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Abstract

Factor models have been widely used in practice. However, an undesirable fea-
ture of a high dimensional factor model is that the model has too many parameters.
An effective way to address this issue, proposed by Tsai and Tsay (2010), is to de-
compose the loadings matrix by a high-dimensional known matrix multiplying with a
low-dimensional unknown matrix, which Tsai and Tsay (2010) name the constrained
factor models. This paper investigates the estimation and inferential theory of con-
strained factor models under large-N and large-T setup, where N denotes the number
of cross sectional units and T the time periods. We propose using the quasi maximum
likelihood method to estimate the model and investigate the asymptotic properties of
the quasi maximum likelihood estimators, including consistency, rates of convergence
and limiting distributions. A new statistic is proposed for testing the null hypothesis of
constrained factor models against the alternative of standard factor models. Partially
constrained factor models are also investigated. Monte carlo simulations confirm our
theoretical results and show that the quasi maximum likelihood estimators and the
proposed new statistic perform well in finite samples. We also consider the extension

of an approximate constrained factor model.
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1 Introduction

With the rapid development of data collecting, storing and processing techniques in com-
puter science, econometricians and statisticians now face large dimensional data setups
more often than ever before. A challenge along with the appearances of large data is how
to extract useful information from data, or put differently, how to effectively conduct di-
mension reduction on data. Factor models are proved to be an effective way to perform this
task. Over the last three decades, the literature has witnessed wide applications of factor
models in many economics disciplines. In finance, Conner and Korajczyk (1986, 1988) and
Fan, Liao and Shi (2014) use factor models to measure the risk and performance of large
portfolios. In macroeconomics, Geweke (1977) and Sargent and Sims (1977) use dynamic
factor models to identify the source of primitive shocks. In labor economics, Heckman,
Stixrud and Urzua (2006) use factor models to capture unobservable personal abilities. In
international economics, Kose, Otrok and Whiteman (2003) use multilevel factor models
to separate global business circles, regional business circles and country-specific business
circles. Large dimensional factor models are also used in a variety of ways to deal with
strong correlations, see e.g., Fan, Liao and Mincheva (2011) and Fan, Liao and Mincheva
(2013), among others.
A standard factor model can be written as

z2=Lfi4+e, t=12,...,T,

where z; = (214, ..., 2n¢)’ is a vector of N variables at time ¢, L is an N X r loadings matrix,
ft is an r-dimensional vector of factors and e; is an N-dimensional vector of idiosyncratic
errors. The traditional (classical) factor analysis assumes that NN is fixed and T is large.
This assumption runs counter to usual shape of large dimensional data sets, in which NV is
usually comparable to or even greater than 7" (Stock and Watson (2002)). Recent literature
contributes a lot to the asymptotic theory with N comparable to or even greater than
T. Bai and Ng (2002) propose several information criterions to determine the number
of factors in a large-N and large-T" environment. Under a similar setup to Bai and Ng
(2002), Stock and Watson (2002) prove that the principal components (PC) estimates
are consistent in approximate factor models of Chamberlain and Rothschild (1983). Bai
(2003) moves forwards along the work of Stock and Watson (2002) and gives the asymptotic
representations of the PC estimates of loadings, factors and common components. Doz,
Giannone and Reichlin (2012) consider the maximum likelihood (ML) method and prove
the average consistency of the maximum likelihood estimates (MLE). Bai and Li (2012,
2016) use five different identification strategies to eliminate the rotational indeterminacy
from asymptotics and give the limiting distributions of the MLE. Fan, Liao and Wang
(2014) propose a new projected principal component method to more accurately estimate
the unobserved latent factors.

A potential problem in high dimensional factor models is that too many parameters are
estimated within the model, which makes it difficult to analyze and interpret the economic
implications of the estimates. However, if the space of the loading matrix is spanned by a
low dimension matrix, this problem can be much ameliorated. In this paper, we address



this problem by considering the following constrained factor model
2z = MAfi + ey,

where M is a known N X k matrix with rank k and A is a k x r unknown loadings matrix
with rank . We assume r < k < C for some generic constant C'. In the above specification,
M consists of the bases of the loading matrix. The underlying true loadings are a weighted
average of these bases associated with the weights matrix A, which is of our interests. The
number of loading parameters now is kr instead of Nr. So the number of parameters is
greatly reduced.

Our work is closely related to Tsai and Tsay (2010) who were the first to consider con-
strained factor models. This paper differs from Tsai and Tsay (2010) in several dimensions.
First, although Tsai and Tsay propose using PC and ML methods to estimate constrained
factor models, their asymptotic analysis focuses only on the PC method. They obtain
convergence rates of the PC estimates. As a comparison, we investigate asymptotics of
the ML method and derive the convergence rates and limiting distributions of the MLE.
Given the limiting distributions, one can easily construct (1 — «)-confidence intervals if
prediction is the target of interest, or use t-test or F-test to conduct statistical inferences
on the underlying parameter values if hypothesis testing is the purpose. Second, Tsai and
Tsay consider the setup that k is large (but still smaller than N). In this paper, we instead
assume that k is fixed ®. In our viewpoints, assuming a fixed k is of practical and theo-
retical interests. In some typical examples, the parameter k is interpreted as the number
of groups or categories, according to which the variables are classified (see Tsai and Tsay
(2010)). This value is usually not large in real data. Therefore, a fixed-k assumption is
adopted in this paper. Furthermore, in constrained factor models, a large k leads to a larger
number of parameters being estimated. The estimation accuracy is reversely linked with &
for a given sample size. When £k is large, the benefit of constrained factor models against
standard factor models becomes weak which makes constrained factor less attractive in
practice. Third, an importantly related issue in constrained factor models is on conducting
valid model specification check on the presence of matrix M. Tsai and Tsay consider the
traditional likelihood ratio test to perform this task. But the traditional likelihood ratio
test is designed under fixed-N and large-T" setup, which conflicts to large-N and large-T
scenarios. In this paper, we propose new statistics for testing model specifications that are
applicable to the large-N and large-T' setups.

The rest of the paper is organized as follows. Section 2 provides more empirical examples
of the constrained factor model. Section 3 introduces the model and lists the assumptions
needed for the subsequent analysis. Section 4 delivers the consistency and limiting distribu-
tion results of the MLE. Section 5 considers testing issues within constrained factor models.
Section 6 considers a partially constrained factor model and presents the asymptotic prop-
erties of the MLE for this model. Section 7 presents the Expectation Maximization (EM)
algorithm for computation of the MLE. Section 8 conducts Monte Carlo simulations to
investigate the finite sample performance of the MLE and to study the size and power of

®Our analysis can be extended to the case with a large k. But for this case, deriving the limiting
distribution of the MLE is very challenging since the matrix A is high-dimensional.



our proposed statistic on the model specification. In Section 9, we extend Assumption B to
a more general weak dependence structure and study the MLE in this extension. Section
10 concludes the paper. All technical contents are delegated to several appendices.

2 Applications

The well-known equilibrium arbitrary pricing theory (APT) implies that the observed
assets returns can be expressed into a linear factor structure, see Ross (1976), Conner and
Korajczyk (1988) among others. This motivates using

.
Tit = Z lLij it + e
j=1

to study the performance of portfolios, where r; is the excess return of the ith security
at time ¢, fj; denotes the jth risk premium at time ¢ and [;; the beta coefficient of the jth
risk premium for security i. However, as pointed out by Rosenberg (1974), the common
movements among the assets returns may be related with the individual characteristics.
Such characteristics include capitalization and book-to-price ratios as suggested in Fama
and French (1993), momentum as in Carhart (1997), own-volatility as in Goyal and Santa-
Clara (2003). Let z;;, denote the observed pth characteristic of the ith security. Rosenberg
(1974) considers the specification

k
lij = )_ TipApj + vij or  L=MA+YV,
p=1

where M = (zp) nxk is the observed characteristics matrix. The Rosenberg’s specification
is very close to the one studied in this paper. With a light modification, the analysis in
this paper can easily be extended to cover the Resenberg’s model.

A limitation of Rosenberg’s specification is that the factor betas are assumed to be
linear functions of the observed characteristics, which is overly restrictive in practice. To
accommodate this concern, Conner and Linton (2007) and Conner, Hagmann and Linton
(2012) consider the following nonparametric specification

lij = gj(ziz).

where g;(-) is an unknown smooth function. Conner, Hagmann and Linton (2012) apply
their model to a real dataset and indeed find that the factor betas are nonlinear functions
of the characteristics. However, an undesirable feature in these two papers is that the
estimation of the model involves an iterative procedure between the factors and unknown
functions, which is formidable to many applied researches. To address this issue, we in-
stead consider using a series of polynomial functions to approximate the unknown function
9;j(+). More specifically, we consider approximating the function g;(-) by all the polynomial
functions with power less than ¢, i.e.,

gj(x) ~~ )\jO + )\jlx + -+ )quxq. (2.1)



Given this, the model now can be written as L = M A with
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The above model can be viewed as a special case of the constrained factor model with
some zero restrictions imposed on A. The model considered here maintains the nonlinear
function feature of Conner and Linton (2007) and Conner, Hagmann and Linton (2012)
but the computational burden has been much reduced. A primary issue related with our
method is whether the approximation (2.1) is good enough. This work can be partially
addressed by the W statistic proposed in Section 5.

Constrained factor models have other applications. Tsai and Tsay (2010) apply con-
strained factor models to analyze stock returns where the stocks can be classified into
different sectors. They specify the constraint matrix M consisting of orthogonal and bi-
nary vectors. In another application, they implement constrained factor models to study
the interest-rate yield curve, where the columns of the matrix M are specified to denote
the level, slope and curvature feature of interest rates. Matteson et al. (2011) use con-
strained factor models to forecast the hourly emergency medical service call arrival rates
by specifying the constraints on the factor loadings based on the prior information of the
pattern of the call arrivals. Similar approach is adopted in Zhou and Matteson (2015) to
model the ambulance demand by incorporating covariate information as constraints on the
factor loadings.

3 Constrained Factor Models

Let N denote the number of variables and T the sample size. We consider the following
constrained factor model
2z = MAf + ey, (3.1)

where z; = (214, 22t, . . -, 2n¢) 18 an N-dimensional vector of explanatory variables at time
t; M is a specified N x k (known) matrix with rank k; A is the k x r loading matrix of rank
r; fr = (fie, fot, -+, fre)' is a vector of r latent common factors; e; is an N-dimensional
vector of idiosyncratic disturbances and is independent of f;. Throughout the paper, we
assume k > r. If k < r, the expression Af; achieves no dimension reduction and we can
simply consider the linear regression z; = M f; + e; with f7 = Af;.

Our analysis is based on similar assumptions used in standard factor models, see Bai
and Li (2012) for the asymptotic analysis of the MLE for standard high dimensional factor



models. The symbol C' appearing in the following assumptions denotes a generic constant.
Our assumptions include:

Assumption A: {f;} is a sequence of fixed constants with f = Zthl ft = 0. Let
My = %Zle ftf{ be the sample variance of f;. There exists an Mff > 0 (positive
definite) such that Mg = Tlim Myy.

— 00

Assumption B: The idiosyncratic error term e;; is independent across the ¢ index and
the t index with E(e;) = 0, E(ese}) = See = diag(o?,03,--- ,0%) and E(ef,) < C for all i
and ¢, where e; = (e, eat,...,ent) is the N-dimensional vector of idiosyncratic errors at
time ¢.

