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a b s t r a c t

In this paper, we propose a matching model to study the efficiency of thin and thick markets. Our model
shows that the probabilities of matches in a thin market are significantly lower than those in a thick
market. When applying our results to a job search model, it implies that, if the ratio of job candidates to
job openings remains (roughly) a constant, the probability that a person can find a job is higher in a thick
market than in a thin market. We apply our matching model to the U.S. academic market for new PhD
economists. Consistent with the prediction of our model, a field of specialization with more job openings
and more candidates has a higher probability of matching.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we are interested in the following question: Com-
pare two markets, one of which has five candidates and five open-
ings in five firms (each firm has one opening), and the other of
which has fifty candidates and fifty openings. Which market has
a lower average unemployment rate or a higher probability of suc-
cessfulmatch? Themarketwith a lower unemployment rate is said
to bemore efficient than the onewith a higher unemployment rate.

Intuitively, onewould probably expect a highermatching prob-
ability in a thicker market. Indeed, this has been a common as-
sumption in the literature. For example, Diamond (1982) assumes
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an increase in tradingpartnersmakes trade easier. He refers this as-
sumption as ‘‘plausible’’. Howitt andMcAfee (1988) showmultiple
externalities (one positive and one negative) may exist as market
size differ. However, despite its intuitive appeal, literature provides
no consensus on this point. For example, a thicker market has an
adverse effect in Burdett et al. (2001), has no effect in Lagos (2000),
and has a positive effect in Coles and Smith (1998). The differ-
ent conclusions of these papers result from different assumptions
on matching mechanism/cost. Burdett et al. (2001) use an urn-
ball game to model a seller–buyer market over an homogeneous
good. If search cost is very high so that each buyer can only afford
to visit one seller, then urn-ball framework can be used to model
the search behavior of buyers/sellers over a homogeneous good.
However, in labor market, candidates typically conduct multiple
searches and exhibit sufficient heterogeneity in the sense that they
have different productivities/abilities and that firms have different
(minimum) requirements. Therefore, theurn-ball framework is not
appropriate for modeling a job-matching market.

In this paper, we propose a model that explains the observed
phenomenon in the U.S. economics PhD matching market. In
our model, firms are heterogeneous in types, and job candidates
have heterogeneous productivities. A match between a firm and
a candidate is assortative such that the firm is willing to hire any
candidate with a productivity higher than its type, but prefers
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the candidate with a higher productivity. A candidate is willing
to accept any offer but prefers a higher-type firm. Further, the
types and productivities are randomly drawn from a common
distribution, and thereupon to become public information.

For such a market, we prove: (1) the matching probability
does not depend on the underlying distribution that types
and productivities are drawn upon. (2) When the numbers of
firms and candidates increase or the market becomes thicker,
the unemployment rate decreases or the matching probability
increases. As the number of firms and candidates approaches
to infinity, the matching probability approaches to 1. (3) The
conclusion that a thicker market has a larger matching probability
than a thinnermarket continues to hold for the following fourmore
general cases: first, the number of openings does not equal the
number of candidates; second, the firm type and the productivity
of a candidate are random draws from different distributions;
third, the firms and candidates arrive at the market sequentially;
and finally, candidates have reservation wage and will not take
offers below their reservation wage.

Information on the U.S. academic market for new PhD
economists is used to check the validity of our model. We gather
the American academic job openings listed for each field in
the September, October, November and December issues of Job
Openings for Economists (JOE), in both 1999 and 2000. In the
following year we find out how many of these openings are filled.
The ratio of the total number of filled jobs divided by the openings
in each field is the measure of the probability of job matching. CVs
of all job candidates from the top 50 departments of economics in
the U.S. universities in year 2000 and 2001 are also collected from
each university’s placement website or candidates own websites.
The empirical estimates support our theoretical hypothesis: a
thicker market does have a higher matching probability than
a thinner market. In particular, in the new PhD markets in
economics, when the numbers of openings and candidates are five
in one field, the matching probability is 0.361. When the numbers
of openings and candidates are fifty, the matching probability is
0.523.

Previous literature often uses changes in unmatched proba-
bilities such as vacancy rates or unemployment rates to empiri-
cally estimate matching functions.1 Using the market data for PhD
economists offers several advantages over regular job markets.
First, there is less of an information problem in this market in the
sense that each institute receives applications from almost all po-
tentially qualified job candidates, and almost all job openings are
well known to all candidates, as they are published in a singlemag-
azine JOE. Second, there is a reasonable consensus in terms of the
ranking of a job, i.e., a job in a better-ranked department is con-
sidered by most to be a better job. Third, there is some consensus
in terms of the ranking of candidates, although significant hetero-
geneity still exists.

The effect of ‘‘thickness’’ in the market has been studied exten-
sively in the microstructure literature in finance under the term
‘‘liquidity’’. For example, in Lippman and McCall (1986), a thicker
market indicates that more transactions of a homogeneous good
take place in a unit of time. In their paper, liquidity is defined in
terms of the time elapsed between transactions. This length of time
is a function of a number of factors, including the frequency of
offers and the flexibility of prices, among others. In an empirical
study on common factors that affect liquidity, Chordia et al. (2000)
use five liquidity measures including the difference in prices of-
fered by buyers and sellers, and in quantities offered by buyers and
sellers in a period of time. In their approach, the smaller the differ-
ence between the prices and the larger the quantities offered by the
buyers and sellers of a homogeneous good (an equity), the more
liquid a market is. One distinguishing feature in financial markets
is that buyers and sellers often arise endogenously. If prices are

1 See, for example, Blanchard and Diamond (1989) and Berman (1997).
low, potential sellers easily become buyers. In the labor market, it
is hard for workers to become employers or vice versa. Therefore,
the pool of employers and employees is often exogenously deter-
mined.

Since ourmodel relates thematching probabilitywith the thick-
ness of the market, it provides a matching function with a mi-
crofoundation. The importance of the matching function has been
discussed in a survey paper by Petrongolo and Pissarides (2001)
who argue that both the matching function and the demand-for-
money function are as important as the production function as
a tool kit for macroeconomists. Petrongolo and Pissarides further
state that (page 425) ‘‘Currently, themost popular functional form,
Cobb–Douglas with constant returns to scale, is driven by its em-
pirical success and lacks microfoundations. The most popular mi-
croeconomic models, such as the urn-ball game, do not perform
as well empirically’’. Our paper provides a matching function with
microfoundations and the matching function is shown to perform
reasonably well for the empirical data we collected.

The rest of the paper is organized as follows: Section 2
introduces the matching model and the basic implications of the
model. Section 3 presents the empirical application of the model
using the data collected from the U.S. academic jobmarket for new
PhD economists. Section 4 concludes the paper.

2. The model

2.1. The matching mechanism

Let u be a measure of the productivity of a job candidate, and
v be a firm’s type. The match between the firm and the candidate
is assortative, with a production function given by f (u, v) = uv,
as suggested in Lu and McAfee (1996). The cost of hiring a worker
consists of wage and other costs, such as the capital investment
that the firm is willing tomake for this opening. Both thewage and
capital investment are assumed to be proportional to the firm type
v. The total cost is normalized to be v2. The firm’s profit function is
written as:

π(u, v) = max{0, uv − v2
}. (1)

In this simple model, the firmwill hire a candidate if u ≥ v, and
it prefers a candidate with a higher productivity than one with a
lower productivity.

Without loss of generalitywe assume that v takes value in [0, C]

for some C > 0. We assume a candidate’s utility function is:

w(u, v) = max{δu, v}. (2)

The candidate is willing to accept all job offers as long as v ≥ δu
but prefers the firmwith higher v than onewith a lower v. Herewe
let the candidate’s reservation wage δu be dependent on his/her
ability index u. This is reasonable because candidates with high
productivities should have better outside opportunities, such as
better-paid non-academic jobs, than those with lower abilities.
Eqs. (1) and (2) present necessary conditions for a match:

u ≥ v ≥ δu.

To simplify the theoretical analysis in this paper we will mainly
consider a benchmark case with δ = 0, then (2) becomes
w(u, v) = max{0, v} = v because v ≥ 0. In this case individu-
als will take any offer, but firm will only hire a worker if u ≥ v.
Therefore, the firm type v may also be thought as the firm’s mini-
mum quality requirement.

The matching technology between firms and candidates de-
fined in (1) and (2) is similar to the matching mechanism between
hospitals and medical interns or residents as described in Roth
(1982). In Roth (1982), almost all medical interns would find jobs
because of a large demand for their services. Therefore, Roth (1982)
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and the subsequent literature donot putmuch emphasis onmatch-
ing probabilities.2

Our primary goal here is to examine how the matching
probability varies with the number of job candidates and the
number of openings.We consider the problem of V firms andU job
candidates. Let the firms’ types be v1, . . . , vV , and job candidates’
productivities be u1, . . . , uU . We assume that all productivities
and job types are randomly drawn from a common continuous
distribution F(·) so that no two productivities are exactly the same
with probability 1 as any job types. All candidates ui’s and all firm
types vj’s are assumed to be known after they are drawn.

According to our model described by Eqs. (1) and (2), a
candidate i may be hired by firm j only if the productivity of the
applicant ui is higher than the type of the firm vj. If more than
one applicant has a higher productivity than the firm type vj, firm j
hires the candidatewith the highest productivity. Similarly, ifmore
than one firm has lower types than applicant i’s productivity ui,
the applicant prefers the firm with the highest type. After a match
occurs, both the firm and the candidate are out of the market. The
process continues until no candidate has a higher productivity than
any of the remaining firm types.

In the academic market, a better department is preferred by all
new PhDs. The constraint in the market is that each department is
different in its type and a better department has a higher v. Each
department prefers the candidate with the highest quality that
satisfies their type. In this case, a necessary condition for a trade
to occur between candidate i and department j is ui ≥ vj.

In this matching mechanism, the job candidate who has the
highest productivity matches with the firm with the highest type,
provided that this highest ranked candidate meets the type of
the firm. Otherwise, the firm leaves the market without filling
its opening. However, the applicant who does not match with
the highest-type firm has additional chances to match with other
firms. This matching process repeats in the remaining pool of the
applicants and firms.

