate price index is measured by the producer price index (PPI) base-
weighted to the year 2000. The augmented Dickey-Fuller (or ADF) test, the
generalized least squares (GLS) modified ADF (or ADF-GLS) test of Elliott,
Rothenberg, and Stock (1996), and Phillips and Perron’s (1988, or PP) Zα test are
used to test for unit roots. None of the three unit root tests reject that st , pt , and
p∗

t are I(1) variables in line with the conventional wisdom. We then apply three
cointegration tests to test for a potential cointegrating relation among the three
integrated variables. First, when we apply the Engle-Granger (EG) residual-based
cointegrating test to model (8), the EG test statistic equals -1.697 with a p value
of 0.97, which indicates a failure to reject a spurious regression at any conven-
tional significance level. Second, when we apply Xiao and Phillips’ (2002) test,
the t-statistic for the coefficient of the linear time trend is -2.98 with a p value of
0.003, which means that this coefficient is significantly different from zero even
at the 1% level. Hence, Xiao and Phillips’ test strongly rejects the null of a coin-
tegrating relation. In addition, Johansen’s cointegrating rank test statistic for no
cointegrating relation against at least one cointegrating relation yields a value of
28.37, smaller than the 5% critical value of 31.59. Therefore, linear model-based
testing results fail to support the long-run PPP theory.

Next, we use a flexible semiparametric varying coefficient model to reexamine
the PPP hypothesis. The linear model is restrictive, as it implies that the bilat-
eral exchange rate is solely determined by the price levels from the two coun-
tries. However, based on the sticky-price theory of exchange rate determination,
exchange rate movements also respond to monetary shocks. Due to sticky prices,
the goods markets adjust to the monetary shocks more slowly than do asset mar-
kets. Hence, in addition to the aggregate price levels, some other economic vari-
ables, such as interest rate differentials between two nations, also affect exchange
rate formation and adjust more quickly to monetary shocks than the aggregate
price indexes do. Therefore, we will allow the price coefficients to depend on
the interest rate differential between the United States and Canada. Specifically,
we denote by zt = TU S,t −TC A,t the difference between the two countries’ 10-year
Treasury bond rates, where the rates are scaled up by 100. Allowing the coeffi-
cients in model (8) to vary with respect to the long-term bond rate differential,
we estimate the semiparametric model1

s̃t = β1 (zt ) p̃t +β2 (zt ) p̃∗
t +ut . (9)
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FIGURE 1. Estimated coefficient curves from the semiparametric PPP model (9).

Applying the ADF-GLS test statistic to the interest rate differential, we cannot
reject the null hypothesis that zt follows a unit root process at the 5% significance
level. Therefore, we treat zt as an integrated series. We use the Epanechinikov
kernel, and the smoothing parameter h is selected by the least squares cross-
validation method. Figure 1 plots the semiparametric estimates of β1(·) and
−β2(·). Examining the graph, we find that the estimated coefficient curves β̂1(z)
and −β̂2(z) have similar shapes.

We use Xiao’s (2009) t-statistic to test whether ut is an I(0) process; i.e., we
regress û2

t (the squared estimated residuals) on an intercept term and a linear time
trend. The t-statistic for the time trend coefficient equals 1.26 with a p-value of
0.787, where Newey-West standard errors are calculated with 8 lags. Thus, we
cannot reject a zero slope coefficient at the 5% significance level. This implies
that the semiparametric PPP model (9) leads to a stable (cointegrating) relation-
ship among the stochastic trends of st , pt , and p∗

t . Therefore, in contrast to the
result obtained from the linear model (8), we find that the PPP hypothesis holds
for the U.S. and Canadian markets when allowing for the coefficients of the aggre-
gate price indexes to vary with respect to a relevant macroeconomic variable: the
10-year Treasury bond rate differential between the two nations.

Finally, we make some comments on the use of Xiao’s (2009) test in our con-
text. As a co-editor correctly points out, Xiao’s model differs from our case
because Xiao only considers the case that {Zt } is a stationary process while
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we consider the case that {Zt } is a unit root nonstationary process. We conjec-
ture that, under some proper regularity conditions, it may be possible to show that
Xiao’s test is valid for the case of an I (1) Zt process. We have conducted some
simulations, and the results seem to support our conjecture. These simulation re-
sults are available from the authors upon request. We leave a rigorous proof of
extending Xiao’s (2009) test to our case as a future research topic.