Assumption C: The underlying values of parameters satisfy that
C.1 ||A]| < C and ||m;|| < C for all j, where m; is the transpose of the jth row of M.
C2 C2< ajz < C? for all j, where 0'J2- = E(e?t) is defined in Assumption B.
C.3 Let P = NM'S_'MA/N, R = M'S_'M/N. We assume that Py, = A}iinooP and

Ro = lim R exist. In addition, lim + SN o7 (my @ my)(ml @ ml) = Vi exists.
N—o0 N—o0
Here P,,, Ry and V, are some positive definite matrices.

Assumption D: The estimator of 0']2- for j = 1,..., N takes value in a compact set:
[C~2,C?]. Furthermore, M #f is restricted to be in a set consisting of all semi-positive
definite matrices with all elements bounded in the interval [—C,C], where C is a large
positive constant.

Assumption A requires that factors are sequences of fixed constants. The random
factors can be dealt with in a similar way under some suitable moment conditions. As-
sumption B is commonly imposed in classical factor models. It can be relaxed to allow
cross-sectional and temporal heteroskedasticities and correlations, see Bai and Li (2016) for
a related development in this direction. Assumption C requires that underlying values of
parameters are in a compact set, which is standard in econometric literature. Assumption
D requires that some parameter estimates take values in a compact set. This assumption
is often made when dealing with highly nonlinear objective function, see Jennrich (1969).
Our objective function is highly nonlinear.

Similar to the case of a standard factor model, a constrained factor model has an
identification problem. To see this, for any invertible r» x r matrix B, we have

Af¢=AB-B7'f = A*f}.

with A* = AB and f; = B~'f,. To sperate (A, f;) from (A*, f), we impose the following
identification condition.

Identification condition (abbreviated by IC hereafter):

IC1 A (%M 'So M)A = P, where P is a diagonal matrix whose diagonal elements are
distinct and arranged in descending order.

IC2 My =+ X0 fifl =T



Our identification strategy is similar to IC3 in Bai and Li (2012). It is known that this
identification strategy identifies the loadings and factors up to a column sign, see Bai and Li
(2012) for a detailed discussion on this issue. To eliminate such a problem in our theoretical
analysis, we follow Bai and Li (2012) to treat as part of the identification condition that
the estimator and the underlying values of loadings matrix have the same column signs.
In practice, the sign problem causes no troubles in empirical analysis.

We use the following discrepancy function between M., and X, as our objective function

L) =———=In|S.|— %tr[MzzE;], (3.2)
where § = (A, X)), M., = T-'SF 22 and .. = MAAN M’ + .. This discrepancy
function has the same form as a likelihood function when f; are independently and normally
distributed with mean zero and variance I, see Bai and Li (2012) for details. In the
current paper, the factors are assumed to be fixed constants in Assumption A, the above
discrepancy function is therefore not a likelihood function. Nevertheless, we still call the
maximizer of the above function as a quasi MLE or MLE for simplicity. Specifically, the
MLE 6 = (A, 3..) is defined as

0 = argmax L£(0),
0cO

where © is the parameters space such that any interior point of it satisfies Assumption
D and the identification condition IC. The input parameters include A and .. In a
constrained factor model, we only need to estimate kr loadings instead of Nr loadings (the
number of parameters in a standard factor model). Therefore, the number of parameters
is greatly reduced. Taking derivatives with respect to A and Y., we obtain the following
first order conditions:

A A

NM'SZH M., —$.)S2 M = 0; (3.3)
diag(X2") = diag(X' M. 321,

=

where A, and 3. denote MLE of A and ¢, and 3, = MAA'M' + 5. We note that
the above two first order conditions are only used in deriving the asymptotic properties of
the MLE. One does not need to solve the above nonlinear equations to obtain the MLE.
Instead, we can implement the Expectation Maximization (EM) algorithm to compute the
MLE. Details are given in Section 7.

4 Asymptotic properties of the MLE

In this section, we investigate the asymptotic properties of the MLE. The following propo-
sition shows that the MLE is consistent.

Proposition 4.1 (Consistency) Let § = (A,S..) be the MLE that mazimizes (3.2).
Then under Assumptions A-D, together with IC, when N, T — oo, we have

N
~ 1 R
A—A25o; N;(O’?—O‘?)Qio.



In high dimensional factor analysis, the loadings and variances of idiosyncratic errors
are high-dimensional. The consistencies have to be defined under some chosen norms, see
Stock and Watson (2002), Bai (2003), Doz, Giannone and Reichlin (2012) and Bai and Li
(2012, 2015). In constrained factor models, due to the presence of matrix M, the loading
matrix A is low-dimensional. So its consistency is defined in the elementwise sense. But
for the variances of idiosyncratic errors, they are still high-dimensional. Their consistency
is therefore defined by & >N, (62 — 02)2, which can be written as %Hf]ee — Bee]|?. So the
chosen norm is the Frobenius norm adjusted with the matrix dimension.

Given the consistency results, we have the following theorem on convergence rates of

the MLE.
Theorem 4.1 (Convergence rates) Under the assumptions of Proposition 4.1, we have

A 1 1 1 & 1
A—A:Op(ﬁ) +Op(f)a NZ(O—E _0-12)2 :Op(f)
i=1

According to Theorem 4.1, the convergence rate of A is min(v/NT,T), which is faster
than the v/T-convergence rate of estimated loadings in standard factor models. This result
is plausible since in a constrained factor model, we use NT observations to estimate kr
loadings. This is in contrast with a standard factor model, where we use NT' observations
to estimate Nr loadings.

To present the asymptotic representation of the MLE, we introduce some notations.
Let

2D 2D
D

01 2
]D) — D — D — fT(T+1)><T
: D[(P@LH(L@P)KA]’ : low_lw .+ Ds l ’

and

By = Kp [([PT'N) @Al + R @ I, — K, (I, @ A)Dy Do [(P7IA) @ 1],
_ 11
By = K (I @ D' D3(A @A), A =By} —5(mis @ mi)(kia — o),
i=1 "1
where P = %A'M’E;MA, R = %M’E;M, kia = E(e}), m; is the transpose of the
1th row of matrix M, K, is the commutation matrix such that for any v x v matrix B,
Kyyvec(B) = vec(B'); and K, is defined to be K,,. D} = (D.D,)"'D! is the Moore-
Penrose inverse matrix of the r-dimensional duplication matrix D,, D is the matrix such
that veck(B) = Dvec(B) for any r x r matrix B, where veck(B) is the operation which
stacks the elements below the diagonal of the matrix B into a vector. Given matrix P, we
can easily calculate the matrix D and its inverse. For example, let P = diag(1,2,3) (r =3



in this case), then

2 0 0000 0 0 O 0.5 0 0 0 0 0 0 0 0
01 0100O0O0O0OQO 0 2 0 o 0 o0 -1 0 0
001 00O01O00O0 o 0 15 0 0 0 0 =05 0
000O0200O0O00O0 0o -1 0 0o 0 0 1 0 0
Dy=(0 0 0 0O0O1 010 ,Dl_lz 0 0 0O 05 0 0 O 0 0
000 O0O0OO0OO0OTO02 0 0 0 0o 3 0 0 0 -1
01 02000O0O00QO0 o 0 -05 0 O O O 05 0
001 000O03¢00O0 0 0 0 0 -2 0 O 0 1
0 00 00 2 0 3 0f L0 0 0 0 0 05 0 0 0

Now we state the asymptotic result of A.

Theorem 4.2 (Asymptotic representation) Under assumptions of Theorem 4.1, we

have
R N T 1 1 N T 1
VeC(A/ T;;OTQ mz@ft Cit — Niztz? mz®ml 6275_0'1'2)
+1A+op< L) 4 Oy + Oy, (4.1)
T NvT \/ NT T3/27

where the symbols B1, Ba and A are defined above Theorem 4.2.

The first two terms on the right hand side of (4.1) are Op(ﬁ) since their variances
are O(w7) and the third term is O(4). The first three terms dominates the remaining

terms. Theorem 4.2 reaffirms the convergence rates asserted in Theorem 4.1 and sharpens

m) and Op(7) terms.
Given Theorem 4.2, invoking a Central Limit Theorem, we have the following theorem.

the results by explicitly giving the concrete expressions of the Op(

Theorem 4.3 (Limiting distribution) Under assumptions of Theorem 4.1, as N,T —
o0, N/T? — 0, we have

1

VNT [vec(A' — &) — TA} 4 N(0,9),

where Q = lim Qy with
N—o0

1 X kg — o
Oy =B (R® I,)B, + B, [ﬁ 3 %(mim;) ® (mam)| B).
i=1 i
Theorem 4.3 shows that the MLE A has a non-negligible bias. This is in contrast to a
result of Bai and Li (2012) who show that, in a high-dimensional standard factor model,
the MLE is asymptotically centered around zero. Another interesting result is that the
limiting variance of the MLE A depends on the kurtosis of e;;. Given Theorem 4.3, we

have the following corollary.




Corollary 4.1 Under assumptions of Theorem 4.3, with normality of e;;, we have

N
1
\/NT[vec(A A’)—ﬁmaz; 2(ml®mz)}i>N(O,B1m(Roo®I) so+2B2, 00 Voo B, )

where Ry, and Vi are defined in Assumption C.3, By o and By o, are almost the same as
By and Ba except that P and R are replaced by Poo and Rs. Furthermore, if N/T — 0,
we have

VNTveo(N = N) % N (0, Br,00(Roo @ [)B] 0 + 2Bo o0 VacBh o ).

Remark 4.1 To estimate the bias and the limiting variance, we use some plug-in methods.
Specifically, the bias is estimated by

N
1
ZT ’%4 (mz®mz)

:10

and the limiting variance is estimated by
2L (mami) © (mam) | B,

where

B, = K [(PT'A)@ A+ R @ I, — Kipe (I, © MDD [(P7A) ® I,
By = Kp (I, ® A)D™'Ds(A @ A)'.

Here A and 62 are the MLE; R = %M’f};}M and P = %A’M'f}e’ele\; Dy is almost the
same as [D; except that P is replaced by ]5; Ria = %Zle éft with é; = zj — mif& ft and
fr= (NM'SEMA) A M'S 2,

Remark 4.2 Theorem 4.3 is derived under a full identification of loading matrix A. An
alternative approach to investigate the asymptotics, as adopted in Bai (2003), is that one
only imposes the condition Mys = I,.. Since in this case the original identification conditions
(IC) are not met, the loading matrix A is not fully identified. But one can still deliver the
asymptotic theory based on A —RN , where R is a rotational matrix. According to (A.16)
in Appendix A, together with Lemma B.3 (e), (f) and Lemma B.5 (a), we have

1 1

. 1
/ /
Moy =RE thet S MRy +O(\ﬁ )+0(7)+0p(m),
where R is the rotational matrix defined by
1 T
R =PyINM'SIMA + Py IAMZ)eelTZett’
t=1

with Py = A’M'S; P MA.
Given the above result, we have that under N, T — oo, N/T? — 0,
VNTvec(A — RA') % N(0,RZ! @ RR)),

where R = plim R.
N, T—o0



Theorem 4.4 Under Assumptions A-D, as N, T — oo, we have

T
VI(6? — 0?) = } S — 0?) + op(1).
=1

N

Given this result, we have

where k; 4 = E(e}) is the kurtosis of ey.

We emphasize that the limiting result for 62 is independent with the identification
conditions. In addition, the above limiting result is the same as that in a standard high-
dimensional factor model (see, e.g., Theorem 5.4 of Bai and Li (2012)).