An alternative way to describe our matching technology is as
follows. First we sort all the randomly drawn productivities and
types. Then a job candidate with the highest productivity matches
with the firm with the highest type, as long as the productivity is
higher than the type. If a match occurs, both the candidate and the
firm leave themarket. This process is repeated until no firm’s types
are lower than any remaining candidates.

Consider order statistics v(1) < v(2) < · · · < v(V ) and
u(1) < u(2) < · · · < u(U) that are obtained from v1, . . . , vV and
u1, . . . , uU , respectively. We are interested in the probability that
a randomly chosen candidate can find a job. Let r be the number
of people that find jobs, 0 ≤ r ≤ n = min{V ,U}. Let Pr(r) be
the probability that exactly r candidates find jobs. The average or
expected value of r is given by:

MU,V
def
= E(r) =

n
r=0

r Pr(r) =

n
r=1

r Pr(r). (3)

In the following sections, we study how thematching probabil-
ities vary with the number of vacancies and the number of candi-
dates.We first discuss the case where the number of vacancies and
the number of candidates are the same, and then we proceed with
the case where they are different.

2 Niederle and Roth (2003) study the matching probability of the gastroenterol-
ogists market. They find matching probability increases when the market becomes
thicker (through a centralized clearinghouse).
2.2. When the number of openings equals the number of candidates

Our primary interest in this paper is to study how thematching
probability changeswhen the number of openings and the number
of candidates change. Our discussion starts with the case where
the number of applicants is the same as the number of openings.
Let n = V = U , and we write Mn,n = Mn. We denote by An the
probability that a randomly selected person can find a job (when
V = U), i.e.,

An =
1
n
Mn =

1
n

n
r=1

r Pr(r).

We investigate below how An changes as n changes. We build
our model from the simplest case where there is one firm and one
job candidate.
The case of n = 1:

Let u and v be randomly drawn from the same distribution F(·)
and with a probability density function f (·). A match occurs if and
only if u ≥ v.

A1 =


{v<u}

f (v)f (u)dvdu =


∞

−∞

 u

a
dF(v)


dF(u)

=


∞

−∞

F(u)dF(u) = 1/2.

In the simple case of one applicant and one job opening, given
that both u and v are randomly drawn from the same distribution,
the probability that one random draw is larger than the other is
1/2.
The case of n = 2:

Let u1, u2 be random draws of the two candidates’ productiv-
ities, and let v1, v2 be random draws of the minimum require-
ments of two job openings. All are from the same distribution. Let
u(1) < u(2) be the order statistic of u1, u2 and v(1) < v(2) be the
order statistic of v1, v2. Using Lemma A.1 given in Appendix A we
have:

Pr(0) = Pr(u(1) < u(2) < v(1) < v(2))

= (2!)2(1/4!) = 1/6.

Pr(2) = Pr(u(2) > v(2), u(1) > v(1))
= Pr(u(2) > v(2) > u(1) > v(1))

+ Pr(u(2) > u(1) > v(2) > v(1))

= 2{(2!)2(1/4!)} = 1/3.

Pr(1) = 1 − Pr(0) − Pr(2)
= 1 − (1/6) − (1/3) = 1/2.

Therefore we have

A2 =
1
2

2
r=1

r Pr(r) = [(1/2) + 2(1/3)]/2 = 7/12.

We observe that A2 = 7/12 > 1/2 = A1. That is, when the
market becomes thicker (n increases from 1 to 2), the probability
that each person can find a job is increased from 1/2 to 7/12. To
understand the intuition of this result, note that since {u1, u2} and
{v1, v2} are from the same distribution, the order statistics also
have the distribution: Fu(1)(·) = Fv(1)(·) and Fu(2)(·) = Fv(2)(·).
Given this, we have:

Pr(u(1) > v(1)) = 1/2, and Pr(u(2) > v(2)) = 1/2. (4)

If (4) were the only cases that candidates and openings match,
wewould still end upwith amatching probability of 1/2. However,
an additional chance exists even when u(1) < v(1) and u(2) < v(2)
since it is still possible to have u(2) > v(1). This additional chance
of matching is the source of the effect of a thicker market.
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Table 1
Matching probabilities based on 100,000 simulations (n = V = U). (Openings and candidates have the same distributions.)

n 1 2 3 4 5 6 7 8 9 10

An 0.5003 0.5835 0.6337 0.6682 0.6940 0.7135 0.7288 0.7448 0.7562 0.7665
Std of An 0.5000 0.3434 0.2765 0.2379 0.2116 0.1932 0.1786 0.1661 0.1561 0.1481

n 20 30 40 50 60 70 80 90 100 1000

An 0.8258 8543 0.8720 0.8845 0.8938 0.9013 0.9074 0.9124 0.9163 0.9725
Std of An 0.1041 0.0853 0.0734 0.0657 0.0599 0.0554 0.0523 0.0494 0.0459 0.0144
In Appendices A.3 and A.4, we calculate the matching proba-
bilities for n = 3 and n = 4. Although the same approach can
be applied to compute An for any n > 4, computation is increas-
ingly burdensome and tedious as n increases. A simple alterna-
tive is to use simulations to numerically compute An. Let An,j be
the estimated value of An based on the jth simulation draw of
(u1, . . . , un) and (v1, . . . , vn), i.e., An,j equals the number of people
finding jobs in the jth random draw (j = 1, . . . , J). We estimate
An by Ān. = J−1 J

j=1 An,j. Provided that J is sufficiently large, we
can obtain an estimated value of An with any desired accuracy. We
use J = 100,000 in our simulation. We also compute the sample
standard error of {An,j}

n
j=1 by [(J − 1)−1 J

j=1(An,j − Ān.)
2
]
1/2. The

results are given in Table 1.
We have already shown that A1 = 0.5, A2 = 7/12 ≈ 0.5833. In

the Appendix we also compute the exact values of An for n = 3, 4;
they are A3 = 19/30 ≈ 0.6333 and A4 = 187/280 ≈ 0.6679.
Comparing these results with the simulation results of Table 1, we
see that the simulation results differ from the theoretical results
only in the fourth decimal.

From Table 1 we observe that An increases as n increases, while
the standard error decreases as n increases. The monotonically
increasing relationship between matching probabilities and the
thickness of the market can also be clearly seen in Fig. 1. The solid
line in Fig. 1 illustrates the matching probabilities as a function
of the number of candidates. As n → ∞, both the candidates
and openings become dense in the support of f (·). Therefore, the
probability of matching is expected to converge to one as n → ∞.
This is indeed the case as the next lemma shows.

Lemma 1. The employment rate or the matching probability An
converges to one as n → ∞.

The proof of Lemma 1 is given in the Appendix. Note that
Lemma 1 does not mean that as n → ∞, every individual will
find a match. In fact the total number of unmatched candidates,
calculated by n(1 − An), also goes up as n increases. For example,
when n = 10, 100 and 1000, the average numbers of unemployed
workers are roughly 2, 8, and 30, respectively. Therefore, the
corresponding percentages of unemployed are 20%, 8% and 3%,
respectively. It is, 1 − An, the unemployment rate that goes down
as n increases.

Our theoretical analysis and simulation results show that:
(1) A thicker market provides a larger chance of matching; (2) the
probability of matching varies less in a thicker market than in
a thinner market. (3) The matching probability is an increasing
and concave function inmarket size. Matching probability exhibits
increasing return to scale in marker size. We derive our matching
function with a microfoundation. This is in contrast to urn ball-
game based matching model which produces a decreasing return
to scale matching function and does not describe the real world
matching behavior well, and the commonly used Cobb–Douglas
constant return to scale matching function which does not have
microfoundations.

We would like to mention that in our matching model, non-
matches occur when all firms are not able to find workers that are
above their quality threshold. This ismore likely to happen in a thin
market than in a thick market. Up to nowwe have only considered
Fig. 1. Matching probabilities as a function of thickness.

the case that u’s and v’s are drawn froma commondistribution.We
explore the case that they are drawn fromdifferent distributions at
the next section.

2.3. Candidates and openings are drawn from different distributions

Previous results are obtained by assuming that the types of
firms and candidates’ productivities have the same distribution.
Next, we briefly discuss the case that they have different distri-
butions. We show that in this case the matching probability will
depend on the specific distribution functions, but a thicker market
still has a larger probability of matching.

We first consider a simple case where candidates are randomly
drawn from uniform[0, 1], and the openings are randomly drawn
from uniform [δ, 1+ δ], 0 ≤ δ ≤ 1. We will only consider the case
of V = U = n. In Appendix A.5 we show that:

A1 =
1
2
(1 − δ)2, and

A2 =
7
12

(1 − δ)2 +
1
12

δ(1 − δ)2(2 + 3δ).
(5)

Obviously, A2 > A1 for all δ ∈ [0, 1]. A thicker market still
has a larger probability of matching. For n > 2, the computation
becomes quite tedious. However, one can use simulations to
compute An easily for any value of n. Fig. 2 illustrates how the
simulated matching probabilities vary with n and with δ. Two
patterns emerge from Fig. 2. First, as expected, a larger difference
in means results in lower matching probabilities. Second, for a
fixed value of δ, the matching probabilities increase as the market
becomes thicker. By exactly the same argument as in the proof of
Lemma 1, one can show that as n → ∞, An → 1− δ (0 < δ < 1).

Note that when δ ≥ 1, An = 0 for all n, because in this
case the highest candidate’s productivity is lower than the lowest
firm’s type. However, if the two distributions are N(µ, σ 2) and
N(µ + δ, σ 2) where the two means also differ by δ, then An > 0
for all values of δ. This simple example shows that when the two
distributions are different, thematching probabilitywill depend on
the specific distributions.

Belowwe consider the case that u’s and v’s are drawn from two
general distributions (not necessarily from uniform distributions).
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Fig. 2. Matching probabilities openings are from uniform[0, 1] and candidates are
from uniform[δ, 1 + δ].