NOTE

1. Here, ỹt = yt − α̂t , where α̂ is the ordinary least squares (OLS) estimate of the slope parameter
in the regression of yt on an intercept term and a time trend t , t = 1,2, . . . ,n, where y = s or p or p∗.
For a relatively large n, this detrending procedure removes asymptotically the nonzero drift of an I(1)
process. Then, the detrended data is in line with our theory derived in the paper. Therefore, equation
(9) is aimed at capturing the relation among stochastic trends embedded within exchange rates and
aggregate price indexes from U.S. and Canadian markets.

REFERENCES

Cai, Z., J. Fan, & Q. Yao (2000) Functional coefficient regression models for nonlinear time series.
Journal of the American Statistical Association 95, 941–956.

Cai, Z., Q. Li, & J.Y. Park (2009) Functional-coefficient models for nonstationary time series data.
Journal of Econometrics 148, 101–113.

Elliott, G., T.J. Rothenberg, & J.H. Stock (1996) Efficient tests for an autoregressive unit root. Econo-
metrica 64, 813–836.

Jacod, J. & A.N. Shiryaev (2003) Limit Theorems for Stochastic Processes. 2nd ed. Springer-Verlag.
Jeganathan, P. (2004) Convergence of functionals of sums of random variables to local times of frac-

tional stable motions. The Annals of Probability 32, 1771–1795.
Juhl, T. (2005) Functional coefficient models under unit root behavior. Econometrics Journal 8,

197–213.
Kasparis, I. & P.C.B. Phillips (2012) Dynamic misspecification in nonparametric cointegration.

Journal of Econometrics 168, 270–284.
Kuelbs, J. & W. Philipp (1980) Almost sure invariance principles for partial sums of mixing B-valued

random variables. The Annals of Probability 8, 1003–1036.
Park, J.Y. & P.C.B. Phillips (2001) Nonlinear regressions with integrated time series. Econometrica

69, 117–161.
Phillips, P.C.B. (1991) Spectral regression for cointegrated time series. In W.A. Barnett, J. Powell, &

G.E. Tauchen (eds.), Nonparametric Semiparametric Methods in Econometrics and Statistics: Pro-
ceedings of the Fifth International Symposium in Economic Theory and Econometrics, pp. 413–435.
Cambridge University Press.

Phillips, P.C.B. (2009) Local limit theory and spurious nonparametric regression. Econometric Theory
25, 1466–1497.

Phillips, P.C.B. & P. Perron (1988) Testing for unit roots in time series regression. Biometrika 75,
335–346.

Revuz, D. & M. Yor (2005) Continuous Martingales and Brownian Motion, 3rd ed. Fundamental
Principles of Mathematical Sciences 293. Springer-Verlag.

Rio, E. (1995) The functional law of the iterated logarithm for stationary strongly mixing sequences.
The Annals of Probability 23, 1188–1203.

Wang, Q. & P.C.B. Phillips (2009a) Asymptotic theory for local time density estimation and nonpara-
metric cointegrating regression. Econometric Theory 25, 710–738.

Wang, Q. & P.C.B. Phillips (2009b) Structural nonparametric cointegrating regression. Econometrica
77, 1901–1948.



SEMIPARAMETRIC FUNCTIONAL COEFFICIENT MODELS 667

Wang, Q. & P.C.B. Phillips (2011) Specification testing for nonlinear cointegrating regression. Cowles
Foundation Discussion Paper no. 1779.

Wooldridge, J.M. & H. White (1988) Some invariance principles and central limit theorems for de-
pendent heterogeneous processes. Econometric Theory 4, 210–230.

Xiao, Z. (2009). Functional coefficient co-integration models. Journal of Econometrics 152, 81–92.
Xiao, Z. & P.C.B. Phillips (2002) A CUSUM test for cointegration using regression residuals. Journal

of Econometrics 108, 43–61.

APPENDIX: Mathematical Proofs

Throughout this section we denote dn = √
n/h, Tj (v) = v j K (v), and μj = ∫ Tj (v)dv

for some nonnegative integer j .

Proof of Lemma 1. Letting Xt,n = Xt/
√

n and Zt,n = Zt/
√

n, we have

Sn, j
de f=
(

n3/2h
)−1 n

∑
t=1

Xt X T
t Tj

(
Zt − z0

h

)
= dn

n

n

∑
t=1

Xt,n X T
t,n Tj

(
dn

(
Zt,n − z0√

n

))
.