We finally consider the estimation of factors. Following Bai and Li (2012), we estimate
the factors by the generalized least squares (GLS) method. More specifically, the GLS
estimator of f; is

fi=(NM'STIMA) TN M 2,
where A and 3., are the respective MLEs of A and ... The asymptotic representation
and limiting distribution of ft are provided in the following theorem.

Theorem 4.5 Under assumptions of Theorem 4.1, we have
o fi= PUEANMIS e+ Op(—e) + Op(2)
t t N ee Ct P \/ﬁ P T )

where P = £ AN'M'S_*MA. Then as N,T — oo and N/T? — 0, we have
VN(fe = f0) % N(0, PSY,
where Py, = A}im P is defined in Assumption C.3.
—00

The above theorem indicates that the asymptotic properties of the GLS estimator for
factors in the current model are the same as that in standard high-dimensional factor
models®. However, the derivation of the above theorem is actually easier due to the faster

convergence rate of estimated loadings.

5 Testing

Corollary 4.1 in the previous section gives the limiting distribution of the MLE, which
allows one to test whether the loading matrix A is equal to some known matrix. First, we
consider the following hypothesis:

HA@ZAZAO, HAJIA#AO.

®For the asymptotic results of the GLS estimator in standard high dimensional factor models, see
Theorem 6.1 of Bai and Li (2012).

10



We consider a wald statistic

EA}/QA [VGC(A/ — A — %A},

— A/ AON
Wy = NT [vee(A’ — A”) -

where the symbols A and Q are given in Remark 4.1. The following theorem, which is a
direct result of Theorem 4.3, gives the limiting distribution of Wj.

Theorem 5.1 Under Assumptions A-D, together with IC, as N, T — oo and N/T? — 0,
under Hy o, we have

d 2
WA — Xk;'r'7

where er denotes a chi-square distribution with degree of freedom kr.

Next, we consider the problem of testing whether specification (3.1) is appropriate in
a general factor model. That is, the correctness of the decomposition of loadings matrix
L = MA. For a given M, the null and alternative hypotheses are

Hy : L=MA for some A,
Hy: L#MA for all A.

In traditional (low-dimensional) factor analysis, testing restrictions can be conducted by
using the likelihood ratio principle. Because the number of parameters is finite, the number
of restrictions imposed on these parameters is therefore finite. Consequently, under the null
hypothesis, the likelihood ratio has an asymptotic x? distribution with a finite number of
the degrees of freedom. In the high-dimensional setting, the number of parameters increases
with the sample size. The number of restrictions possibly increases with the sample size as
well. This is the case in our specification test in constrained factor models. As can be seen
that under Hyp, the number of restrictions for L = MA is (N — k)r, which proportionally
increases with the number of cross sectional units. If the traditional likelihood ratio test is
used, the limiting distribution of the statistic would depend on N, an undesirable feature
which can make a test unstable when NN is large. This motives us to design a new test
independent of N.

To gain an insight of our test, notice that the estimator M A® under IC and Hy should
be very close to ﬁ, the MLE of L from a standard factor model (z; = Lf; + e;) under the
identification condition that My = I, and %L/ Yol L is diagonal. However, under Hj, the
two estimates will not be close to each other. Based on the above analysis, we construct
the following test statistic

ee

W= tr{ NT? [%(fo —LYS;MMA-1) - %I} }

where Y. is an estimator of ¥, under the alternative hypothesis.

®An alternative estimator is M AT, where A is the bias-corrected estimator for A. It can be shown
that the difference of the two statistics (which are based on AT and A) is asymptotically negligible under
N/T? - 0.

11



Theorem 5.2 Under the same assumptions of Proposition 4.1 and N/T? — 0, under Hy,
we have
w % N(0,2r).

Remark 5.1 As pointed out in Section 2, the identification condition IC in this paper has
a sign problem. This problem should be carefully treated in the two statistics (W, and W)
in implementations, otherwise it may lead to an erroneous rejection of the null hypothesis.
To eliminate such a problem, when calculating Wy, we first compute the inter product of
each column of A and the counterpart of A°. If the value is negative, we multiple —1 on
this column of A. As regard to W, both L and MA have the sign problem, but we can use
a similar procedure to deal with it. That is, for each column of ﬁ, we calculate the inner
product of this column and its counterpart of M A. If the inner product is negative, we
multiple —1 on this column of L. After this treatment, the sign problem concomitant with
the identification condition is removed.

6 Partially Constrained Factor Models

In this section, we consider the following partially constrained factor model
2t :MAft+th+€t éq)ht+€t, (61)

where ® = [MA,T], hy = (f/,g;) is an r-dimensional vector, f; is an r;-dimensional vector
and ¢g; an ro-dimensional vector with r; + ro = r. Again we study the ML estimation on
model (6.1).

To analyze the MLE, we make the following assumptions.

Assumption A’. The factors {h;} satisfy the conditions in Assumption A.

Assumption C'. There exists a positive constant C' such that ||¢;|| < C for all 4, where
¢; is the transpose of the ith row of ®. Let H = %@’Z;ﬁ@, we assume H = lim H > 0.

N—oo
Identification condition, IC’. The identification conditions considered here are sim-

ilar to those in the pure constrained factor model. More specifically, we require that
My, = % Zthl hih}, = I, and H is a diagonal matrix with all its diagonal elements distinct
and arranged in a descending order.

Let X, = ®®' 4+ X and 0 = (A, T, 3¢.). The MLE is defined as

0 = argmax L(6),
0co

where

1
LO)=——=In|S.|— ﬁtr[MZZZZ_;].

Here © is the parameter space specified by Assumption D and the identification condition
IC'. In appendix D, we show that the first order condition for A can be written as

NM'SZH M., — )87 M = 0. (6.2)
The first order condition for I' can be written as

A

SN (M. - 32) = 0. (6.3)
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The first order condition for ¥.. can be written as
diag (M., — 3..) = MAGIN M'S MM, — $.) — (M, — S8 MAGIA'M'| =0. (6.4)
Before we present the asymptotic results for the MLE, we first introduce some notations:

Bf = R'® I, + Ki, [(P7'A) @ A] — Ky, (B @ U)D]'D[(HT'E1A) @ B,
BS = Kppy [P @ 1] — Ky, (B @ U)D] 'Do[(H ™ EL) @ Eo,
BY = — Ky, (B} @ U)Dy 'Do[(H 1 E2) @ Ey),

B} = — Ky (B] @ O)D] 'Do[(H ' Fa) ® Eo], B = — Ky, (B ® ¥)D; 'Ds,
1 N
A* Kkm(El ®\IJ Dl 1D3 [Nzﬁ gf)l®¢l Ki4 — ;1) +V€C(T17‘[*E2Eé) ,

where Ey = [Ir,,0r xrs)'s o = [Orgxrys Iry)/s 0 = (M'S M) IM'SIT, W = [A, 4] and H
is defined in Assumption C’. The symbols &; 4, Ky, P, R, D1, Dy and D3 are defined the
same as in Section 4.

Let v; be the transpose of the ith row of I'. The following theorem states the asymptotic
representations for the MLE. The consistency and convergence rates are implied by the
theorem.

Theorem 6.1 Under Assumptions A’, B, C' and D, when N,T — oo, we have, for all i,

1
62— o? =

N

T 1
Z(e?t —07) 4 Op(=).
t=1 g T

In addition, if IC' is imposed, we have, for all i,

¥ — i th61t+0( )
=
and
~, , 1 N T 1 N T 1
AN —N)=Bj— — B —(N'm; ;
vec( ) 1NT;;UIQ(mZ®ft)ezt+ QNTE:;UZQ m; @ gr)eit
L1 1 1 XL
+B3ﬁ;;;f(%®ft)elt+B4NT;;aj? Vi @ gi)eit
N T 1
5NTZX;7 $i @ di)( 03)+TA*
=1t ?
+O0,(—=) + Oy >+0<1>
PNVT PVNT PR32
where BY, ... ,Bf and A* are defined above this theorem.

Given the above theorem, we have the following distribution results for the MLE.
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Corollary 6.1 Under Assumptions A’, B, C' and D, when N,T — oo, we have, for all i,
VT (6% — 02) % N(0, kia — o).
In addition, if IC' is imposed, we have, for all i,
VI3 =) 5 N(0,021,,).

If N/T? — 0 is further imposed, we have
1

VNT [vec(A' - &) - TA*] 4 N(0, ),

where Q* = lim Q% with
N—o0
N =Bi(R®I,)BY +B3(P® I,,)By + B3(Q ® I,)B + B3(Q ® I,) B}

N

* 1 1 *i
+BI(S © [)BY +Bj(S' © L, )BY + B[ > —(6i6) © (#16)) (1.4 — o) BY
i=1 "1

where Q = T"Y_ T /N and S = M'S_'T/N.

The approach to estimate the factors in partially constrained factor models is similar
as before. Given the MLE A, [ and ﬁee, the GLS estimator of h; is

A~ 2 -1

ht = (‘i/ieﬁel(i))il(Dlzee Zt,

where & = (M A, f) Using the similar method in the proof of Theorem 4.5, we have the
following asymptotic representation and limiting distribution results on hy.

Theorem 6.2 Under Assumptions A’, B, C' and D, together with IC', we have, for all t,

A 11 _ 1 1
ht — ht =H lﬁq)/zeelet + Op(\/ﬁ) + Op(f)’

where H = %(I)’Ze_;q). Then as N,T — oo and N/T? — 0, we have
VN (he — he) & N(0,H 1),

where H = lim H is defined in Assumption C'.
N—oo

7 EM algorithm

The ML estimation can be implemented via an Expectation-Maximization (EM) algorithm.
The EM algorithm is an iteration approach. In this section, we present iterating formulas
of the EM algorithm for both the pure constrained factor model case considered in Section
3 and the partially constrained factor model case considered in Section 6.
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7.1 EM algorithm for the pure constrained factor model

In this subsection, we provide the iterating formulas of the EM algorithm for the pure
constrained factor model. Let %) = (A(k)7 ng;)) denote the estimate at the kth iteration.
The EM algorithm updates and calculates 811 = (A(K+1)] Egéﬂ)) by

-1
1 & 1 L
k+1 k)—1 -1 k)—1 i B
9 T
diag(SlHY) = diag{Mzz =5 > B(afi|Z, 0 A M

t=1

1 T

+ MA(]C—H)T Z E(ftft/|Z, Q(k))A(k+1),M’}7
t=1
where £ — MA®A® A 4 5% ang

E(fif}17,60) = AW M (58T (5E) T MA® 4+ 1, — AW A(SE) T A®),

N =
M=

~
Il
i

E(2f{|Z,0W) = M.(5P) " M AR,

N =
M=

I
—

t

The above iteration continues until ||+ — ()| is smaller than a preset tolerance.
For the initial value of the iteration, we use the PC estimates proposed in Tsai and Tsay
(2010) for the constrained factor model. One thing to mention is that once we get the
estimates of the final round of iteration, denoted as (Af,Xf)), normalization is needed
to transfer them to satisfy the identification conditions imposed in our paper, i.e. IC
in Section 3. Such normalization is defined in a similar way as in Bai and Li (2012),
details are following. Let VT be the orthogonal matrix consisting of the eigenvectors of the
matrix %AT/ M'(21,)"'MAT associated to its eigenvalues arranged in a descending order.
Calculate A = ATV and simply let 3., = Xf,. Then 6 = (A, 3,.) satisfies IC.