Suppose that u’s are drawn from distribution F , and v’s are drawn
from distribution Gwith F ≠ G. For n = 1, we have

A1 = E(r) = P(1) = P(v1 < u1) =


∞

−∞

 u1

−∞

dG(v1)


dF(u1)

=


G(u1)dF(u1) =


G(u)dF(u).

For n = 2 in Appendix A we show that

A2 =

 
2G(u)F(u) − 2G2(u)F(u) + G2(u)

+ 2

G(u)

 u

−∞

G(s)dF(s) −

 u

−∞

G2(s)dF(s)


dF(u).

It is easy to check that when F(·) = G(·), we get A2 = 
3F 2(u) −

5
3F

3(u)

dF(u) = 7/12 as it should. From the above

derivations of A1 and A2 we know that A2 > A1 if and only if
G(u)[1 − G(u)][2F(u) − 1]dF(u)

+ 2
 

G(u)
 u

−∞

G(s)dF(s) −

 u

−∞

G2(s)dF(s)

dF(u)

> 0. (6)

It is easy to see that when u and v are continuous random variables
with overlapping supports, the second term on the left hand side
of the above inequality is positive. Hence, a sufficient condition for
A2 > A1 is

G(u)[1 − G(u)][2F(u) − 1]dF(u) ≥ 0.

It is easy to verify that for the special case F(·) = G(·) the
sufficient condition indeed holds, i.e.,


F(u)[1 − F(u)][2F(u) −

1]dF(u) = 0. Also when u and v are symmetrically distributed
around zero, the above sufficient condition holds as well. For some
skewed distribution, the above sufficient condition may not hold
for some values of skewness parameters. However, even when the
sufficient condition is not satisfied. We still have A2 > A1 because
the second term of (6) is positive and large than the absolute value
of the first term. Due to complexity of the problem, we are unable
to prove that An is monotone in n for all F and G. Below we use
simulations to compute An for 10 different pairs of (F ,G) for n =

1, . . . , 20. The first case is F = G (a uniform[0, 1] distribution)
that serves a benchmark case, the other nine cases all have F ≠ G.
Specifically, Table 2 reports the simulation results when U and V
are in different ranges or follow different distributions. There are
10 cases altogether.

1. U ∼ Uniform[0, 1], V ∼ Uniform[0, 1];
2. U ∼ Uniform[0, 1], V ∼ Uniform[0, 2];
3. U ∼ Uniform[0, 2], V ∼ Uniform[0, 1];
4. U ∼ Uniform[0.5, 1.5], V ∼ Uniform[0, 2];
5. U ∼ N(0, 1), V ∼ N(0, 2);
6. U ∼ N(0, 2), V ∼ N(0, 1);
7. U ∼ Uniform[0, 1], V ∼ N(0, 1);
8. U ∼ N(0, 2), V ∼ Uniform[0, 1];
9. U ∼ χ2

1 , V ∼ χ2
2 ;

10. U ∼ χ2
2 , V ∼ χ2

1 .
The results are given in Table 2where one can see thatAn indeed

increases with n, suggesting that An is monotone in n for general
distributions F and G. Therefore, it is quite natural to conjecture
that even when F ≠ G, the matching probabilities An increase
with n.

We would like to emphasize that due to the complexity of
the problem, in this paper we are not able to prove that a thick
market is more efficient than a thin market for the general case
with u’s and v’s are drawn from different distributions. We rely on
intuitions and simulations (as supporting evidences) to conjecture
that the conclusion that a thickmarket is more efficient than a thin
market holds true for general distributions. Theoretically verify
this conjecture is beyond authors’ technicality.

2.4. The number of firms is different from the number of candidates

In the previous section, we only focus on the case where the
number of candidates equals the number of openings. In a real
market, it is unlikely that there will be exactly the same number of
candidates and openings. In this section, we consider cases where
the number of candidates is different from the number of openings.
They are still random draws from a common distribution.

Let U be the number of candidates and V be the number of
openings. The number of people who find jobs, r , must satisfy
0 ≤ r ≤ n = min{U, V }. Recall that the expected value of r is:

MU,V = E(r) =

n
r=0

r Pr(r). (7)

Here, we summarize some properties of the matching function.
(i) MU,V = MV ,U is symmetric in V and U , (ii) MU,V increases as
either V orU increases, (iii) if both V andU increasewith V/U = c ,
where c is a fixed positive constant, then BU,V = MU,V/V increases
as V (U = V/c) increases.

Property (i) follows from a simple symmetry argument. (ii) is
true because adding more candidates or openings to a market
obviously cannot reduce the number of matching; in fact, there
is a positive probability of increasing the number of matching,
thus the average matching of MU,V will be larger. (iii) is the most
interesting result: it says that when the market becomes thicker,
the probability of matching success increases for both candidates
and openings. The intuition behind (iii) is quite simple. We have
already seen that this is true for the case of V = U = n. In
Appendix A.6 we show how to compute MU,V (or BU,V ) for the
general (U, V ) case. For example, for (U, V ) = (1, 2) (or (2, 1)),
MU,V = 2/3; for (U, V ) = (1, 3), MU,V = 3/4; and for (U, V ) =

(2, 4), MU,V = 23/15. First we note that B1,2 = 2/3 < B2,4 =

(1/2)(23/15) = 23/30, so that as the number of V and U doubles
(the market becomes thicker), the matching probability increases.
Next we compare the case of (U, V ) = (1, 3) and (2, 2), where
we have M2,2 = 7/6 > 3/4 = M1,3. With the same total number
of openings and candidates, the closer the ratio of V/U is to 1, the
higher the averaging number of people that can find jobs.

Again, a simple alternative is to use simulations to estimate
MU,V (BU,V ). Simulation results (not reported here to save space)
show our finding that a thick market is more efficient than a thin
market remains to be true when U ≠ V . This is easy to understand
because exactly the same explanation/intuition for the U = V case
carry through to the case of U ≠ V . In the next section we will use
the simulation method to help us evaluate some of our proposed
matching functions.
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Table 2
Openings and candidates have the different distributions (n = V = U).

F
n 1 2 3 4 5 6 7 8 9 10

1 0.499 0.250 0.749 0.504 0.501 0.499 0.686 0.315 0.292 0.706
3 0.633 0.349 0.847 0.597 0.610 0.611 0.758 0.390 0.414 0.827
5 0.692 0.387 0.888 0.638 0.658 0.658 0.784 0.420 0.468 0.878
7 0.731 0.409 0.911 0.661 0.686 0.686 0.799 0.437 0.500 0.906

10 0.767 0.431 0.931 0.680 0.713 0.712 0.810 0.451 0.530 0.933
15 0.803 0.449 0.949 0.700 0.738 0.737 0.820 0.465 0.561 0.957
20 0.826 0.460 0.960 0.710 0.752 0.752 0.825 0.473 0.580 0.969
2.5. A matching function

Because our model relates the matching probability with the
thickness of the market, it can provide a matching function with a
microfoundation. A series of matching functions has already been
introduced in the literature; here we briefly discuss some of the
existing matching functions and compare themwith our matching
function.

In a typical matching model with constant return to scale, the
thickness of the market does not enter the matching probability.
The relationship between the number of people who are looking
for jobs and the number of people who find jobs is different from
our claim that market thickness has a positive effect on the job
matching ratio. For example, consider a typical matching model
with constant return to scale,

M = m(U, V ) = V · m

U
V

, 1


,

wherem(U, V ) is thematching function,M is the number of people
who find jobs, V and U are numbers of job openings and job
searchers. The second equality of the previous equation is due to
the assumption of the constant return to scale. Rearranging the
previous equation, we get:

BU,V =
M
V

= m

U
V

, 1


(8)

where BU,V is firms’ matching probability. If the ratio of candi-
dates to openings is fixed, so is the matching probability M/V .
A particular form of constant return to scale function is M/V =

1− exp(−cU/V ), which is used in Blanchard and Diamond (1994)
where c is the intensity of the search. Other interesting works re-
lated to our matching model include Burdett et al. (2001) and the
stock-flow matching of Coles and Smith (1998).

It would be ideal if one could derive an explicit functional
form to relate matching probabilities with the thickness of the
market. While this goal may be quite difficult to accomplish,
we are able to propose a parsimonious approximate matching
function which satisfies some basic properties of the theoretical
matching function. We will show that this approximate matching
function can fit the theoretical matching probabilities very well.
We are interested in obtaining a probabilitymatching function, say
BU,V = MU,V/V . However, it is easier to impose restrictions on the
matching function MU,V . We assume that the matching function
M(u, v) possesses the following properties:

(i) MU,V is symmetric on (U, V ).
(ii) For any finite values of (U, V ),MU,V ≤ min{U, V }, andMU,V is

an increasing function in U (V ) for a fixed value of V (U).
(iii) Let d =

√
U2 + V 2 denote the distance of (U, V ) to the ori-

gin. For (U, V ) ∈ R2
+
with d = c , where c is a constant, MU,V

is monotonically decreasing as (U, V ) moves away from the
middle point of V = U (along the arc of d = c).
The following simple matching function satisfies the above
three conditions:

MU,V = α0 + α1 min{U, V } +
α2

d
, (9)

where d =
√
V 2 + U2, and α0, α1, and α2 are parameters (α1 is

positive and α2 is negative).
It is obvious that M(0)

U,V in (9) satisfies properties (i) and (ii)
above. To see that it also satisfies (iii), note that when d = c is
a constant,

MU,V = α0 + α1 min{U, V }|d=c + α2/c,

which decreases monotonically as (U, V ) moves away from the
middle point of U = V (along the arc of d = c).

By rearranging (9) in terms ofmatching probability (and replace
α0/V by α0), we get

MU,V

V
= α0 + α1 min


U
V

, 1


+
α2

Vd
. (10)

Using both simulated data and the empirical datawe found that
if we replace α2/(Vd) by α2/d (removing the 1/V factor) in (10),
we can get better fit. Therefore, we also consider the following
alternative approximate matching function:

MU,V

V
= α0 + α1 min


U
V

, 1


+
α2

d
. (11)

Note that model (10) and model (11) have the same number of
parameters so that we can compare the goodness-of-fit of these
twomodels. As wementioned above we find that (11) has a higher
goodness-of-fit R2 than (10) using both theoretical (simulated)
matching probabilities and the empirical data. This implies that
(11) is preferred to (10) in modeling a matching function.