Under Assumptions A1, A2, A4, and A5, following step by step the proof of Theorem 1 of
Phillips (2009) (or by using (5)), it can be shown that

Sn, j
d→ μj � (c0) . (A.1)

For the term An,3(z0), we apply the Taylor expansion and obtain r (Zt , z0) = β (Zt ) −
β(z0)−β(1)(z0)(Zt − z0) −β(2)(z0)(Zt − z0)2 /2 = β(3)

(
Z̃t
)
(Zt − z0)3 /6, where Z̃t =

λt Zt + (1−λt ) z0 = λt (Zt − z0) + z0 for some λt ∈ [0,1]. By Assumption A3, we
have

∥∥β(3)
(

Z̃t
)− β(3)(z0)

∥∥ ≤ C
∣∣Z̃t − z0

∣∣α = C (hλt )
α |(Zt − z0)/h|α , which follows

sup|Zt −z0|≤h
∥∥β(3)

(
Z̃t
)− β(3)(z0)

∥∥ ≤ Chα . As K (·) has a compact support [−1,1] by
Assumption A2, we obtain(

n3/2h4
)−1

H−1
n An3(z0) =

[
Sn,3
Sn,4

]
β(3)(z0)

6
+ O
(
hα) dn

n

n

∑
t=1

K

(
Zt − z0

h

)

×
⎡⎢⎣
∥∥∥Xt,n X T

t,n

∥∥∥∣∣∣ Zt −z0
h

∣∣∣3∥∥∥Xt,n X T
t,n

∥∥∥∣∣∣ Zt −z0
h

∣∣∣4
⎤⎥⎦ . (A.2)

Applying (A.1) into (A.2) proves Lemma 1, where the second term is of order Op
(
hα
)

by
(5). Also, Sn,3 = op(1) because μ3 = 0.

Proof of Theorem 1. The proof below uses similar arguments as in the proof of
Theorem 3.2 in Wang and Phillips (2009a) and Wang and Phillips (2011). We rewrite
equation (4) as

Hn

[
θ̂ (z0)− θ(z0)

]
=
[

H−1
n An1(z0)H−1

n

n3/2h

]−1

×
[

h2 H−1
n An2(z0)

n3/2h3 +h3 H−1
n An3(z0)

n3/2h4 + H−1
n An4(z0)

n3/2h

]
. (A.3)
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When equation (6) holds true, by Theorem 4 of Kuelbs and Phillipp (1980) and

Assumption A1, there exists a random sequence ψ0
t,n

d= ψt,n in a suitable probability space
[�, F , P] such that

sup
0≤r≤1

∥∥∥ψ0
[nr ],n − B (r)

∥∥∥= op(1), (A.4)

where Dt,n
d= Gt,n means that the two stochastic processes Dt,n and Gt,n have the same

distribution. This kind of technique has been used many times in time series econometrics
in the last 20 years (e.g., Phillips, 1991).

For r ∈ [0,1], we write ψ0
[nr ],n =

(
ψ0

[nr ],n,x
T ,ψ0

[nr ],n,z,ψ
0
[nr ],n,u

)T ≡ (ψ0
n,x (r)T ,

ψ0
n,z(r),ψ0

n,u(r)
)T . By Lemma 2.1 in Park and Phillips (2001), ψ0

n,u(·) can be constructed

such that ψ0
n,u(r)

d= Bu (τnt/n) for 1 ≤ t ≤ n (for all n ≥ 1), where τn,t is an increasing

sequence of stopping times with respect to F0
n,t in [�,F , P] with

F0
n,t = σ

{
Bu(r),r ≤ τn,t /n; ψ0

n,x

(
s −1

n

)
, ψ0

n,z

(
s −1

n

)
,s = 1, . . . , t

}
(A.5)

satisfying τn,0 = 0 and

sup
1≤t≤n

∣∣∣∣ τn,t − t

nζ

∣∣∣∣ a.s→ 0 as n → ∞ (A.6)

for any ζ > max(1/2,2/q). Therefore, we have, for all 1 ≤ t ≤ n,

Xt√
n

d= ψ0
n,x

(
t −1

n

)
,

Zt√
n

d= ψ0
n,z

(
t −1

n

)
, and

ut√
n

d= Bu

( τn,t

n

)
− Bu

( τn,t−1

n

)
. (A.7)