We can show that the limit of the iterated EM solutions satisfy the first order conditions
in (3.3) and (3.4), and are stationary points of our objective function. The proof would
be similar to Section E in the Supplement of Bai and Li (2012) with slight modification
from unconstrained factor models to constrained factor models, and hence omitted in this

paper.
7.2 EM algorithm for the partially constrained factor model

The iterating formulas of the EM algorithm for the partially constrained factor model
are given in this subsection. Let k) — (A(k),lﬂ(’“)7 ZQE)) denote the estimate at the kth
iteration. The EM algorithm updates and calculates §(F+1) = (A(+1) (k+1) ZQZH)) by
1 & 1 & o
AFD = (MBI T MBS ST B2, 0““))] [T > E(fuf)12,6%)
t=1 t=1
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— (M'sH=1 )~ lM n(k Ti E(g.f|2,0%) ] [Ti (f.f!12, 0%
T -1
pke+1) [TZ (z9)|Z, 0% ] [ ;E 9901 2,0 )]
T —1
[MA Y fZl (f19112.6) ] [ ZlE 091126 >] ,
2 & o T
diag(SH1)) = dlag{ -7 Z: (20112, 0F) NGB+ - ;E(ztggyz, g(k) Pkt 1)

'ﬂ

T T
+ MAKD — § (f:f1Z,6 (k) A(’““)’M’ + F(kJrl)% ZE(gtgHZﬁ(k))F(kH)/
t=1

t=1

T
o sz e,

where £ = MA®AW A 4 TWTEY 4 2 and

E(ff12,0%)) = A0 M (£E) M (5B) T MAB 4 1, — AGM(58) A,

N =
M=

-
Il
i

E(figi12,0%)) = A® 2 (20 7L, (50) 70— AKY g/ (n ) ~1p®)

I
A

N[ -
M=

E(g:g| 2,00 = TR (N =1 pp (W) =ip®) 4 p, — pRr (k) =1tk

“
Il
—

N =
M=

E(zf{|Z,0W) = M(2P) "' MA®),

Nl -
M=

-
Il
i

E(24)|Z,6%)) = M_.(s%))~10®),

N[ =
M=

I
I

Similar to the procedure in Section 7.1, we use the PC estimates as the starting value,
and iterate the above formulas until |[§*t1) — #)|| is smaller than a preset tolerance,
and denote the estimates from the final round of iteration as 6° = (A®,I'°,X¢,). Finally
we need transfer 6° to satisfy the IC” by the following normalization. Let V° be the
orthogonal matrix consisting of the eigenvectors of the matrix 3 ®%(32,) 1®° associated
to its eigenvalues arranged in a descending order, where ®° = (M A®,I'°). Compute ®°V?°,
and denote it as > = (<I>1 ,(I>2 ) with <I>1A being the left N x 7 subblock and <I>2A being
the right N x 75 subblock. Then calculate A = (M'M)~'M'®% | and simply let I' = 5
and 3, = X%, Then 6 = (A, I, ,,) satisfies IC”.

Again, we can show that the limit of the iterated EM solutions satisfy the first order
conditions in (6.2), (6.3) and (6.4). The proof is similar to the pure constrained factor
model case and therefore skipped here.
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8 Simulation results

In this section, we run simulations to investigate the finite sample performance of the MLE,

the empirical size and power of the W test.

8.1 Finite sample performance of the MLE

We first conduct simulations to investigate the finite sample properties of the MLE and
compare it with the PC estimates proposed by Tsai and Tsay (2010).

In the literature on high dimensional factor models, researchers usually use a generalized
R? or a trace ratio to measure the goodness-of-fit, e.g., Stock and Watson (2002), Doz,
Giannone and Reichlin (2012) and Bai and Li (2012). These measures are invariant to the
rotational indeterminacy and therefore effective to perform the measure task. However,
in constrained factor models, such measures are not suitable since the estimates have
faster convergence rates, which often leads to a high value of the generalized R? or the
trace ratio. For this reason, we instead consider an alternative measure by rotating the
underlying values to satisfy the identification condition and investigating the precision of
A — A for rotated values. We calculate the mean absolute deviation (MAD) and the root
mean square error (RMSE) based on the rotated underlying values. We also calculate the
root asymptotic variance (RAvar) to check the convergence rate of A presented in Theorem
4.1. The calculation formulas based on S simulations are as follows

1. MAD = L35, (,% po1 Sior Ay - Afm-!)

2 RMSE = [4 55, (& S SRy - A32).
3. RAvar = vV NT x RMSE.

Data are generated according to z; = M A f; + e;, where all elements of M are drawn
independently from UJ0, 1] and all elements of A and F' independently from N (0,1). The
idiosyncratic errors e;; are generated according to e;; = 0;¢;; with 0'i2 being the ith diago-
nal element of (M AA’M’) multiplying 1f—ibi, where b; = 0.2 4+ 0.6U; and U; ~ U[0, 1]. The
component €;; is generated from the three distributions: the normal distribution, student’s
distribution with 5 degrees of freedom and chi-squared distribution with 2 degrees of free-
dom. For the latter two distributions, we normalize the random variable with mean zero
and variance one. For the values of k and r, we consider two cases: (k,r) = (3,1) and
(k,r) = (8,3).

Throughout the whole section, we assume that the number of common factors is known.
There are a number of methods at hand to determine the number of factors, for example, the
information criterion method by Bai and Ng (2002), the largest eigenvalue-ratios method
by Ahn and Horenstein (2013) and the eigenvalue empirical distribution method by Onatski
(2010). If the number of factors is unknown, one can choose any method above to estimate
it. Tables 1 and 2 present the performance of the MLE and the PC estimate for normal
errors under the sample sizes of N = 30, 50, 100, 150 and T" = 30, 50, 100. The results under
student errors and chi-square errors are almost the same as those for normal errors and are
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given in Table E1-E4 in Appendix E for space sake. All these results are obtained based
on 1000 repetitions.

From Tables 1 and 2, we can see that both MAD and RMSE of the MLE are much
smaller than those of PC estimates for all (N,7T’) combinations, implying that the MLE
performs better than the PC estimate. Regarding the RAvar (the root asymptotic vari-
ance), we see that the MLE has constant RAvar when the time dimension 7" or the cross
section dimension N increases, implying that the convergence rate of the MLE is v/NT.
This simulation result is consistent with our theoretical results in Section 4. In addition, it
suggests that the PC estimate also has v/ NT convergence rate. Finally, we note that the
MLE’s RAvar is smaller than PC’s RAvar, indicating that the MLE is more efficient than
the PC estimate.

Table 1: k=3, r =1, and ¢; ~ N(0,1).

Aszxa MLE PC
N | T | MAD [ RMSE [ RAvar [ MAD | RMSE | RAvar

30 | 30| 0.0440 | 0.0716 | 2.1467 | 0.0943 | 0.1386 | 4.1580
50 | 30 | 0.0349 | 0.0540 | 2.0908 | 0.0654 | 0.0934 | 3.6155
100 | 30 | 0.0262 | 0.0417 | 2.2833 | 0.0474 | 0.0677 | 3.7090
150 | 30 | 0.0216 | 0.0340 | 2.2792 | 0.0410 | 0.0582 | 3.9035
30 | 50| 0.0333 | 0.0533 | 2.0629 | 0.0787 | 0.1145 | 4.4330
o0 | 50 | 0.0237 | 0.0368 | 1.8408 | 0.0546 | 0.0800 | 4.0018
100 | 50 | 0.0190 | 0.0306 | 2.1663 | 0.0375 | 0.0541 | 3.8273
150 | 50 | 0.0159 | 0.0255 | 2.2092 | 0.0293 | 0.0417 | 3.6084
30 | 100 | 0.0232 | 0.0374 | 2.0492 | 0.0674 | 0.0964 | 5.2793
50 | 100 | 0.0172 | 0.0263 | 1.8626 | 0.0443 | 0.0611 | 4.3191
100 | 100 | 0.0105 | 0.0168 | 1.6771 | 0.0253 | 0.0358 | 3.5843
150 | 100 | 0.0102 | 0.0165 | 2.0226 | 0.0200 | 0.0288 | 3.5242

Table 2: k=8, r =3, and ¢; ~ N(0,1).

Asxs MLE PC
N| T| MAD | RMSE | RAvar | MAD | RMSE | RAvar

30 | 30| 0.3498 | 0.5006 | 15.0188 | 0.5655 | 0.8071 | 24.2137
50 | 30 | 0.2307 | 0.3310 | 12.8213 | 0.3744 | 0.5363 | 20.7700
100 | 30 | 0.1537 | 0.2307 | 12.6352 | 0.2224 | 0.3131 | 17.1484
150 | 30 | 0.1245 | 0.1881 | 12.6169 | 0.1735 | 0.2452 | 16.4517
30 | 50 | 0.2637 | 0.3744 | 14.4999 | 0.5130 | 0.7521 | 29.1290
50 | 50 | 0.1794 | 0.2689 | 13.4453 | 0.3184 | 0.4679 | 23.3929
100 | 50 | 0.1082 | 0.1578 | 11.1594 | 0.1763 | 0.2545 | 17.9928
150 | 50 | 0.0860 | 0.1291 | 11.1797 | 0.1382 | 0.2091 | 18.1078
30 | 100 | 0.1846 | 0.2698 | 14.7778 | 0.4570 | 0.6882 | 37.6916
50 | 100 | 0.1213 | 0.1937 | 13.6960 | 0.2622 | 0.4064 | 28.7400
100 | 100 | 0.0774 | 0.1258 | 12.5832 | 0.1440 | 0.2157 | 21.5706
150 | 100 | 0.0620 | 0.1021 | 12.5041 | 0.1033 | 0.1633 | 19.9975
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8.2 Empirical size of the W test

In this subsection, we use simulations to study the empirical size of the W statistic. The
data generating process is the same as in previous subsection, but with more combinations
of (N,T). We investigate the performance of W under three nominal levels 1%, 5% and
10%. The empirical sizes of W for the case (k,r) = (3,1) are given in Table 3, which is
obtained from 1000 repetitions.

From the results in Table 3, we emphasize the following findings. First, the perfor-
mance of the W test is considerably good overall. Except for the sample size when T is
small, almost all the empirical sizes of the W statistic fall in the interval [5%, 10%)] under
the 5% nominal level. Second, the distribution type of errors has no significant impact on
the performance of W. The W statistic performs very closely under three different error
distributions. This is consistent with the theoretical result in Section 5. Third, the perfor-
mance of W is closely linked with time period number 7', loosely with the number of units
N. For example, when T" = 30, the W statistic suffers a mildly severe size distortion. But
when T grows to 50, the size distortion considerably decreases. As regard N, we see that

the W statistic performs well even when N = 30. The reason we conjecture is that when
2

T is small, the variance o; would be estimated poorly, which leads to a bad performance
of W. In addition, we also consider the case (k,r) = (8,3). Overall, the performance of
the W statistic deteriorates to some extent in this case but is still satisfactory. The results
are available upon request.