A more flexible model than (11) is

MU,V

V
= α0 + α1 min


U
V

, 1


+
α2

dα3
. (12)

When α3 = 1, (12) reduces back to (11). To examine how
well our proposed matching functions approximate the theoreti-
cal (simulated) matching function, we carry out a least squares re-
gression, using (simulated) theoretical values of BU,V = MU,V/V as
the dependent variable, and estimate models (10)–(12). We con-
sider three cases: (i) Both u and v are draws from uniform[0,1] dis-
tribution; (ii) u ∼ uniform[0, 1] and v ∼ uniform[0, 2]; (iii) u ∼

uniform[0, 2] and v ∼ uniform[0, 1].We first consider sample size
n = 100 (1 ≤ u, v ≤ 10). The regression results for estimating
models in (10)–(12) for cases (i)–(iii) are reported in Tables 3–5.

As can be seen in Tables 3–5, our specifications can explain the
(simulated) theoretical matching probability well, with R2 being at
least 0.917.

For the case of F = G (both u and v are draws from
uniform[0, 1]), Table 3 shows that the R2 is 0.951 for model (11)
and 0.957 for model (12), suggesting that model (12) fits the data
slightly better than model (11). However, the p-value for testing
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Table 3
Regressions results (U , V both Uniform[0, 1]).

Models 1 ≤ U, V ≤ 10
Model (10) Model (11) Model (12)

Constant 0.015 (0.841)a 0.075 (4.28) 0.060 (1.96)
min{U/V , 1} 0.805 (37.7) 0.787 (42.8) 0.779 (42.3)
1/(U2

+ V 2)1/2 −0.423 (−7.07) −0.456 (−4.55)
1/[V (U2

+ V 2)1/2] −0.281 (−3.20)
α3 1.19 (3.05)
p-value for H0: α3 = 1 0.626

R2 0.937 0.951 0.957
Number of observations 100 100 100
a t-values are in parentheses.
Table 4
U is Uniform[0, 1], V is Uniform[0, 2].

Models 1 ≤ U, V ≤ 10
Model(10) Model(11) Model(12)

Constant 0.111 (13.46) 0.157 (19.91) 0.193 (5.16)
min{U/V , 1} 0.333 (32.77) 0.315 (37.99) 0.313 (37.59)
1/(U2

+ V 2)1/2 −0.325 (−12.07) −0.305 (−12.22)
1/[V (U2

+ V 2)1/2] −0.272 (−8.54)
α3 0.669 (2.94)
p-value for H0:
α3 = 1

0.146

R2 0.917 0.942 0.943
Observations 100 100 100

t statistics in parentheses.
Table 5
U is Uniform[0, 2], V is Uniform[0, 1].

Models 1 ≤ U, V ≤ 10
Model(10) Model(11) Model(12)

Constant −0.0216 (−2.06) 0.0163 (1.52) −0.0103 (−0.91)
min{U/V , 1} 0.993 (76.42) 0.981 (87.08) 0.984 (89.01)
1/(U2

+ V 2)1/2 −0.266 (−7.27) −0.419 (−4.31)
1/[V (U2

+ V 2)1/2] −0.188 (−4.62)
α3 1.883 (4.64)
p-value for H0:
α3 = 1

0.0296

R2 0.984 0.987 0.988
Observations 100 100 100

t statistics in parentheses.
α3 = 1 shows that α3 is not significantly different from 1. When
F ≠ G, we get mixed result for testing α3 = 1, we do not reject
α3 = 1 (at 5% level) when V has a wider support than U , and we
reject α3 = 1 when V has a narrow support than U , see Tables 4
and 5 for details.

We also conduct simulations for U, V ≤ 20 with a sample
size n = 400. To save space we will not report detailed esti-
mation results from n = 400. We only report estimated α̂3 val-
ues and the corresponding p-values for testing α3 = 1 here. For
u, v ≤ 20 (n = 400), we obtain the following results: (i) for
U ∼ Uniform[0, 1] and V ∼ Uniform[0, 1], we get α̂3 = 0.955
and the p-value forH0:α3 = 1 is 0.7067; (ii) forU ∼ Uniform[0, 1]
and V ∼ Uniform[0, 2], we get α̂3 = 0.522, and the p-value
for H0: α3 = 1 is 0.0006; (iii) for U ∼ Uniform[0, 2] and V ∼

Uniform[0, 1], we obtain α̂3 = 1.532, and the p-value for H0:
α3 = 1 is 0.0002. Thus, large sample results support α3 = 1 when
F = G, while it suggests that α3 ≠ 1 when F ≠ G.

The simulation results show that all of the proposed models fit
the theoretical model very well with R2 only improving slightly
frommodel (10) tomodel (11), and frommodel (11) tomodel (12).
However, this does not imply that one should expect that all of
them should fit empirical data equally well. As we will see shortly,
for the Ph.D economist job market empirical data, the goodness-
of-fit R2 improves significantly frommodel (10) to model (11), and
frommodel (11) to model (12). Therefore, model (12) provides the
best fit for the empirical data we collected.

2.6. A sequential matching mechanism

Up to now we have only considered a static model where all
candidates and openings arrive at the market simultaneously. In
this section we briefly discuss the case of a sequential matching
model. Our approach follows closely that of Coles and Smith (1998)
who capture a realistic feature ofmarket search, that if a job seeker
cannot match with the existing pool of vacancies, he/she will wait
for the arrivals of new job vacancies. We consider two extreme
cases: (i) All matched pairs can break up an earlier match and re-
match in a later period without a cost. The time discount rate is
zero. (ii) Both the re-match cost and the time discount rate are
infinite.
A zero re-matching cost and a zero time discount rate

It is easy to see that in this case the results of Sections 2.2
and 2.3 remain valid without changes. Suppose at period t ,
we have a cumulative of Ut job candidates, and a cumulative
of Vt vacancies, the number of matches will be exactly the same as
in the static casewith a total number ofUt candidates andVt vacan-
cies. This is because all matched pairs can freely break upwith ear-
liermatches and find the bestmatch available to them. The highest
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quality individual will match with the best job available provided
her quality meets the type of that job. The second highest qual-
ity individual will match with the next best available job. Conse-
quently, the matching results will be identical as in the static case
with the same total numbers of candidates and vacancies.
An infinite re-matching cost and an infinite time discount rate

When both the cost of re-entering the market and the time
discount rate are infinite, all firms and individuals will try to find a
match as soon as possible, andwhen amatch is found, thematched
pair will exit the market. Although these assumptions are not
realistic, they serve as a benchmark case and from which we can
deduct useful information on the more realistic finite re-matching
cost/discount factor cases.

Wewill only consider the case where the number of candidates
equals the number of openings. This will be the case if candidates
and openings arrive at themarket in pairs so that the total numbers
of candidates and openings equal each other at all times. We
assume that different pairs arrive at the market sequentially. If the
first pair of candidate and opening matches with each other, they
will sign a contract and exit the market. If not, they become stock
andwait formatching opportunities among future arrivals.When a
pair (a candidate and an opening) arrives at themarket, the two can
match with each other or match with the existing stock, according
to whichever gives the higher utility. If no match is found, they
become stock.
The case of V = U = 1.

In this case we have P̄[U ≥ V ] = 1/2 as before, which gives
Ā1 = P̄(1) = 1/2.
The case of V = U = 2.

Let uj (vj) be the jth arrival of candidates (openings), j = 1, 2.
Because candidates and openings arrive sequentially, we cannot
use the order statistics to compute P̄(r). However, the result
obtained earlier can help calculate the matching probabilities.

The total number of different rankings of u1, u2, v1 and v2 is
4! = 24 (four times that of the order statistic case). We can use
the calculation of Pr(r) to help us to obtain P̄(r). For example,
in the market of simultaneous arrival, the order statistic that no
one finds a job is: u(1) < u(2) < v(1) < v(2), and the proba-
bility is Pr(0) = 1/6. In the market of sequential arrival, there
are four cases that no one finds a job: (i) u1 < u2 < v1 < v2,
(ii) u2 < u1 < v1 < v2, (iii) u1 < u2 < v2 < v1, and (iv)
u2 < u1 < v2 < v1, giving P̄(0) = 4/24 = 1/6. So the proba-
bility that no one finds a job remains unchanged.

There is only one case that results in different matching prob-
abilities between a sequential market and a simultaneous market.
In the case of v1 < u2 < v2 < u1, u1 will match with v1 and then
(u1, v1) exit the market. In the second period, v2 and u2 arrive at
themarket but they cannotmatch because u2 < v2. If the two pairs
had arrived simultaneously, there would be two matched pairs, u1
with v2, and u2 with v2. So we see that when arrivals are sequen-
tial, the matching probability decreases and the market becomes
less efficient. Using (A.1) in Appendix A we obtain:
P̄(0) = 4/24 = 1/6 (=4/24 as in the simultaneous arrival case)
P̄(1) = (12 + 1)/24 = 13/24 (it was 12/24 = 1/2 in the
simultaneous arrival case)
P̄(2) = (8−1)/24 = 7/24 (it was 8/24 = 1/3 in the simultaneous
arrival case).

Thus, Ā2 = (1/2)
2

r=0 rP̄(r) = [(13/24) + 2(7/24)]/2 =

27/48 > 1/2 = Ā1.
We still observe that as the total number of candidates and

openings goes up, the average matching probability increases.
However, Ā2 = 27/48 < 28/48 = A2, the market of sequential
arrival is less efficient compared to the case that all the candidates
and openings arrive simultaneously, which is an expected result
since sequential trading may lead to a very high quality candidate
to match with a vacancy with a very low type, resulting in a less
efficient market.