Combining (A.3) and (A.7), we obtain

Hn

[
θ̂ (z0)− θ(z0)

]
d= �−1

n1

(
h2�n2 +h3�n3 +�n4

)
, (A.8)

where �n1 = (dn/n)∑n
t=1 K

(
ωz

n

(
t−1

n

))
Qn

(
t−1

n

)
Qn

(
t−1

n

)T
, �n2 = (dn/n)∑n

t=1

T2

(
ωz

n

(
t−1

n

))
Qn

(
t−1

n

)
ψ0

n,x

(
t−1

n

)T
β(2)(z0), �n3 = (dn/(6n))∑n

t=1 T3

(
ωz

n

(
t−1

n

))
Qn

(
t−1

n

)
ψ0

nx

(
t−1

n

)T
β(3)
(
λt hωz

n

(
t−1

n

)
+ z0

)
for some λt ∈ [0,1], �n4 = dn

n ∑n
t=1

K
(
ωz

n

(
t−1

n

))
Qn

(
t−1

n

)[
Bu
(τn,t

n

)− Bu

(
τn,t−1

n

)]
, ωz

n(t/n) = dn

(
ψ0

nz (t/n)− z0/
√

n
)
,

and Qn(t/n) =
[
ψ0

nx (t/n)T ,ωz
n(t/n)ψ0

nx (t/n)T
]T

.

Under (A.4), equation (14) of Theorem 1 of Phillips (2009, p. 1475) states that the
convergence in the distribution result of (5) can be strengthened to the uniform convergence
in probability result. Consequently, the convergence in distribution results in Lemma 1 can
be strengthened to the convergence in probability results,

�n1
p→
[

1 0
0 μ2

]
⊗ � (c0) , �n2

p→
[ 1

2μ2� (c0)β(2)(z0)

0d×1

]
and �n3 = Op(1).

(A.9)
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Using (A.9) and noting that n3/2h5 = O(1), we immediately have√
n3/2h �−1

n1

[
h2�n2 −h2C(z0)

]
= op(1) and√

n3/2hh3�−1
n1 �n3 = Op

(√
n3/2h7

)
= op(1) . (A.10)

To derive the asymptotic result for the last term in (A.8) (i.e., �n4), we construct the
continuous martingale process

Mn(r) =√dn

j−1

∑
t=1

K

(
ωz

n

(
t −1

n

))
Qn

(
t −1

n

)[
Bu

( τn,t

n

)
− Bu

( τn,t−1

n

)]
+√dn K

(
ωz

n

(
j −1

n

))
Qn

(
j −1

n

)[
Bu(r)− Bu

( τn, j−1

n

)]
for τn, j−1/n < r ≤ τn, j /n, j = 1,2, . . . ,n.

Hence, we have√
n3/2h �n4 = Mn

( τn,n

n

)
= Mn(1)

[
1+op(1)

]
, (A.11)

where the second equality uses (A.6). Assumption B ensures that Mn(·) is a continuous
martingale vanishing at 0 and has a quadratic variation process [Mn] given by

[Mn]r = σ 2
u dn

j−1

∑
t=1

K 2
(
ωz

n

(
t −1

n

))
Qn

(
t −1

n

)
Qn

(
t −1

n

)T ( τn,t

n
− τn,t−1

n

)
+σ 2

u dn K 2
(
ωz

n

(
j −1

n

))
Qn

(
j −1

n

)
Qn

(
j −1

n

)T (
r − τn, j−1

n

)
(A.12)

for τn, j−1/n < r ≤ τn, j /n, j = 1,2, . . . ,n.
Applying the proof method used in the proof of Lemma 1, we obtain that

[Mn]r
p→ σ 2

u

[
ν0 0
0 ν2

]
⊗ �r (c0)

de f= �(r) (A.13)

holds uniformly over r ∈ [0,1], where νj = ∫
u j K 2 (u)du and �r (c0) =∫ r

0 BX (s) BX (s)T d L BZ (s,c0).
Now, for any λ ∈ R2d , we define Gn,λ(r) = λT Mn(r). Now Gn,λ(·) is a continuous mar-

tingale and has a quadratic variation process given by [Gn,λ] = λT [Mn]λ. For any a ∈ Rd

and b ∈ R, the covariance process of
(
Gn,λ,aT BX + bBZ

)
is given by, for τn, j−1/n <

r ≤ τn, j /n, j = 1,2, . . . ,n,[
Gn,λ,aT BX +bBZ

]
r

=√dn

j−1

∑
t=1

K

(
ωz

n

(
t −1

n

))
λT Qn

(
t −1

n

)( τn,t

n
− τn,t−1

n

)(
aT 
xu +b
zu

)
+√dn K

(
ωz

n

(
j −1

n

))
λT Qn

(
j −1

n

)(
r − τn, j−1

n

)(
aT 
xu +b
zu

)
=
(
aT 
Xu +b
Zu

)√
dn

n

[nr ]