Tsai and Tsay (2010) propose the traditional likelihood ratio (LR) statistic to perform
the model specification testing. In factor model literature, the LR test is usually considered
under the fixed-N, large-T" setup, see Lawley and Maxwell (1971). As mentioned in the
introduction part, when IV and 7" are both large the traditional LR test may not be suitable.
For example, the adjusted likelihood ratio test, which is often used with consideration of
finite sample performance, may be negative for too large N. According to the simulation
results in Table 7 in Tsai and Tsay (2010), the LR test suffers size distortion issue even when
N is not large. As a primary competitor to our W statistic, we compare the performance
of the W statistic and the LR one under the current data generating setup. We find that
the performance of the W statistic dominates that of the LR one. Details are given in

Appendix F in the supplementary material of this paper.

Table 3: The empirical size of the test statistic W for the case (k,r) = (3,1)
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Empirical size of W
G~ N0, 1) i e
N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
30 30 |3.6% 74% 135% |38% 85% 12.9% | 2.7% 8.0% 13.3%
50 30 | 4.4% 11.5% 16.6% | 3.9% 9.5% 16.3% | 5.4% 10.5% 16.1%
100 30| 6.7% 14.2% 20.5% | 6.5% 13.9% 20.1% | 5.5% 12.9% 21.1%
150 30| 92% 18.4% 24.8% | 8.1% 18.6% 27.1% | 8.2% 20.3% 29.0%
30 50| 1.7% 59% 11.3% | 1.3% 5.8% 12.7% | 1.7% 6.6% 11.6%
50 50 |31% 6.8% 13.0% | 2.6% 6.1% 11.0% | 2.0% 7.0% 12.1%
100 50| 3.3% 8.0% 152% |2.3% 83% 14.2% | 3.5% 9.7% 15.7%
150 50 | 4.6% 11.4% 18.1% | 3.4% 111% 17.3% | 2.8%  9.3% 15.8%
30 100 | 0.6% 4.5% 104% | 1.4% 4.0% 10.6% | 1.0% 4.8% 10.9%
50 100 | 1.5% 4.2% 10.9% | 1.5% 6.1% 9.9% | 1.2% 58% 11.7%
100 100 | 1.4% 6.5% 11.6% | 0.9% 58% 12.6% | 1.5%  6.5% 12.4%
150 100 | 1.6% 5.6% 10.9% | 2.0% 7.5% 12.7% | 1.9% 5.8% 11.3%
30 150 | 0.6% 5.0% 10.5% | 1.0% 5.0% 9.9% | 1.2% 5.8% 10.2%
50 150 | 1.5%  5.9% 104% | 1.5% 4.8% 10.2% | 1.5% 5.1% 9.6%
100 150 | 0.7% 6.2% 10.7% | 1.2%  54% 10.2% | 1.5% 5.8% 11.6%
150 150 | 1.9% 5.9% 9.6% | 1.6% 5.0% 11.5% | 1.7% 5.2% 10.8%

100 100 | 1.4%  6.5% 11.6% | 0.9% 58% 12.6% | 1.5% 6.5% 12.4%
200 100 | 1.3% 6.1% 11.2% | 1.4% 6.7% 13.5% | 22% 7.2% 12.6%
300 100 | 2.3% 6.5% 12.8% | 21% 6.8% 12.7% | 1.8% 7.9% 12.9%
100 200 | 1.3% 4.0% 9.4% | 1.3% 53% 10.8% | 1.1% 5.1% 11.3%
200 200 | 1.4% 5.6% 105% | 0.9% 4.9% 9.6% | 1.4% 6.1% 11.6%
300 200 |13% 61% 8.6% | 1.5% 54% 11.6% | 1.5% 59% 11.7%
100 300 | 0.4% 4.5% 9.5% | 1.2% 51% 11.8% | 1.2% 51% 9.2%
200 300 |0.9% 6.1% 105% | 1.3% 49% 9.1% | 0.8% 6.2% 11.6%
300 300 | 1.3% 52% 10.9% | 0.7%  3.9% 85% | 1.2% 4.4% 9.0%
100 500 | 0.8% 53% 9.8% | 0.8% 4.6% 10.9% | 1.1% 52% 9.7%
200 500 | 0.9% 54% 98% | 05% 51% 9.8% | 1.0% 5.2% 10.3%
300 500 | 0.6% 5.3% 10.5% | 1.5% 5.9% 9.2% | 0.9% 5.0% 9.4%

8.3 Empirical power of the W test

We next study the empirical power of the W test. Data are generated by z; = Lf; + e;
with

L=MA+d- v,
where M, A, f; and e; are generated in the same way as in Section 8.1. The symbol v is an
N X r noise matrix with its elements drawn from N(0,1) and d is a prespecified constant,

which is related with NV and 7" and is used to control the magnitude of deviation from the
null hypothesis. In this section, we set it as

VYNVT

with & = 0.2,0.5,2 and 5. In classical models, if the estimator is v/T-consistent, the local
power is studied under 8 = g* + %a, where * denotes the true value. However, this

d:

general result cannot be applied to the present context since we renormalize the distance
between estimators from the constrained and unconstrained models to accommodate the
large number of restrictions in the hypothesis. Directly deriving the local power region for
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W is challenging. We conjecture that this local power region is of O(N —1/ap-1/ 2). The
simulation results below seem to support our conjecture since the local power converges to
some value as N and T grow larger in all choices of a.

Table 4: The empirical power of the W test for the case (k,r) = (3,1)

Empirical power of W

@ 0.2 0.5 2 5

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

30 30| 229% 31.4% 37.4% |52.0% 57.5% 61.7% | 91.2% 93.1% 93.7% | 99.7% 100.0% 100.0%
50 30 | 31.8% 39.4% 44.9% | 58.2% 64.1% 67.5% | 94.1% 95.7% 96.4% | 100.0% 100.0% 100.0%
100 30 | 51.4% 59.4% 63.7% | 71.4% 77.3% 81.1% | 96.2% 98.0% 98.7% | 100.0% 100.0% 100.0%
150 30 | 55.5% 63.9% 68.0% | 74.4% 78.9% 81.6% | 97.9% 98.9% 99.2% | 100.0% 100.0% 100.0%

30 50 | 22.9% 30.3% 35.2% | 51.1% 57.4% 60.7% | 89.3% 91.9% 93.6% | 99.6%  99.8%  99.8%
50 50| 29.2% 36.3% 42.2% | 58.2% 63.8% 67.4% | 93.7% 95.8% 96.7% | 99.8%  99.9% = 99.9%
100 50 | 45.5% 51.7% 56.3% | 69.2% 72.7% 76.1% | 96.5% 97.7% 98.1% | 100.0% 100.0% 100.0%
150 50 | 51.3% 58.3% 63.4% | 70.9% 76.0% 79.2% | 97.3% 98.2% 98.5% | 100.0% 100.0% 100.0%

30 100 | 20.5% 25.7% 31.5% | 53.6% 60.7% 62.9% | 90.0% 92.2% 93.8% | 99.5%  99.6%  99.6%
50 100 | 29.8% 35.6% 41.1% | 59.3% 64.2% 67.2% | 93.1% 94.7% 95.7% | 100.0% 100.0% 100.0%
100 100 | 37.7% 43.3% 47.5% | 65.6% 70.1% 72.3% | 94.1% 96.2% 97.3% | 99.9% 100.0% 100.0%
150 100 | 49.8% 55.4% 59.0% | 70.1% 74.2% 77.6% | 95.5% 96.6% 97.2% | 100.0% 100.0% 100.0%

30 150 | 19.9% 25.4% 29.8% | 55.8% 62.1% 64.5% | 88.2% 91.2% 92.0% | 99.6%  99.8%  99.9%
50 150 | 28.4% 34.9% 40.8% | 58.1% 62.2% 65.3% | 90.8% 93.4% 93.8% | 99.8%  99.9% = 99.9%
100 150 | 37.7% 44.8% 49.8% | 66.5% 69.9% 72.8% | 93.1% 95.1% 96.4% | 100.0% 100.0% 100.0%
150 150 | 46.2% 51.1% 55.3% | 67.1% 71.0% 74.3% | 95.9% 97.0% 97.5% | 100.0% 100.0% 100.0%

100 100 | 40.0% 46.1% 51.5% | 65.4% 70.2% 73.3% | 93.8% 96.3% 96.9% | 100.0% 100.0% 100.0%
200 100 | 52.5% 57.3% 61.4% | 71.6% 74.8% 77.0% | 96.6% 97.3% 97.7% | 100.0% 100.0% 100.0%
300 100 | 59.5% 63.7% 68.2% | 75.0% 77.7% 80.0% | 95.9% 97.1% 97.4% | 100.0% 100.0% 100.0%

100 200 | 39.9% 46.9% 51.9% | 66.2% 70.9% 73.2% | 93.4% 94.8% 95.6% | 99.8%  99.9% = 99.9%
200 200 | 48.5% 54.8% 58.2% | 68.4% 72.9% 76.2% | 95.9% 97.0% 97.3% | 100.0% 100.0% 100.0%
300 200 | 56.0% 59.9% 63.0% | 69.3% 72.8% 75.9% | 96.4% 97.4% 98.3% | 100.0% 100.0% 100.0%

100 300 | 41.0% 47.4% 50.2% | 67.4% 71.9% 73.4% | 93.3% 94.9% 95.4% | 100.0% 100.0% 100.0%
200 300 | 50.6% 55.6% 58.9% | 68.7% 72.3% 74.4% | 94.7% 95.8% 96.4% | 100.0% 100.0% 100.0%
300 300 | 54.9% 59.0% 63.1% | 72.3% 74.9% 77.3% | 94.8% 96.8% 97.6% | 100.0% 100.0% 100.0%

100 500 | 39.5% 45.0% 49.0% | 65.1% 68.9% 71.2% | 94.0% 95.6% 96.6% | 99.9%  99.9%  99.9%
200 500 | 50.4% 54.4% 58.4% | 69.4% 72.6% 75.6% | 95.4% 97.2% 97.6% | 100.0% 100.0% 100.0%
300 500 | 53.4% 583% 61.8% | 71.2% 73.2% 75.2% | 96.1% 97.4% 97.9% | 100.0% 100.0% 100.0%

Table 4 presents the empirical power of the W test for the case (k,r) = (3,1) under
normal errors. It is seen that the W statistic has higher power when « is larger and
lower power when « is smaller. This is not surprising. As a becomes larger, the distance
between the null hypothesis and the alternative hypothesis is larger and then we have more
chances to differentiate the two hypotheses. Given that the W statistic has considerable
power even in a diminishing region of order N~/4T~1/2 we conclude that the W has good
performance in terms of empirical power. We also make a comparison of the W statistic
and the LR one on the empirical power and find that the overall performance of the W test
is also better than that of the LR one. Details are given in Appendix F in the supplement.

9 Extension

In this section, we consider the same constrained factor model (3.1) but extending Assump-
tion B to a more general weak dependence structure of the idiosyncratic errors following
Bai and Ng (2002), Bai (2003) and Bai and Li (2016), which leads to the approximate

21



factor structure of Chamberlain and Rothschild (1983). We introduce the following new
assumptions. There exists a large enough constant C' such that
Assumption B”: (weak dependence on errors)

B”.1 E(e;x) =0, and E(e}) < C.

B”.2 Let Oy = E(ese)), O = £ 3L, Oy, and W = diag(0) being the diagonal matrix that
sets the off-diagonal elements of Q to zero. Let w? be the ith diagonal element of W,
then W = diag(w?, w3, ..., w%).

B”.3 For all i, C~2 < w? < C%

B”.4 Let 7,5, = E(eyeji), assume there exists some positive 7;; such that |7, < 735 for
all t and YN, 7;; < C for all j.