Let Pr[(ui, vj)] denote the probability that ui matches vj. Then
conditional on u1 < v1 (so that u1 and v1 become stock), it is easy
to show that Pr[(u2, v2)] = 1/3 > Pr[(u2, v1)] = 1/4. Thus,
our matching mechanism implies that u2 has a lower matching
probability, or higher rejection rate, when meeting with v1 (an
opening from the stock) than when meeting with v2 (a random
draw from the distribution of job openings). This is because the
openings from the stock have a higher mean value than those
drawn from the population. As is easily shown, our model implies
that the rejection rate between a candidate from the flow and an
opening from the stock increases as the size of the stock increases,
or equivalently as the averagingmatching probability increases (as
argued by Petrongolo and Pissarides (2001, p. 406)). This is because
the mean of the stock of openings goes up as its size goes up,
resulting in a higher rejection rate for a given pair. Nevertheless,
the averagematching probability still goes up since there aremore
matching opportunities as the market gets thicker. It differs from
the matching mechanism of Coles and Smith (1998) who assume
that a firm has a constant probability to match a candidate.

Table 6 reports the simulated values of Ān for n from 1 to 1000
(based on 100,000 replications). Since Ā2 = 27/48 = 0.5625, we
see again that the simulated value matches the true value in the
first three decimals.

In Table 6, we observe similar phenomena as in the case of
simultaneous trading, i.e., Ān increases (with a decreasing rate)
while the standard deviation of Ān decreases as n increases. The
dashed line in Fig. 1 shows that, as expected, the Ān curve is lower
than the solid line of theAn curve. A larger friction exists in amarket
of sequential arrivals.

Even though sequential arrival has higher friction, the conclu-
sion that a thick market is more efficient than a thin market re-
mains the same as in the case of a simultaneous arrival. Further, it
can be shown that Ān → 1 as n → ∞.

So far we consider two extreme cases: zero time discount
rate and re-match cost versus infinite time discount rate and re-
match cost. Complete discussions ofmore realistic cases where the
time discount rate and the re-match cost are some finite positive
numbers are left for future research.

We do not yet consider searching cost in our model. Adding a
fixed searching cost will not alter any of the conclusions obtained
earlier. A variable searching costmay reducematching probability.
Given the rapid improvement of internet searching, it seems that
a fixed search cost is appropriate for most situations such as
economics new PhDs market. We leave more detailed discussions
on extensions such as strategic trading behavior and variable
searching cost to future research work.

2.7. Matching with reservation wage

In this section we consider the case that candidates have reser-
vation wage. In practice it is likely that an individual with (a high)
productivity u only accepts offers v that are not too far below u.
Given the complexity of the problemwe will investigate matching
probabilities using simulations. For simplicitywe only consider the
case of V = U = n for n = 1, . . . , 100. We first sort u and v to get
order statistics u1 ≤ u2 ≤ · · · ≤ un, and v1 ≤ v2 ≤ · · · ≤ vn.
We assume that an individual with productivity ui only takes of-
fer with vj with n − j + 1 ≤ 2(n − i + 1), or equivalently,
j ≥ 2i − n − 1. For example, if n = 100, the 5th ranked indi-
vidual is u96 (i = n − 5 + 1 = 96) who only takes offers vj with
j ≥ 2(96) − 100 − 1 = 91. Similarly, for the 10th ranked individ-
ual (with i = 91) will only takes offers vj with j ≥ 81, and that ui
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Table 6
Matching probabilities: Vacancies and candidates arrive sequentially (n = V = U).

n 1 2 3 4 5 6 7 8 9 10

Ān 0.5003 0.5622 0.5999 0.6257 0.6452 0.6603 0.6728 0.6833 0.6922 0.7001
Std of Ān 0.5001 0.3330 0.2665 0.2273 0.2034 0.1846 0.1694 0.1575 0.1475 0.1403

n 20 30 40 50 60 70 80 90 100 1000

Ān 0.7486 0.7736 0.7905 0.8030 0.8127 0.8207 0.8272 0.8332 0.8383 0.9248
Std of Ān 0.0977 0.0812 0.0713 0.0632 0.0582 0.0538 0.0515 0.0486 0.0461 0.0146
Fig. 3. Matching probability with/without reservation wage.

will take any offers if i ≤ 51 (ranks 50th or below). The simulated
matching probabilities are given in Fig. 3.

In Fig. 3 the top curve (solid line) corresponds to the case of
simultaneous arrival without reservation wage, and the second
highest curve (dotted line) is the simultaneous arrival with
reservation wage. As expected we observe that with reservation
wage the matching probability is slightly reduced compared with
the case without reservation wage. The monotone property of
the matching function remains unchanged, implying that a thick
market is more efficient than a thin market whether individuals
have reservation wages or not.

The next two curves correspond to the sequential arrival case
with (circled line) and without reservation wage. It is interesting
to observe that when vacancies and candidates arrive the market
sequentially, the case with reservation wage can have a higher
matching probability than without reservation wage (especially
when n is large). With reservation wage individuals with high
productivities will refrain from taking low quality (low pay) jobs,
they will wait until better openings become available at future
periods, leaving the low quality jobs to low productive individuals.
This leads to a more efficient matching market than the case
without reservation wage (with sequential arrivals) especially in
a thick market (i.e., when n is large).

2.8. Matching quality and profits versus market size

Up to now we have focused on examining the relationship of
matching probability and market size. A referee suggested to us
that one can also compute average matching quality as defined by
the mean value of uv for the matched pairs (u, v), and examine its
relationship with market size. Other quantities one can consider
include average profit for firms, i.e., average value of uv − v2 for
firms thatmade a hire (amatchedpair (u, v)), average value of v for
candidateswhomatched a job v (average profit for job candidates),
and average total profit, which is defined as the average profit
of candidates plus the average profit of firms. We will use E(uv),
E(uv − v2), E(v) and E(v + uv − v2) to denote the above average
quantities. We draw u’s and v’s from uniform[0,1] with n =

U = V = 1, 2, . . . , 10, 20, 30, . . . , 100, 1000, and the number
of simulations is 100,000. The results are reported in Table 7.
From Table 7 we see that E(uv) increases with the market size
n, a thick market produces better match on average. For firm’s
average profit, we observe that it first rises from n = 1 to n = 3,
then it decreases monotonically toward 0. It can be shown that
E(uv − v2) → 0 as n → ∞. This is quite intuitive because as
n → ∞, both u’s and v’s become dense in [0, 1], which makes
all the matched pairs with u very close to v, giving firms’ average
profit close to 0. Candidates average profit E(v) increases from
1/6 = 0.1667 for n = 1 monotonically to 1/2 as n → ∞.3 The
total average profit E(uv − v2

+ v) also monotonically increases
to 1/2 as n → ∞. This is as expected because firm’s average profit
converges to 0, and candidates’ average profit converges to 1/2,
hence, the sum of the two converges to 0+ 1/2 = 1/2 as n → ∞.
In our setup, when the market is very thick (n large), all economic
rent goes to candidates. This is because when n is large, for the
matched pair (u, v), the candidate’s productivity u is expected to
be sufficiently close to v (from above since we need u ≥ v for a
match), so the candidate’s profit v is arbitrarily close to u, its mean
value tends to unconditional mean of u, which is 1/2; while firm’s
profit uv − v2 will be very close to zero because u is very close
to v when n is large, hence, firm’s mean profit converges to 0 as
n gets large. We see that a thick market is more efficient than a
thin market not only that it leads a higher match probability, but
also that it results in a higher matching quality and a higher total
average profit.

3. Data collection and an empirical example

Empirical study of this issue can be very difficult. It is relatively
simple to collect information about successfully completed
transactions in a particular market. However, gathering data about
the participants who failed to complete transactions is often rather
difficult.

3.1. The data

The job market for new PhD economists, therefore, provides an
excellent opportunity for exactly such an empirical study of thin
and thick markets’ performances. First, wemust identify the levels
of supply and demand for this market. The information we require
to determine market demand is available through the journal
Job Openings for Economists (JOE). The problem of information
asymmetry is minimized when we consider the job market in
economics because JOE provides virtually complete information
sets for the supply of the academic jobs in the U.S. In other labor
markets, we often do not know what specific information sets
job applicants can access; but in this case we do because the
journal is widely available to candidates going on the job market.
In addition, we may determine the level of market supply by

3 It is easy to show that E(v) = 1/6 for n = 1 by noting that v can be viewed
as an order statistic v = z1 < z2 = u because v ≤ u for a match pair (u, v). Also,
E(v) → 1/2 as n → ∞ can be proved using similar arguments as in the proof of
Lemma 1.
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Table 7
Matching quality/profit based on 100,000 simulations (n = V = U).

n 1 2 3 4 5 6 7 8 9 10

E(uv) 0.1244 0.1644 0.1877 0.2027 0.2142 0.2234 0.2307 0.2412 0.2457 0.2713
E(uv − v2) 0.0416 0.0473 0.0490 0.0489 0.0487 0.0481 0.0474 0.0464 0.0456 0.0448
E(v) 0.1668 0.2166 0.2477 0.2703 0.2862 0.2992 0.3098 0.3192 0.3268 0.3434
E(uv − v2

+ v) 0.2074 0.2639 0.2968 0.3192 0.3350 0.3473 0.3572 0.3656 0.3724 0.3881

n 20 30 40 50 60 70 80 90 100 1000

E(uv) 0.2713 0.2821 0.2886 0.2936 0.2968 0.2997 0.3018 0.3036 0.3049 0.3246
E(uv − v2) 0.0377 0.0341 0.0312 0.0290 0.0271 0.0257 0.0245 0.0232 0.0224 0.0082
E(v) 0.3760 0.3947 0.4068 0.4155 0.4223 0.4272 0.4317 0.4353 0.4384 0.4794
E(uv − v2

+ v) 0.4137 0.4288 0.4380 0.4445 0.4495 0.4529 0.4562 0.4585 0.4608 0.4876
Table 8
Summary of academic markets for new PhD economists.