∑
t=1

K

(
ωz

n

(
t −1

n

))
λT Qn

(
t −1

n

)[
1+op(1)

]
= Op

(
d−1/2

n

)
= op(1) as n → ∞, (A.14)
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where 
Xu = cov(BX , Bu) and 
Zu = cov(BZ , Bu), and Theorem 1 of Phillips (2009)
(i.e., (5)) is used to derive (A.14 ).

Define a sequence of time changes ρn,λ (t) = inf
{

s ∈ [0,1] :
[
Gn,λ

]
s > t

}
. Equation

(A.14) implies[
Gn,λ,aT BX +bBZ

]
ρn,λ(t)

p→ 0 as n → ∞ (A.15)

for each t ∈ [0,1]. Let Bn
λ (t) = Gn,λ

(
ρn,λ (t)

)
. By Theorem 1.6 of Revuz and Yor (2005,

p. 181) Bn
λ is the DDS (Dambis, Dubins-Schwarz) Brownian motion of the continuous

martingale Gn,λ. We then apply the asymptotic version of Knight theorem (Thm. 2.3 of
Revuz and Yor, 2005, p. 524) to obtain Bn

λ =⇒ WG , where WG is a standard Brownian mo-
tion process independent of aT BX +bBZ . Since the above results hold for all a ∈ Rd and
b ∈ R, it implies that WG is independent of both BX and BZ . Therefore, WG is indepen-

dent of λT �(1)λ, where
[
Gn,λ

]
1

p→ λT �(1)λ. Combining with Gn,λ(r) = Bn
λ

([
Gn,λ

]
r

)
for r ∈ [0,1], we have Gn,λ(1) = Bn

λ

([
Gn,λ

]
1

) d→ λT �(1)1/2 N , where N ∼ N (0, I2d )

and �(1)1/2 is the square root of the matrix �(1); i.e., �(1) = �(1)1/2�(1)1/2.
For the q defined in Assumption B and any sequence {αt }, we have

E
(
max1≤t≤n |αt |

) = E
(
max1≤t≤n |αt |q

)1/q ≤ E
(
∑n

t=1 |αt |q
)1/q ≤ (∑n

t=1E |αt |q
)1/q ,

where the last inequality follows from Jensen’s inequality. Applying this result to

αt
de f= √

dn Tj

(
Zt −z0

h

)
λT Xt ut/n, we obtain

E

[
max

1≤t≤n

∣∣∣∣√dn Tj

(
Zt − z0

h

)∣∣∣∣
∣∣∣∣∣λT Xt√

n

∣∣∣∣∣
∣∣∣∣ ut√

n

∣∣∣∣
]

≤
√

dn

n

[
n

∑
t=1

E

(∣∣∣∣Tj

(
Zt − z0

h

)∣∣∣∣ ∣∣∣λT Xt

∣∣∣ |ut |
)q
]1/q

≤
√

dn

n

[
max

1≤t≤n
E
(|ut |q |Fn,t−1

) n

∑
t=1

E

(∣∣∣∣Tj

(
Zt − z0

h

)∣∣∣∣ ∣∣∣λT Xt

∣∣∣)q
]1/q

≤ C

√
dn

n

[
n

∑
t=1

E

(∣∣∣∣Tj

(
Zt − z0

h

)∣∣∣∣ ∣∣∣λT Xt

∣∣∣)q
]1/q

≤ C

√
dn

n

[
n

∑
t=1

h
(√

t
)q−1

]1/q

= (√nh
)−1/2+1/q = o(1) since

√
nh → ∞ as n → ∞ and q > 2, (A.16)

where the last inequality in (A.16) follows from the change of the variable argument (ξz,t =
Zt/

√
t , ξx,t = Xt/

√
t and v = (√tξz,t − z0

)
/h below)