B”.5 Let p;+s = Eleire;s), assume there exists some positive pys such that |p; 45| < prs for
all i and 7 3721 Yhy prs < C.

4
B”.6 Assume E “\% ST [eaeje — E(eitejt)]‘ < C for all i and all j.

Assumption B” allows for heteroskedasticity and weak correlations in both cross section and
time dimensions, which is more general than the strict factor structure under Assumption

B considered in Section 3. Assumption B”.3 imposes the boundness of the time average
2

variance w;. Assumption B”.4 is used to control the magnitude of the cross-sectional
correlation of e;;, while Assumption B”.5 and B”.6 are for the serial correlation.

As pointed out in Bai and Li (2016), under the approximate factor structure, there
are a lot of free parameters included in Oy, which are as many as the elements contained
in the sample variance of the observations. So directly estimating O (together with the
loadings and factors) is difficult, due to the incidental problem. Therefore, using the similar
approach as in Bai and Li (2016), we estimate W which is the time average of O, instead
of Oy itself, to avoid the incidental problem.

To facilitate the theoretical analysis, we make more assumptions as following.

Assumption C”:

C".1 ||A]] < C and [jm;|| < C for all j, where m; is the transpose of the jth row of M.
C"2 Let P = ANM'W-IMA/N, R = M'W-M/N. We assume that Py, = Jim P and

Ry = A}im R exist. Here Py, and R, are some positive definite matrices.
—00

Assumption D”: The estimator of w]2- for j = 1,..., N takes value in a compact set:
[C=2,C?). Furthermore, My is restricted to be in a set consisting of all semi-positive
definite matrices with all elements bounded in the interval [-C, C].

Assumption E”:
E"”.1 Let 0;jes = E(eirejs), and we assume ﬁ Zf\;l Z;-V:l Zthl Zstl |0ijes| < C.
51" s
E”.2 Let m = ﬁ PO Z§V=1 YIRS D ﬁfy(mz ® ft)(m;' ® f,), and assume

J
Nlji’m M1 = Mieo > 0; in other words, the limit of 7 exits and is positive definite.
T —00

E”.3 Let o = 55 Yoivy Sy St Soaet 225 (my @ myg)(m) ® my) with

s=1 iy
k2

_ 2 2\( .2 2 . _
Oijts = E{(eit — w; )(ejS — wj)}. We assume N71T111>100 Ty = Moo > 0.

22



E”.4 Let w3 = NTZ 12 IZt 125 1 wéﬂi(mz@’ft)(m;@m;) with

Vijs = E[eit(€2 - w])} We assume lim 73 = w350 > 0.
N,T—00

E//.5 FOI- each Z‘, as T — OO7 % Zle(egt - wz) _> N(O, wioo); Wlth w1/200 = hm wz and
1 ’ ) : T ) ) , T— 00
@F = 7 i1 Yemr B[(€f — wi)(ef, — wi)].

Assumption C” and D” are similar to Assumption C and D respectively in Section 3, with
slight modification. Assumption E” will be useful in deriving the limiting distribution of
the MLE.

To remove the rotational indeterminacy in estimation, we impose the following identi-
fication conditions, similar to the IC in Section 3.

Identification condition, IC":
IC1" N (+M'WIM)A = P, where P is a diagonal matrix whose diagonal elements are

distinct and arranged in descending order.
1C2" My =230 fufi =1,
In this extension, we are interested in estimating A and W. Let § = (A, W) and
Y., = MAN M + W, we consider the similar objective function as (3.2),

— —tr[M,2Z! 1
zN”[ = (9.1)

where M, = T~ 3. | 22, Notice that now under the general weak dependence structure
in Assumption B”, the above discrepancy function is no longer the likelihood function
even when f; are independently and normally distributed with mean zero and variance I,.,
due to the cross-sectional and serial correlations involved in the errors e;;. We define the
quasi-MLE (or just call it MLE for simplicity) as
0 = (A, W) = argmax £ (6),
0eO©

where O is the parameter space specified by Assumption D” and IC".

Taking derivatives of (9.1) with respect to A and W, we get the following first order
conditions, which are similar to (3.3) and (3.4),

NM'SZH M., —$.)S2 M = 0; (9.2)

diag(22!) = diag(S2M M52, (9.3)
where 3., = MAA’M’ +W. Similar to the constrained factor model under Assumption B,
the above two first order conditions are useful in deriving the asymptotic properties of the
MLE, but will not be used in the computation of the MLE. Instead, we can use the EM
algorithm to compute the MLE.

The following theorem presents the convergence rates of the MLE. The consistency is
implied by the theorem.

Theorem 9.1 (Convergence rates) Under Assumptions A,B", C" and D", together with
IC", when N, T — oo, we have

1
VNT

1 1

N
A=A=0,(——)+ O0y(= )+O(N), Zw—w O(T)+O(N2)
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The above theorem implies the consistency of the MLE still holds under the weak cross-
sectional and serial correlations imposed in Assumption B”. However, the limiting distri-
butions of the MLE change, as shown in following theorems.

Compared to the results in Theorem 4.1 in Section 4, now under the weak dependence
structure, there exits an extra term O,(+) in (A — A) and another extra term Op(w=)
in % zﬁil(wf —w?)2. This finding implies that the MLE of loadings in the approximate
constrained factor models will not be consistent under fixed IV, but will become consistent
under large N. This result is consistent with that in an approximate unconstrained factor
model in Bai and Li (2016).

Before we state the asymptotic result of f\, we first introduce some symbols as below.

D — 2D,

P DIPR L) + (I ® P)K, ]|
Bl = K [PT'A) @ Al + R @ I, — Kip (I @ A)(D)) " 'Dy[(P'AY) @ I,
B = Kp (I, @ A)(DD ™ 'Ds(A @A), Bi = Kpr (I, @ A)(D}) ™' Dy,

1 _ _ _
By = (R @ (P7'A) = 5 Kin(L; @ A)(D]) D ((P'A) @ (B7'A)),
B R
AT =B,— — 7 i
1Y X oy N LAy
HT:BZNZ Z 2]2(m]®mz)— szmﬂ@m@)
i=1 j=1,j#i wyw;y i—1 Wi

where DY, D, K., Ki,, Do and D3 are defined the same as in Theorem 4.2; P and R are de-
fined in Assumption C”; Qj; is the (4, j)th entry of matrix O; ¢; = %méAPflA’M’Wfl((O)—
W)W LMAPIA'm; — 2mAGNAN M'W—1(O — W); where Gy = NG with G = (I, +
NM'W=MA)™ and (O — W), is the ith column of (O —W); w? = £ S, ST B[(e2 -
w?)(e2, —w?)] is defined in Assumption E”.5; both ¢; and w? are scalars. Then we provide
the asymptotic representation of A in the following theorem.

Theorem 9.2 (Asymptotic representation for A) Under assumptions of Theorem 9.1,

vec(A' = A') = BIL g: ET: iz(mz ® fr)eit — IB%EL g: ET: %(mz @ m;) (el — w?)
NT = = w; NT = = w;
1 1 1 1
+ TAT + NHT + Op(iN\/T) + Op(ﬁ) + Op(ﬁ) + Op(ﬁ), (9-4)

where the symbols IB%J{,IB%;, AV and II' are defined in the preceding paragraph.

Compared to the result in Theorem 4.2, there exists an extra bias term — HT in the
asymptotic representation of A under Assumption B”, which is of order O ( ) and comes
from the weak dependence structure imposed on the errors. The two leading terms (i.e.
the first two terms) on the right hand side of (9.4) are similar as these in (4.1) in the strict
factor structure case. As we can see from Theorem 4.3 and 4.4, under Assumption B, these
two leading terms are asymptotically independent with each other, and hence converge
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to a normal distribution with a simple expression of its limiting variance. However, it
becomes more complicated in the general weak dependence structure case, since these two
leading terms are no longer asymptotically independent, and therefore converge to a normal
distribution with a more complex limiting variance, as shown in the following theorem.

Theorem 9.3 (Limiting distribution for f\) Under assumptions of Theorem 9.1 and
Assumption E", as N,T — oo, N/T? — 0 and T/N® — 0, we have

A 1 1
VNT[vec(A' = &) = ZAT - ZT1T| 5 N(0,5),
T N
where Z2 = lim Zn7, and
N—o0

Enr = BimB! + BimBY — BimsBY — Bir,BY

where ]B%I and IEB; are defined the same as in Theorem 9.2; the symbols w1, mo and w3 are
defined in Assumption E'. Furthermore, by Assumption E'.2, E'.3 and E".}, we have

2 = Bl miooBl + BlimoscBY — BlmsooBY — Bims Bl

300

where the symbols 10, Tone and T3o, are defined in Assumption E'.

Notice that the limiting variance Zy7 now is much more complicated than Qpy as
defined in Theorem 4.2, due to the weak dependence structure on the errors.

Theorem 9.4 (Asymptotic properties for ﬁ)lz) Under assumptions of Theorem 9.1,

1 & 1 1 1
52 = E 2 a2 I - —
wi wl Tt:1(67,t wl)+0p( /NT) OP(T)+OP(N)

As N, T — oo and T/N? — 0, we have

T
VI(@? — w?) = }z@a — w?) + op(1).
t=1

Furthermore, by Assumption E".5, we have

N

VT (02 — w?) % N0, w2,),

i 100
where w2, is defined in Assumption E.5.

There are two things worth to address from the above theorem, comparing to the results
in the strict factor structure case in Section 4. First, similar to Theorem 4.4, the limiting
result for ? in the above theorem is still independent with the identification condition
IC”. Second, different from Theorem 4.4, now there exists an extra term Op(%) in the
asymptotic representation of 12)1-2, due to the weak dependence structure of the error, result-
ing in an extra rate condition 7/N? — 0 in order to derive the limiting distribution of it.
In addition, the above limiting result is the same as that in an approximate unconstrained
factor model in Bai and Li (2016).
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10 Conclusion

This paper considers the ML estimation of large dimensional constrained factor models in
which both cross sectional units (V) and time periods (T) are large but the number of load-
ings is fixed. We investigate the asymptotic properties of the MLE including consistency,
convergence rates, asymptotic representations and limiting distributions. We show that the
MLE for the loadings in a constrained factor model converge much faster than the that in
a standard factor model. In addition, we also find that the MLE has a non-negligible bias
asymptotically and some bias corrections are needed when conducting inference. A new
statistic is proposed to conduct model specification check in a constrained factor model
versus a standard factor model. The test is valid for a large N and a large T setup. We
also analyze partially constrained factor models where only partial factor loadings are con-
strained. The asymptotic theories of the corresponding MLE are provided. Monte carlo
simulations show that our proposed MLE has better finite sample performances than that
of PC estimates. We also run simulations to study the size and power of our proposed
statistic, which imply our statistic works well in different cases and a variety of sample
sizes.  Simulation results are consistent with our theoretical analysis. In addition, we
extend Assumption B to a more general weak dependence structure in Section 9 and study
the MLE in this extension.

Appendix: Proofs of the theoretical results in Section 4
The following notations will be used in the following appendices.

. 1 - A ~ N 1 A N ~ ~
P= NA'M’E;}MA; R= NM'E;M; G=+NM%

Il
2
o

Py=N-P=NM3S'MA; Ry=N-R=M3'M, Gy

From (A+ B)™! = A7! — A7'B(A + B)~!, we have ]3&1 =G -G)"l. From ¥, =
MANM' + X, we have

S =2 - S MA(L + ANMS ) MA) TN MY (S.1)
It follows that
NM'SH = NM'S —NM'S MAL+ANMS ) MA) A M'S = GNM'S). (S.2)
Appendix A: Proof for Proposition 4.1 (consistency)

In this section, we use symbols with superscript “*” to denote the true parameters. Vari-
ables without superscript “*” denote the arguments of the likelihood function.