Fields with most openings Average openings # of filled positions Probability of matching Number of candidates

Year 2000

Any field(AF) 95.3 42 0.441 0
Macro(E0) 49.3 30 0.608 83
Micro(D0) 36.2 18 0.498 42
International(F0) 34.9 25 0.717 39
Econometrics(C1) 33.5 13 0.388 43
Financial Econ(G0) 33.4 19 0.568 39
Agric Econ(Q0) 25.6 13 0.507 16
Public Econ(H0) 25.4 9 0.354 37
General Econ(A1) 22.6 4 0.177 0
Health Econ(I1) 21.2 9 0.426 11
IO(L0) 19.6 15 0.765 60
Mean of remaining fields 2.96 1.40 0.305 2.16
Total 617 308 0.499 529

Year 2001

Any field(AF) 125.0 64 0.512 0
Macro(E0) 54.8 31 0.566 72
International(F0) 39.6 11 0.277 29
Micro(D0) 38.2 20 0.523 34
Agric Econ(Q0) 37.9 13 0.343 11
Econometrics(C1) 36.0 13 0.361 32
Health Econ(I1) 34.5 18 0.521 14
Financial Econ(G0) 31.9 16 0.501 24
Public Econ(H0) 20.7 11 0.532 25
IO(L0) 20.7 15 0.726 59
General Econ(A1) 18.3 3 0.164 0
Mean of remaining fields 3.27 1.20 0.268 1.92
Total 696 308 0.443 445
contacting graduate programs in economics regarding their PhDs
who have gone on the job market in the past several years.

Our data is organized by field. The definition of the field can
be found in the ‘‘Classification System of Journal Articles’’ by
the Journal of Economic Literature. In particular, we use the field
consisting of a capital letter and a numeral. For example, E0 means
‘‘Macroeconomics and Monetary Economics’’.

We collect the American academic job openings listed in
the September, October, November, and December issues of JOE
in 1999 and 2000. In addition, we collect the information for
job candidates and the information on whether each opening if
filled in the fall. The detailed descriptions for data collection and
construction is listed in the Appendix.

The summary information of the markets is listed in Table 8.
In addition to showing the ten fields with the most job openings
in the table, we include any field (AF), the mean of the remaining
fields not listed in the table, and thewholemarket. In both years, AF
is by far the largest ‘‘field’’. Macroeconomics (E0), Microeconomics
(D0), and International Economics (F0) were the top three fields
other than AF in both years. In 1999, the mean of the matching
probabilities in the ten fields with the most job openings is 0.501,
while the mean of the matching probabilities in the remaining
fields is 0.305. Thicker fields do have larger matching probabilities
than thinner fields. The same pattern repeats in 2000 where the
mean of the matching probabilities for the ten fields with the
largest demand is 0.451,while the rest of the fields have an average
matching probability of 0.268.

3.2. Parametric estimation results

Weestimate our proposedmatchingmodels, given in (10)–(12),
using the collected data. We are primarily interested in the sign
of the coefficient for the variable of thickness, measured by the
variable d = (candidates2 + openings2)1/2.

Table 9 gives the estimation results of models (10)–(12), in the
same format as that of Table 3. It is clear that the regressions
based on model (12) have the best fit, followed by model (11). In
all these different specifications using different sample data, the
parameter estimates of α2, the coefficient of the inverse of the
thickness variable d in models (10)–(12), are negative. Moreover,
they are significant at the 5% level for eight out of nine cases,4
and are all significant at the 10% level (note that it is an one-
sided test). Thus our estimation results predict that the matching

4 Models (10), (11), (12), each has three cases correspond to using 2000, 2001 and
pooled data, respectively.
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Table 9
Regressions of matching probabilities. (U.S. academic market for new PhD
Economists.)

Model (10) Model (11) Model (12)

Job market in January 2000

Constant 0.284 0.362 0.847
(5.69)a (6.67) (1.98)

min{U/V , 1} 0.208 0.142 0.020
(2.51) (1.75) (.237)

1/[(V 2
+ U2)1/2] −0.112 −0.674

(−4.03) (−1.52)
1/[V (V 2

+ U2)1/2] −0.017
(−2.72)

α3 0.223
(1.30)

R2 0.250 0.339 0.466
# of observations 61 61 61

Job market in January 2001

Constant 0.370 0.456 0.658
(8.29) (8.97) (3.36)

min{U/V , 1} −0.023 −0.094 −0.155
(−0.29) (−1.19) (−1.84)

1/[(V 2
+ U2)1/2] −0.212 −0.468

(−4.78) (−2.20)
1/[V (V 2

+ U2)1/2] −0.061
(−3.80)

α3 0.411
(1.70)

R2 0.192 0.273 0.315
# of observations 65 65 65

Pooled sample of 2000 and 2001

Constant 0.314 0.398 0.775
(9.43) (10.88) (3.36)

min{U/V , 1} 0.106 0.035 −0.068
(1.82) (0.62) (−1.15)

1/[(V 2
+ U2)1/2] −0.139 −0.591

(−5.97) (−2.45)
1/[V (V 2

+ U2)1/2] −0.023
(−3.94)

α3 0.274
(2.03)

R2 0.160 0.266 0.369
# of observations 126 126 126
a t-values are in parentheses.

probability increases as the market becomes thicker, consistent
with the main prediction of our theoretical model. In other words,
a thicker market produces a higher probability of matching. The
statistically insignificant estimates of α1 reflect the fact that the
number of candidates in top-50 schools in each field is a noisy
measure. One source of noise comes from the classification of
candidates fields. For example, students often indicate their fields
to be one of the thicker fields. In the two year period we have
data, among the 126 fields that have academic openings, only 45%
of them have candidates, although 62% of those fields have some
success to hire at least one candidate.

Fig. 4 gives the estimated curves using 2000 job market data,
Fig. 5 uses 2001 job market data, and Fig. 6 uses the pooled
sample. These figures graph the observed and predicted matching
probabilities for models (11) and (12). Each point in these figures
represents one field. The dotted line in each figure represents the
predicted probability based on model (11); the solid line plots
the predicted probability based on model (12). The prediction is
carried at the samplemean ofmin{U/V , 1}. Comparingmodel (11)
with model (12) we observe that the nonlinear model shows more
pronounced thickness effects. Within the same model (say model
(12)), all three graphs are similar, reflecting the fact that estimates
from different sample are similar. From all the graphs, we clearly
see thatmatching probability is an increasing and concave function
of the thickness (d) of the market.
Fig. 4. January 2000 job market.

Fig. 5. January 2001 job market.

Fig. 6. January 2000–2001 job market.

To understand the magnitude of the effect of thickness on the
matching probability, consider model (12), where the number of
candidates equals the number of job openings;we have that (when
U = V ) the matching probability is

(M/V ) = α̂0 + α̂1(1) + α̂2/dα̂3 ,

where d =
√
2V (since U = V ). For U = V = 5, 10, and

50, and using the pooled sample estimation result, our empirical
model predicts the matching probabilities of 0.361, 0.421, and
0.523, respectively.

Table 10 reports market size, d =
√
U2 + V 2, frequency of

candidates finding academic jobs,M/V , whereM is the number of
positions filled, estimated probabilities of finding academic jobs for
the six popular fields: Macro, Micro, Econometrics, International,
Public, Health using data of 2000 and 2001. We see that for
most cases the estimated matching probabilities are close to the
observed matching frequencies except for the field ‘International’
which has a very high matching rate (71.7%) in 2000 but has
a quite low matching rate (27.8%) in 2001 although the market
thickness are similar for these two year (d = 52.3 and d = 49.1,
respectively). Looking into the data in more detail we found that



L. Gan, Q. Li / Journal of Econometrics 192 (2016) 40–54 51
Table 10
Matching probabilities with selected fields.

d 2000 frequency Estimated d 2001 frequency Estimated

Econometrics 54.51 0.388 0.509 48.19 0.361 0.510
Micro 56.19 0.498 0.511 51.30 0.547 0.514
Macro 96.55 0.608 0.538 90.48 0.566 0.535
International 52.33 0.717 0.507 49.10 0.278 0.522
Public 44.86 0.355 0.499 32.43 0.532 0.479
Health 23.81 0.426 0.492 37.26 0.521 0.528
for ‘international’, U = 25 in 2000, but it drops more than 50% to
U = 11 in 2001. The substantial supply shock explains the huge
drop in the observed matching (frequency) probability in 2001.

In order to check whether fields such as ‘‘any field’’ (AF) and
‘‘general economics’’ (A1) contaminate our estimation results, we
conduct estimates removing fields ‘‘AF’’ and ‘‘A1’’. These two fields
have large numbers of openings while there are no candidates
labeled as ‘‘any field’’ or ‘‘general economics’’. Estimation results
not reported here (they are available upon request) show virtually
identical parameters estimates as well as the goodness-of-fit R2

to the results given in Table 9. Thus the fact that there are zero
candidates in the thick fields ‘‘AF’’ and ‘‘A1’’ does not affect our
estimation results nor the conclusions derived from them.

3.3. Nonparametric estimation results

Finally, we use a nonparametric method to estimate the
matching probability function as a function of market thickness
d (d =

√
U2 + V 2). Although the most popular nonparametric

estimation method is the kernel method, kernel method (with a
fixed bandwidth) is not appropriate for estimating the matching
function with the data we have. Because our data is noise and
are highly unevenly distributed. Using a constant bandwidth is
not appropriate for this kind of data because there is not enough
data at the tail part of the distribution (large value of d). The
nonparametric k-nearest-neighbor (knn) method is more suitable
to our data case because the knnmethod always uses k data points
to estimate the matching function at any given point. Therefore,
we will use the knn method to estimate the matching function
nonparametrically. Since nonparametric methods require large
data set, we will apply knn method only to the pooled data (with
sample size n = 126). We select k using the leave-one-out cross
validation method. The estimation result is given in Fig. 7.

The dashed line gives the unconstrained knn estimate for the
matching function. First we observe that nonparametric estimated
curve has a similar shape as that of the parametric method
estimated curve. Secondly, we see that for the most part the curve
increasesmonotonically as n grows. There are some bumps around
n = 5 and n = 10. We also estimate a constrained matching
function imposing the monotone restriction, e.g., Hall and Huang
(2001), Li et al. (2015a,b).5 The estimated result is plotted as the
dotted line in Fig. 7. The constrained estimation method removes
the bumps and results in a monotone curve. The goodness-of-fit
R2 for the nonparametric knn estimated model with and without
monotone restriction is R2

knn,m = 0.417 R2
knn = 0.444, respectively.