E

(∣∣∣∣Tj

(
Zt − z0

h

)∣∣∣∣ ∣∣∣λT Xt

∣∣∣)q

=
(√

t
)q
E

[∣∣∣λT ξx,t

∣∣∣q ∫ ∣∣∣∣Tj

(√
tξz,t − z0

h

)∣∣∣∣q f z
0,t

(
ξz,t |ξx,t

)
dξz,t

]

= h
(√

t
)q−1

E

[∣∣∣λT ξx,t

∣∣∣q ∫ ∣∣Tj (v)
∣∣q f z

0,t

(
hv + z0√

t
|ξx,t

)
dv

]
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≤ Ch
(√

t
)q−1 ∫ ∣∣Tj (v)

∣∣q dv E
(∣∣∣λT ξx,t

∣∣∣q) by Assumption A4(i)

≤ Ch
(√

t
)q−1 ∫ ∣∣∣λT x

∣∣∣q f (x)dx by Assumption A4(ii)

≤ Ch
(√

t
)q−1

by Assumption A4(ii).

By Corollary 6.30 of Jacod and Shiryaev (2003, p. 385), we obtain(
Gn,λ(1),

[
Gn,λ

]
1

) d→
((

λT �(1)λ
)1/2

N ,λT �(1)λ

)
. (A.17)

Applying the Cramér-Wold device, we therefore know that (Mn(1), [Mn]1)
d→(

�(1)1/2 N ,�(1)
)

. By the continuous mapping theorem, it follows that

[Mn]−1/2
1 Mn(1)

d→ N (0, I2d ) . (A.18)

From

[Mn]1 = σ 2
u dn/n

n

∑
t=1

K 2
(
ωz

n

(
t −1

n

))
Qn

(
t −1

n

)
Qn

(
t −1

n

)T[
1+op(1)

]
, (A.19)

�n1 = (dn/n)
n

∑
t=1

K

(
ωz

n

(
t −1

n

))
Qn

(
t −1

n

)
Qn

(
t −1

n

)T
, (A.20)

and using the short-hand notation ωz
n,t = ωz

n

(
t−1

n

)
, we have[

1 0
0 μ−1

2

]
⊗ Id�n1 −σ−2

u

[
v−1

0 0
0 v−1

2

]
⊗ Id [Mn]1

= dn

n

n

∑
t=1

⎡⎣ K
(
ωz

n,t
)− v−1

0 K 2
(
ωz

n,t
) [

K
(
ωz

n,t
)− v−1

0 K 2
(
ωz

n,t
)]

ωz
n,t[

μ−1
2 K

(
ωz

n,t
)− v−1

2 K 2
(
ωz

n,t
)]

ωz
n,t

[
μ−1

2 K
(
ωz

n,t
)− v−1

2 K 2
(
ωz

n,t
)](

ωz
n,t
)2
⎤⎦

⊗
[
ψ0

nx (t/n)ψ0
nx (t/n)T

]
+op(1)

p→
∫ ∞
−∞

⎡⎣ K (r)− v−1
0 K 2(r)

[
K (r)− v−1

0 K 2(r)
]

r[
μ−1

2 K (r)− v−1
2 K 2(r)

]
r
[
μ−1

2 K (r)− v−1
2 K 2(r)

]
r2

⎤⎦dr

⊗
∫ 1

0
BX (s) BX (s)T d L BZ (s,c0)

= 0. (A.21)

Combining (A.9), (A.13), and (A.21), we obtain

�
−1/2
n1 [Mn]1/2

1
p→
√

σ 2
u

[√
ν0 0

0
√

ν2
μ2

]
⊗ I2d

de f= 
∗1/2. (A.22)

Since 
∗ is a constant matrix, combining (A.18) and (A.22) and applying the Slustky
lemma, we get

�
−1/2
n1 Mn(1) = �

−1/2
n1 [Mn]1/2

1 [Mn]−1/2
1 Mn(1)

d→ N
(
0,
∗) . (A.23)
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By (A.8), (A.9), (A.10), (A.11), and (A.23) we have shown that(
H−1

n An1 H−1
n

)1/2{
Hn

[
θ̂ (z0)− θ(z0)

]
−h2C(z0)

}
d=
(

n3/2h �n1

)1/2 [
�−1

n1

(
h2�n2 +h3�n3 +�n4

)
−h2C(z0)

]
= �

−1/2
n1

√
n3/2h �n4 +op(1)

= �
−1/2
n1 Mn(1)+op(1)

d→ N (0,
∗).

This completes the proof of Theorem 1.