Let 0 = (A,0f,---,0%) and let © be a parameter set such that A take values in a
compact set and C~2 < 02 < C? for all i = 1,..., N. We assume 0* = (A*, 072, ,0%2) is

an interior point of ©. For simplicity, we write 6 = (A, X..) and 0* = (A*, X%,).
The following lemmas are useful for our analysis
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Lemma A.1 Under assumptions of A-D, we have

1 T
(a) zlel(g NT tr [A*’M’Z;j Zetft*’} 2,
T
() sup oo NT [tz ee — Ti)BZ | B 0;

1
where 6% = (A*,X%,) denotes the true parameters and ¥, = MAN M’ + ..

PrOOF OF LEMMA A.1. First, we consider (a). Let m;, be the (i, p)th element of M for
i=1,...,N,p=1,....,kand A = [A\1, \a,..., \x]. By equation (S.1), we have

WA' M ijf' - ﬁ;; (pZ_l* mw) peitli’ (A1)
. . N T
*/ /!
—AYM'S P MAL + NM'S ) MA)™ NT 2 tﬂ(;_:xpmw) e Sy

By the Cauchy-Schwartz inequality, the first term on the right side of (A.1) is bounded in

norm by
11, &,
(52 I Xmal?) [ Zn theun]
i=1 "% p=1

The first factor (% Efil % I Z’;Zl /\;mpiH )1/2 is bounded by the boundedness of 0~2 and
%Zf\il I 215:1 )\;;mpiHQ bly Assumptions C and D. The second factor does not depend
on any unknown parameters, and it is O,(7~'/2) because E(%+ SN % L freal?) =
O(T~'). Therefore, the first part on the right hand side of (A.1) is 0,(1) uniformly on 6.
For the second part, we rewrite it in terms of Py as

_ 1 XL
A MISZIMAPY (PRt + 1) N—;ZP 1/2(2Apmlp) eltf. (A.2)

The term AYM'SIMAPYY? = $N (%

norm by

_q )\;mip)(zlgzl )\;Qmip)P]Ql/Q is bounded in

N  k
(| X Xms
i=1 p=1
Notice that

N 1 12 k
=1 "1 p=1

2)1/2(21\6 %H zk:l)\;,mipPNl/QHZ)l/z =ap, say.
i=1 % p=

2 N 1 k k
=Y (D MmipPrt > Agmig)
i=1"1 p=1 q=1

= tr[ Py A MISMA] = a[PytPy] = 7.

(A.3)

We have a1 = O,(N'/2). Asregard to the term w7 S0 31, P 1/2(Zk_1 ApMip) = 2eﬂtflt ,
it is bounded in norm by

1 X1
(5 I
1 p:

2. 1/2
-0 (N—I/QT—1/2)
\/N =1 o ) b

N T
2)1/2(]1[; H;;ft*eit
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by (A.3). In addition, term (Py' + I,)~ = O,(1) uniformly on ©. So the expression in
(A.2) is O,(T~"/2) uniformly on . Then result (a) follows.
Next, we consider (b). By equation (S.1), we have

.
tr[ﬁ > (ere; — 226)2,;1}

t=1
B 1 & / " _ -1 / 1 1A/ Ar—1
=t [W ;(Gtet - Eee)(zee - MA( +A M E MA) AM Zee )}
1 T
/ * —1
= tr[ﬁ Z(etet - Eee>zee ]

1 a / / * -1 ! / -1 -1
_tr[NT; (N M erey = B2) S MA) (L + A MS I MA) T

The first term tr[+ ST (e, — 2

ee

)Eo] = TZN1Z,5 1%2( — 07?) is bounded by

2

which is O,(T~'/2) uniformly on . The second term can be written as

T
[N—PJQWA M'SZ Y (et — S SE MAPS A (PRt + 1) 7.
t=1

The above term is equal to

k k T
[( Z Z P2 ST Ay S0 Nymgi P e — E(ez’tejt)D (Py' + Ir)il} :

=1y *1 p=1 q=1 t=1

Since the expression

1 NNy 71/2 k k / 1 T
NT D T o707 > Amip D Ngmgi Py 7Y eiveje — Eleire;i)]
i=1j=1 p=1 q=1 t=1
is bounded in norm by
2 al —1/2 1 & 211/2
C [Z 2 HP Z )‘pmsz } [NQ Z Z (f Z €itjt — eztejt)]) }
i=1 p=1 i=1j=1 t=1

which is O,(T~"/2) uniformly on 6 by (A.3). Given (Py' + I,)~! = O(1) uniformly on 6,
the second term is op,(1) uniformly on . This proves (b). O

Lemma A.2 Under Assumptions A-D, we show

A M (S — S MAF

9 |y

28



. 1 X 1
O | -] = o[ X6 - ).
Given the above results, if N~ SN (62 — 072)% = 0,(1), we have

(c) Ry = Op(IN), R=—Ry= Op(1);
(d) [R7V2] = 0,(1).
where R and Ry are defined above appendiz A.

PROOF OF LEMMA A.2. We first consider (a). The left hand side of (a) can be written as

* * 6- _0-*2
—E E)\m,p quz)\ 57,7
7 'L

zlp—

which is bounded in norm by

N
Ay S m]) (5 0 - )"

i=1 p=1 =

Then result (a) follows because || 215:1 A;‘,mip||4 is bounded by Assumption C.

Next, we consider (b). The left hand side of (b) can be written as LS mam, 1227;;2 ,

where m; is the transpose of the ith row of M. This term is bounded in norm by

N

( ZH ZH) ( Z(A?—U?)Q)l/z'

=1

Then result (b) follows because & 21 [[m;||* is bounded by Assumptlon C.

We now consider (c). From result (b) and result N~ SN (62 —07?)? = 0,(1), we have
R— +M'S; M = o0,(1) which implies R R >0, where R is defined in Assumption C.
So R = 0,(1) and Ry = NR = O,(N). Result (c) follows.

Result (d) is a direct result of ||[R~Y/2||? = tr(R~") = O,(1) by R & R > 0 from result
().

This completes the proof of Lemma A.2. [J

Lemma A.3 Under Assumptions A-D, we have

1 ~ ;» . 1 L . = A
(a) Wp_lA/M/Ee_elf (eteg _ Eee)ze_elMAP_l _ ||P_1/2||2 . Op(T_l/Q);
t=1
Lpars L 3 1/2 7-1/2
(b) =P "ANM'>E_, Zetft Hp |- Op(T~1/2);
N Tt 1
1 .

(€) ~z P I NM'S (Bee = See) S MAP™ = || B 1| - Op(1);
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1

1
(e) ﬁP 1A’M’2661T Z[eteg — o3

S MR = | P72 0 (T 1?);
1o S 1nrpel P12 LS~is2  g2)2
(f) WP NM'E (B — See) S ME™ = |P H~0p([st(‘7 _"i)}

=1

N

).

The left hand side can be rewritten as

LA 1
1/2|:ZZP I/Q(ZApmip) QTZ €itCjt— ezt(f]t (ijq)‘/) 1/2] 1/2
p=1 ]

Proor oF LEMMA A.3. We first consider (a).

i=17=1 t=1

which is bounded in norm by

_1/2kA 211 L1 & 271/2
cp W[ ol 3 S| || 72 2 2 | et — Etewesl| |
p=1
which is [|P~1/2)2- O

,(T~1/2) by (A.3). Thus, (a) follows.
Next, we consider (b). The left hand side can be rewritten as

—=P" Py’ — Aomip= > eifr,
VN i=1 o7 v p=1 =
which is bounded in norm by

—1/2 —1/2 12,1 &1 &,
c|Ip H( w25 ZApmw )Gl et
— =1 =1
which is ||[P~1/2| - O,(T~'/?) by (A.3). This proves result (b).

To prove result (c), notice that f)gel(f]ee —Yee) is bounded by 2C*Iy by C~2 < 62 < C?
and C7* < 022 < C2. So the left hand side is bounded in norm by

2 1/2
)

1Py M (2041 ) S MAPG! | = 204 P31
Result (¢) then follows.
We now consider (d). The left hand side is equal to

ZZ Agfteztm R

i=1t= 1
which is bounded in norm by

o1 X
Rl [ S Imil?] [ ZHT
i=1

]1/2

I

which is O,(T~1/2) by Lemma A.2(c) and Assumption C. Hence, result (d) follows
For result (e), the left hand side is equal to

_ 1 1 & R
N3/2 Pt { Z Z Py i ( Z )‘pmw) Z eiejr — Eeieji)] /}
t:l

m; Rt
i=1j=1
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which is bounded in norm by

N . N a1
CE7 - B - [ X 55| B D Rom
i=1 "t =1

21/2p 1 N a1l
| [N;Hmju]
[NZ Z Z ‘T leieje — E(ez'tejt)]m 1/2,

i=17=1 t=1

which is ||[P~Y2| - O,(T~'/?) by (A.3) and Lemma A.2(c). Thus, result (d) follows.
Finally, we consider (f). The left hand side can be written as

which is bounded in norm by

L petzy a1 [ 12 ||mz|| 2211/
~ 1270 IR H[ZAQHP 34, mipl?]'’ Ty Z F—a2)?|

=1 p=1

By the boundedness of ||m;|| and =2 by Assumptions C and D, we have

1 Hmz”Z SR IN IR e
Z —0) <052 (0]
=1

This result, together with (A.3) and Lemma A.2(c), gives result (f). O

PROOF OF PROPOSITION 4.1. Throughout the proof, we use the following centered objec-
tive function

L(6) = T(6) + R(6),

where

1 1 1
L(9) = - In |2 - Ntr(E;E;l) +14 Loz

and
R(6) = —%tr{(MZZ - 2;)2;;],

where ¥, = MAAN'M' + ¥, and X%, = MA*AYM' + X},. The above objective function
differs from the objective function of the main text only by a constant and is convenient
for the subsequent analysis. By the definition of M,,, we have

R(9) = —2—tr [MA* th* e } — tr[zT: (ere) —X2,) zzl}.
t=1

By Lemma A.1, we have supy |R(6)| = 0,(1). Since  maximizes L(6), it follows L(f) +
R(9)) > L(¢*) + R(9*). This implies that L(9) > L(6*) + R(¢*) — R(0) > L(0*) —
2 supgee |R(0)| = —|op(1)|, where L(6*) is normalized to be zero.
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Now consider L(f) which is equivalent to
—_ A 1 A 1 * S—1
L(G):—Nln\zzz]—ﬁtr(il S +1+ = ln\Z |. (A.4)

By X, = MANM' + S, we have |X..| = [See| - | I + AM'SPMA|. Similarly, |X5| =

25| - |1 + A M'S5 ' MA*|. Then equation (A.4) can be written as
T(h 1 3 1 Aragiy—1 A 1 * Ak I —1
L(9) = ——1n|Eee|——ln|I + AN MY, MA|—Ntr[MAA M3
1 A
- Ntr[E:eE; ]+ ln Sl + % L I, + A M/S: T MAY| 4 1

1 A
_ { Sl + s | - SHlzz Sz + 1}
+ {—Jbtr[MA*A*’M’f]z_zl]} + {—;[ In |I, + A’M’i;ele\\}
1
+ {N In|I, + A*’M’zzelMA*\} .

Notice that

1 x xh—1 * x—1 1 * 1 *x gi—1
Ntr[zeezzz ] - N {Eeezee ] Ntr[zee eelMAGA/M E ] Ntr[zeezee } + Op(l)
by
1 A 1 N ~ A A
0 < lSL S MAGAM'EL) < O aldM/SL MAG) < ci,

where we use the fact that there exists a constant C' such that 37, hat¥_, L < C. Iy due
to the boundedness of &3 and o} 2,

Given the above result, together with 4 In|I, + A¥M'S:71MA*| = O(In N/N), we can
further write L(f) as

A 1 A 1 * 1 * —1
L) = - { 3 nlEel = 3 In[Stl + ul=e S - 1
1 A, 1 A A A
— {Ntr[MA*A*’M’E;Zl}} — {N In|l, + A’M’E;elMA\} + 0p(1).