It is not surprising that nonparametric estimation methods result
in higherR2 thanparametricmodels as nonparametric fitted curves
are less smooth than parametric models, and therefore can trace
the in-sample data better than parametric models.

To formally test whether the parametric model (12) adequately
describes the data, we use the nonparametric specification test

5 Li et al. (2015a,b) generalize Hall and Huang’s (2001) kernel constrained
estimationmethod to the knnmethod. They apply their proposedmonotonicity test
to the same data as we used here to estimate a univariate nonparametric regression
model by the knn method with d =

√
U2 + V 2 as the regressor.
Fig. 7. Nonparametric Knn estimation.

proposed by Li et al. (2015a,b), who generalize Zheng (1996),
and Li and Wang’s (1998) kernel based test to knn based testing
framework, to test the null hypothesis that the model (12) fitted
curve and the nonparametric knn method fitted curve do not
differ from each other significantly. Following Li et al. (2015a,b)
we use the wild bootstrap method to generate 1000 bootstrap
statistics, fromwhich we compute the p-value for the test statistic.
We obtain a p-value of 0.36. Therefore, we failed to reject the
null hypothesis at any convention level, and we conclude that the
parametric and the nonparametric methods give similar estimated
shapes for the matching probability functions. We view this as an
additional evidence supporting our finding that a thick market is
more efficient than a thin market.

Before closing this section we would like to emphasize that the
main contribution of our paper is to derive a matching model with
microfoundation. The empirical application of economics Ph.D
matching market serves as an illustrative example showing that,
using the parametric matching functional form as given in (12),
the empirical results are consistentwith our theoreticalmodel pre-
diction. There are many directions one can improve the empirical
work such as allowing U and V to be endogenously determined,
see, e.g., Mortensen and Pissarides (1994), and Borowczyk-Martins
et al. (2013), but this requires new/rich data set and we leave it to
a future research topic.

4. Conclusions

In this paper we propose a matching model with the matching
probability depending on the thickness of a market. In our model,
the types of firms and the productivities of job candidates are
randomly drawn from a common distribution. A firm employs a
job applicant only if the job applicant’s productivity is higher than
its type.

All firms prefer a higher productivity applicant to a lower one,
and all applicants prefer a higher minimum standard firm to a
lower one. In this hypothetical market, we show that the proba-
bilities of matches in a thin market differ significantly from those
in a thick market.

We also characterize the case where firms and candidates have
different distributions, the case where the number of openings
does not equal the number of applicants, the case where openings
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and candidates arrive at the market sequentially, and the case
when candidates have reservation wages so that they will not
accept offers below their reservation wages. In all these cases,
the matching probability still increases with the thickness of the
market. In addition, we propose a parsimoniousmatching function
which is fairly close to the (simulated) theoretical matching
function.

The matching described in this paper is assortative. We derive
a theoretical matching function with micro-foundation under
no friction and under perfect information in this market. The
matching function exhibits strong properties that are increasing
and concave in market size. Of course, any real world market with
friction and imperfect information, the matching probabilities will
for sure be lower. However, we believe that a matching function is
increasing and concave in market size should remain valid under
general settings.

To illustrate our model, we apply our matching model to the
U.S. academic market for junior PhD economists. Consistent with
the prediction of our model, a field with more job openings and
more candidates has a higher probability ofmatching. In particular,
according to our model, the matching probability increases from
0.361 for 5 candidates and 5 openings to 0.523 for 50 candidates
and 50 openings.

One implication of our model is a large occupation or a bigger
city may have a lower unemployment. Gan and Zhang (2006)
provided evidence of the latter. Another potential application of
the model is the marriage market. In Costa and Kahn (2000),
college graduated power couples are more likely located in larger
cities because of easier match for both, a likely consequence of
thicker job markets in cities. It will be interesting to study how
probabilities of marriage vary by the market size (by certain age,
education level, etc.) of the eligible pool of both men and women.

The model above can be extended in many directions, such
as to the regular labor or housing markets. It may require more
serious effort to relax some assumptions made in this paper. For
example, job candidates may have different preference orderings
of employers, as may employers. More general transferable utility
functions may be more appropriate for a general labor market
because one may enjoy a higher utility if he/she moves to a better
quality firm. Buyers in the housing market have several aspects to
consider, while sellers may only care about the selling prices.

Appendix

A.1. A useful lemma

Lemma A.1. Let u(1) < u(2) < · · · < u(U) be the order statistic
obtained from i.i.d. data u1, . . . , uU , and v(1) < v(2) < · · · <
v(V ) be the order statistic obtained from i.i.d data v1, . . . , vV . ui
and vj have the common distribution F(·) with pdf f (·). Let z(1) <
z(2) < · · · < z(U+V ) denote the order statistic obtained from
(u(1), . . . , u(U), v(1), . . . , v(V )). There are (U + V )!/[(V !)(U !)] such
orderings. Let Zn denote the random variable (z(1), . . . , z(U+V )). Then
for any one particular order z, we have

Pr(Zn = z) =
(V !)(U !)

(U + V )!
. (A.1)

In Lemma A.1, the probability of any particular order statistic
z does not depend on the underlying distribution of candidates
and openings. Since the overall matching probability involves
accounting the number of appropriate orderings, it does not
depend on underlying distributions. We would like to emphasize
that the proof of Lemma A.1 depends on the assumption that u’s
and v’s are i.i.d draws for candidates’ productivities and firms’
types. There is also a possibility that there is heterogeneity and
that the data in either dimension may not be independent and
identically distributed. Without i.i.d assumption, Lemma A.1 may
not holds.

Proof of Lemma A.1. The joint distribution of (u(1), . . . , u(U)) and
(v(1), . . . , v(V )) is (U !)

U
r=1 f (u(r)) and (V !)

V
r=1 f (v(r)), respec-

tively. Therefore, the joint distribution function for (u(1), . . . , u(U),

v(1), . . . , v(V )) is (V !)(U !)[
V

r=1 f (u(r))][
U

r=1 f (v(r))].

Pr(Zn = z) = P(z(1) < z(2) < · · · < z(U+V ))

= (V !)(U !)


{z(1)<z(2)<···<z(U+V )}

U+V
r=1

dF(z(r))

= (V !)(U !)


{z(2)<z(3)<···<z(U+V )}

F(z(2))
U+V
r=2

dF(z(r))

= (V !)(U !)


{z(3)<···<z(U+V )}

(1/2)F 2(z(3))
U+V
r=3

dF(z(r))

= (V !)(U !)


{z(3)<···<z(U+V )}

(1/2) . . . (1/(U + V − 1))

×

 b

a
FU+V−1(z(U+V ))F(z(U+V ))

=
(V !)(U !)

(U + V )!
.

A.2. Proof of Lemma 1

Weknow that An is independent of the distribution f . Therefore,
without loss of generality we assume that f is a uniform
distribution in the unit interval. For any (small) η > 0, we choose
m = [1/η] > 1/η. ([.] denotes the integer part of .) and divide the
unit interval into m intervals with equal length 1/m for each. That
is: [0, 1] = ∪

m
l=1 Il, where Il = [(l − 1)/m, l/m) (l = 1, . . . ,m,

with Im = [(m − 1)/m, 1]). Let nu,l and nv,l denote the number
of observations from {ui}

n
i=1 and {vi}

n
i=1 that fall inside in interval

Il (l = 1, . . . ,m). We know that on the average there are n/m
observations from both {ui}

n
i=1 and {vi}

n
i=1 that fall inside interval

Il for all l = 1, . . . ,m. In fact by the strong law of large number
(Billingsley, 1986, p. 80) we have P(limn→∞ ns,l/n = 1/m) = 1 for
all l = 1, . . . ,m (s = u, v).

Note that the candidates with ui’s fall inside the interval Il can
match with any job opening with vj’s falls in Il−1 (l = 2, . . . ,m).
Given thatwith probability one that nu,l/n → 1/m and nv,l−1/n →

1/m, we know that, with probability approaching to one as n →

∞, that there can have n/m matches for u′

is ∈ Il matching with
v′

i s ∈ Il−1. Sum over l from 2 to m we get, with probability one,
that the number of matched candidates is at least (since we ignore
the possibility that u′

is ∈ I1 may also find match) nmatch/n ≥

(m − 1)/m ≥ 1 − η, or more formally, we have, as n → ∞,

P
nmatch

n
≥ 1 − η


→ 1. (A.2)

Therefore we have

1 ≥ An =
1
n

n
r=0

rP(r) ≥
1
n


r≥n(1−η)

rP(r) → 1,

because for any 1 > ϵ > 0, we can choose η = ϵ/2 and by (A.2),
we have n−1 

r≥n(1−η) rP(r) ≥ n−1n(1 − η)


r>n(1−η) P(r) ≥

(1 − η)2 ≥ 1 − ϵ. Thus, n−1 
r≥n(1−η) rP(r) → 1 as n → ∞

which implies An → 1, completing the proof of Lemma 1.
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Let Pr(# ≥ r) denote the probability that at least r people
find jobs. Then it is easy to see that Pr(# ≥ r) = Pr(u(n) >
v(n−r+1), u(n−1) > v(n−r), . . . , u(n−r) > v(2), u(n−r+1) > v(1)). The
next lemma shows that Pr(# ≥ r) can be used to compute E(r).

Lemma 2. Let # denote the number of peoplewho find jobs (0 ≤ # ≤

min{V ,U}), and denote by Pr(# ≥ r) =
n

m=r Pr(m) the probability
that at least r people find jobs. Then

E(r) =

n
r=1

Pr(# ≥ r).

Proof.

E(r) =

n
r=1

r Pr(r) = {Pr(1) + (2) Pr(2) + · · · + (n) Pr(n)}

= {[Pr(1) + Pr(2) + · · · + Pr(n)] + [Pr(2) + · · · + Pr(n)]
+ [Pr(n − 1) + Pr(n)] + Pr(n)}

=

n
r=1

Pr(# ≥ r).

A.3. The case of n = 3

Let u3 > u2 > u1 be the order statistic of candidates, and
v3 > v2 > v1 be the order statistic of openings (we omit the
parentheses in the subscripts to simplify the notation).
Pr(0) = Pr(u3 < u2 < u1 < v1 < v2 < v3)

= (3!)2(1/6!) = 1/20.
Pr(# ≥ 1) = 1 − Pr(0) = 19/20.
Pr(# ≥ 2) = Pr(u3 > v2, u2 > v1)

= Pr(u3 > v2 > u2 > v1) + Pr(u3 > u2 > v2 > v1)
= 14/20

since
Pr(u3 > v2 > u2 > v1) = Pr(u3 > v3 > v2 > u2 > v1 > u1)

+ Pr(v3 > u3 > v2 > u2 > v1 > u1)
+ Pr(u3 > v3 > v2 > u2 > u1 > v1)
+ Pr(v3 > u3 > v2 > u2 > u1 > v1)

= 4[(3!)/(6!)] = 4/20.

Pr(u3 > u2 > v2 > v1) = Pr(u3 > u2 > v3 > v2 > v1 > u1)
+ Pr(u3 > v3 > u2 > v2 > v1 > u1)
+ Pr(v3 > u3 > u2 > v2 > v1 > u1)
+ Pr(u3 > u2 > v3 > v2 > u1 > v1)
+ Pr(u3 > v3 > u2 > v2 > u1 > v1)
+ Pr(v3 > u3 > u2 > v2 > u1 > v1)
+ Pr(u3 > u2 > v3 > u1 > v2 > v1)
+ Pr(u3 > v3 > u2 > u1 > v2 > v1)
+ Pr(v3 > u3 > u2 > u1 > v2 > v1)
+ Pr(u3 > u2 > u1 > v3 > v2 > v1)

= 10[(3!)/(6!)] = 10/20.

Pr(3) = Pr(u3 > v3, u2 > v2, u1 > v1)
= Pr(u3 > v3 > u2 > v2 > u1 > v1)

+ Pr(u3 > u2 > v3 > v2 > u1 > v1)
+ Pr(u3 > v3 > u2 > u1 > v2 > v1)
+ Pr(u3 > u2 > v3 > u1 > v2 > v1)
+ Pr(u3 > u2 > u1 > v3 > v2 > v1)

= 5{(3!)2/(1/6!)} = 5/20.
Therefore, by Lemma 2 we have

A3 =
1
3

3
r=1

Pr(# ≥ r)

= [(19/20) + (14/20) + (5/20)]/3 = 19/30.
A.4. The case of n = 4

Pr(0) = (4!)2/(8!) = 1/70 by Lemma 1. Pr(# ≥ 1) = 1 − P(0) =

69/70.
Pr(# ≥ 2) = [(3+6)+(3+6+10)+(3+6+10+15)]/70 = 62/70.
Pr(# ≥ 3) = [(2+3)+(2+3+4)+(2+3+4+5)]/70 = 42/70.
Pr(4) = [(2+3)+ (2+3+4)]/70 = 14/70. Therefore, by Lemma
3 we have

A4 =
1
4

4
r=1

Pr(# ≥ r)

= [(69/70) + (62/70) + (42/70) + (14/70)]/4 = 187/280.

A.5. The case two uniform distribution with different means

Weassume that sellers are randomly drawn froma uniformdis-
tribution in the unit interval (unif[0, 1]), while the buyers are ran-
dom draws with a uniform distribution in the interval of [δ, 1+ δ].
We only consider the case of V = U = n.

For n = 1, straightforward calculation shows thatA1 = Pr(1) =

(1/2)(1 − δ)2.
For n = 2, a more tedious calculation shows that

Pr(0) = (1 + 4δ + 6δ2
− 4δ3

− δ4)/6, and
Pr(2) = (1 − δ)4/3.

Hence (using Pr(1) = 1 − Pr(0) − Pr(2)),

A2 = (1/2)[Pr(1) + 2 Pr(2)]
= (7/12)(1 − δ)2 + (1/12)δ(1 − δ)2(2 + 3δ).

A.6. Computing a2 for general f and g

For n = 2, let u1 < u2 be order statistics drawn from F , and
v1 < v2 from G. The marginal PDFs and CDFs for u1 and u2 are,
f1(u) = 2[1−F(u)]f (u), F1(u) = 2F(u)−F 2(u), f2(u) = 2F(u)f (u),
F2(u) = F 2(u) Similarly, the marginal PDFs and CDFs for v1 and v2
are, g1(u) = 2[1 − G(u)]g(u), G1(u) = 2G(u) − G2(u), g2(u) =

2G(u)g(u) and G2(u) = G2(u), where f and g are underlying den-
sity functions for u and v. From

n
r=1 r Pr(r) =

n
i=1 Pr(r ≥ i) we

know that for computing A2, we only need to calculate Pr(r ≥ 1)
and Pr(r = 2).

Pr(r = 0) = Pr(u2 < v1)

=

 
∞

u2
dG1(v1)dF2(u2)

= 1 − 2


[2G(u) − G2(u)]F(u)dF(u),

where the second equality holds by substituting the expressions of
G1(·) and F2(·). Therefore, we have,

Pr(r ≥ 1) = 1 − Pr(r = 0)

= 2


[2G(u) − G2(u)]F(u)dF(u). (A.3)

To calculate Pr(r = 2), we consider two cases. (i) v2 < u1 and
(ii) v1 < u1 < v2 < u2. For case (i)

Pr(v2 < u1) =

  u1

−∞

dG2(v2)dF1(u1)

= 2


G2(u)[1 − F(u)]dF(u), (A.4)

where the second equality follows from G2(u) = G2(u) and
dF1(u) = 2[1 − F(u)]dF(u).
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For case (ii) by noting that the joint PDF of (u1, u2, v1, v2) is
4f (u1)f (u2)g(v1)g(v2), we have,

Pr(v1 < u1 < v2 < u2)

=


{v1<u1<v2<u2}

4f (u1)f (u2)g(v1)g(v2)d(u1, u2, v1, v2)

= 4


{u1<v2<u2}

 u1

−∞

g(v1)dv1


f (u1)f (u2)g(v2)d(u1, u2, v2)

= 4


{u1<v2<u2}
G(u1)f (u1)f (u2)g(v2)d(u1, u2, v2)

= 4


{u1<u2}

 u2

u1
g(v2)dv2


G(u1)f (u1)f (u2)d(u1, u2)

= 4


{u1<u2}
[G(u2) − G(u1)]G(u1)f (u1)f (u2)d(u1, u2)

= 4
 

G(u2)

 u2

−∞

G(u1)dF(u1) −

 u2

−∞

G2(u1)dF(u1)


dF(u2)

= 4
 

G(u)
 u

−∞

G(s)dF(s) −

 u

−∞

G2(s)dF(s)

dF(u). (A.5)

Gathering results in (A.3)–(A.5), we have

A2 =
E(r)
2

=
1
2

2
i=1

Pr(r ≥ i)

=
1
2
[Pr(r ≥ 1) + Pr(v2 < u1) + Pr(v1 < u1 < v2 < u2)]

=

 
2G(u)F(u) − 2G2(u)F(u) + G2(u)

+ 2

G(u)

 u

−∞

G(s)dF(s) −

 u

−∞

G2(s)dF(s)


dF(u).

A.7. The case of v ≠ u

Case (i) (U, V ) = (1, 2) or (2, 1)
Let v1 < v2 be the order statistic of openings. By Lemma 1 we

have

Pr(1) = Pr(v2 > u > v1 or u > v1, v2)

= Pr(v2 > u > v1) + Pr(u > v2 > u1) = 2{1!2!/3!} = 2/3.

Therefore, MU,V = M1,2 = Pr(1) = 2/3. From this one can
compute BU,V .

Case (ii) (U, V ) = (3, 1) or (1, 3)
Let v1 < v2 < v3 be the order statistic of openings.
Pr(0) = Pr(u < v1, v2, v3) = Pr(u < v1 < v2 < v3) =

{1!3!/4!} = 1/4.
Pr(1) = 1− Pr(0) = 3/4. Therefore,M1,3 = Pr(1) = 3/4. Then

one can compute BU,V .

Case (iii) (U, V ) = (2, 4) or (4, 2)
Let u1 < u2 and v1 < v2 < v3 < v4 be the order statistics of

candidates and openings, respectively.

Pr(0) = Pr(u2 < v2) = Pr(u1 < u2 < v1 < v2 < v3 < v4) =

{2!4!/6!} = 1/15.

Pr(1) = Pr(v1 < u1 < u2 < v2) + Pr(v1 < u1 < v2) =

1/15 + 4/15 = 1/3.

Pr(2) = 1 − Pr(0) − Pr(1) = 3/5. Hence,M2,4 = 1/3 + 2(3/5) =

23/15.
A.8. Data collection/construction

In the JobOpenings for Economists (JOE), a university advertises
itsm openings in n fields. Each field would be given average open-
ings of m/n. For example, in 2000, the Department of Economics
at Texas A&MUniversity had five openings in 9 different fields. We
assign each field with 5/9 openings. After the assignments for all
American universities, the sum of all universities by each field is
the total number of openings in that field.

To obtain the number of candidates for each field, we obtain
the CV and/or the brief introduction for all job market candidates
in top 50 economics departments in the US defined in Dusansky
and Vernon (1998). We use the first field listed in each candidate’s
CV or in the brief introduction of the candidate. The total number
of supplies in each field is the sum of all candidates in that field.

To obtain the total number of successful matches, we find out
the new faculty members that each department hires in the fall
semester of that year by searching the departmental websites
and/or phone calls. To determine each newly hired faculty’s field,
we assign the field if the faculty’s field is one of the advertised
fields. If not, among the advertised fields, the field closest to the
candidate’s fieldwould be chosen. In this case, the candidate’s field
would also be updated to the current field, so does the total number
of candidates in each field. If a new hired faculty is not in the early
list of candidates, the candidate is added in the list.
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