The above three expressions in the big curly bracket are all non-negative. Together with
L(A) > —2|oy(1)|, we have that each expression is 0,(1), that is,

1 . 1 L .
7 I Bee| = I B + (22t -1 50, (A.5)
1 .
Ntr[MA*A*’M’E;l] 0. (A.6)
Equation (A.5) is equivalent to
1 N 2 2 O'>~k2 p
NZ(ln&i —lno*+-5—-1)>0
i=1 (
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g

L —anjQ —1. Given that 0 < C72 < UZ-Q <(C? < oo
for C > 1, for any z € [C~2,C?), we can find a constant d (for example, let d = ﬁ) such
that g(x) > d(z — 0}?)2. Tt follows

*2
A

Consider the function g(z) =lnz +

1 XN o*2 1N
op(1) = ~ > (ns7 + ﬁ —1-Ino}?) > dﬁ 3 (62 - 7).
=1 % i—1

The above argument implies
N
1
N2 (@ =) 5o (A7)
i=1

This proves the first result of Proposition 4.1.
Next, we consider (A.6), which is equivalent to

%tr(MA*A'*M’f];) = %tr (A (S5 = S MAGR MYS ! MA®|.
By (I, + NM'SIMA)™ = (NM'SIMA) ™ — (AMM/S;PMA) (1, + AN M'S; P MA)
the preceding expression can be alternatively written as
%tr(MA*A’*M’ﬁ;zl)
:%tr AYMSZIMAT = A MSMAR MY MA) TR MY A
+ %tr A M MAR MY MA) (L + M M/S MA) A MS MA
Both terms on the right hand side are non-negative. By (A.6), it follows that

1 A A ~ A~ A A A A
S (AYMISZIMAY — A MISTIMAR M/ MA) M MA| Bo, (A8)

i (A MSMAN M/SIMA) T (L + MMSMA) TN MISMAT| 5 0. (A9)

By (A.7) and Lemma A.2(a), we know %tr(A*’M’ie_elMA*) converges to a positive con-
stant. Then (A.8) implies that %tr(A*’M’ie_elMA(A’M’igelM/A\)_llAX’M’ZA]e_elMA*) con-
verges to the same positive constant. Together with (A.9), we have (I, +A'M/S_IMA)~! =
0p(1), i.e. G = 0,(1). Furthermore, from Py! = G(I — G)~!, we have Py' = o,(1). We
obtain the following results

G=o0y(1);  Py'=0,(1). (A.10)

Consider (A.8) again. The matrix on the left-hand side is finite dimensional (7 x 7) and is
semi-positive definite, so its trace is op,(1) if and only if every entry is 0,(1). Thus, we have

1 * S — * * S — N S— Av—14 S — *
N[A IMISZIMAT = A MISIMAR M MA) T M A Bo. (A

Let A= (A — A*)YM'S;MAPYY. Then I, — A= AYM'S;) MAPY!. So equation (A.11)
simplifies to

1 . L Ars-rA
NAMISCIMA" = (I = A) N MSIMA(L = A) 5 0.
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By Lemma A.2(a) and (A.7), we know NA*’M’ A MA* = LAYM'SECIMA® + oy(1).
Thus,

1 1. - N

NA*’M’E:E_lMA* — (I, — A)NA’M’EG_;MA(IT -4 5. (A.12)
By Assumption C.3, the expression 4 A*M'S;71MA* is positive definite in the limit, so
the second term is of full rank in the limit which implies that (I, — A) is of full rank in the
limit.

Alternatively, equation (A.11) can be rewritten as
1 - A A 1. A A
SR = AYMEIMA - A7) - A(NA’M’E;;MA> A Lo (A.13)

We now make use of the first-order conditions to proceed the proof. The first-order condi-
tion (3.3) post-multiplied by A implies

NM'SZH M., —S.)SZ MA = 0.
y (S.2), the above equation can be simplified as

“IMA =0

NM'SH M, —3.)3, :
which is equivalent to

NM'SIMANM'S I MA = N M'S; N (See — 25)S I MA

LM MATAMIS ) MA + MM AT L Z S MA
t 1
T
+A' M z:eel T Z SN MISTIMA 4+ A MY z:eel 7 > (eve) — B3 ) S MA.
t=1
With notations of P and A, we have
1 &
I = (I, — A)Y(I, — A) + jp—lA’M’z;;f > (evel — Sk )N MAP!
t=1
/ 1 d * Iyi—1 A p-—1 1 D—1Ax/ /A—ll d ®/
(I = A) 5 S eSS MAPT 4+ NP ONME > e (I — A) (A.14)
t=1 t=1

U . .
_WP_IA/M/Ze_el(Eee — SE S MAPT =iy iy + - + 5, say

Term iy is || P~1/2||2-O,(T~"/?) by Lemma A.3(a). Term 43 is |I — A|- || P~/2||-O,(T~1/?)
by Lemma A.3(b). Term iy is the transpose of i3 and therefore has the same convergence
rate as i3. The last term is 0,(1) by Lemma A.3(c) and (A.10). Given these results, we
have

L = (I=A)(I=A) + | P7V2PO,(TV2) 4 [T = A - [P Op(TY%) +0,(1). (A.15)

However, by the definition of P, equation (A.12) yields

—1 —1
(;A'M@;MA) — (I, — A (;A*’M’E:glMA*) (I — A) + o, (|1, — A?).
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This implies that
N N —1
|22 = (PY) = tr[([r A (GATMS M) (1 A) + (1 — A7)

The right hand side is at most O,[(A?)V 1], implying that [|[P~Y/2|| = O,(AV 1), where aVb
denotes the maximum of a and b. So together with (A.15), we obtain A = O,(1). To see
this, notice that the left hand side of equation (A.15) is bounded. Hence, if A # O,(1), then
A is stochastically unbounded, the right hand side of (A.15) is dominated by A’A in view
of |P~1/2|| = O,(A), but A’A diverges. Then a contradiction arises. Thus, A = O,(1),
which in turn implies that |[P~1/2| = O,(1), or equivalently ||[P~1|| = O,(1).

Now we sharpen the result to A = 0,(1). From equation (A.15), |[P~'/2|| = O,(1) and
A = O,(1), we have

(I, — A)(I, — A) - I, 0.

And from (A.12),
1 1o, w -
NA*’M/EzglMA* — (I, — A)NA’M/E;}MA(IT — AY = o0,(1).

By the identification condition, +A* M’ 1 MA* and %A’M’ﬁe_eleX are both diagonal
with distinct diagonal elements. Applying Lemma A.1 of the supplement of Bai and Li
(2012) to the preceding two equations, we have that I, — A converges in probability to a
diagonal matrix with diagonal elements either 1 or -1. By correctly choosing the column
signs, the case —1 is precluded. Therefore, we have I, — A 51, or equivalently A = o0,(1).

Next, we consider the first-order condition on A (equation (3.3)). By (S.2), we can
simplify equation (3.3) as

A A

NM'S N M., — )5 M = 0.

ee

Using the expression of M., we can write the preceding equation as

. 1E . . o 1 &
N — A = AN+ (I - A)’T S freS MRY + PzglA’M’Egelf > eff/A (A16)
t=1 t=1
T
N ~ ~ 1 ~ ~ N N ~ ~ ~ ~
+P]§1A’M’Ze‘elf Z[ete; — SIS MR — PPN MY (Bee — X5 S MR
t=1

By A = 0,(1) and Lemma A.3 (d), we have that the first two terms are o,(1). By ||P~!| =
0,(1) and Lemma A.3 (b), the third term is 0,(1). By ||[P~!|| = O,(1) and Lemma A.3
(e), the fourth term is o,(1). By ||P~'| = O,(1) and Lemma A.3 (f), the last term is
op(1). Given the above result, we have N — A = 0p(1), which implies that A £ A*". This
completes the proof of Proposition 4.1. [

Corollary A.1 Under Assumptions A-D,
14 Sv— A 1 * *— *

(a) NA’M’ze;MA - A 'M'SETEMA* = 0,(1);

(b) Pn=O0p(N), P=0y(1), G = 0p(N7"), Gy = Op(1);
1 4 A «

(o) (A= AYM'SIMA = o,(1).
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PROOF oF COROLLARY A.l. Result (a) follows from equation (A.12) and A = (A —
A M'SIMAPYY = 0,(1).

For part (b), by Assumption C.3, N~!A¥M'S* ' MA* — P, > 0. This result, together
with result (a) of this corollary, implies P = O,(1) and therefore Py = O,(N). From
G = (I + Py)~', we have G = O,(N~!) and hence Gy = O,(1).

Result (c) follows by P = O,(N) and A = 0,(1). O

Appendix B: Proofs of Theorems 4.1, 4.2 and 4.5

Hereafter, for notational simplicity, we drop “*” from the symbols of underlying true values.
The following lemmas are used in the proofs of Theorems 4.1 and 4.2.

Lemma B.1 Under Assumptions A-D,

o 1 & . <
(a) PjglA’M’E;;T > (eve) — Bee) S MAPG! = 0,(T7/?);
t=1
~lin 1
(b) PNlA/M/EeelT Zetft 1/2);
1 1Y :
D177 =15 S—larhip—1 L L A2 2\2
() PRUAMS} (S — o) S MAPS! = mop([N;@ o27]*);
T
(d) TthetzeelMRNl =0 (T_l/Q)a
t=1
o 1 &
() PyNM'SL! Y leve; — Seel 5o MBY! = O,(T1?);
t=1
1 1Y !
B—1117 10 —1,< S—19 5 H—1 A2 232
(f) Py'AMIS (See — See) St MRy ﬁ0p<[N Eg(az o27?]")

PrROOF OF LEMMA B.1. First, we consider (a). The left hand side is equal to

. 1 TN ko 11 k ) A
P_lﬁ [Z > ( > Apmip) 5252 T > leieji — Eleieji)] ( > qu)\;ﬂ P
i=1j=1 p=1 17) T =1 q=1

which is bounded in norm by

PP [ fji

N N T
2} [$ 2.0 ' 1 > leaeje — Eeirejr)] ﬁ .

=1 i=1j=1 " i=1

S IMA] S tr[%A/M’delMA] =tr(P). (B.1)

T 2
T Z[eitejt - E(eitejt)]‘ } = O(Tﬁl)7

i=1j=1 " t=1
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together with Corollary A.1(b) and (B.1), we have (a).
Next, we consider (b). The left hand side can be written as

1 k . T
&7 Z)\pmzp Zeitft{a

A

P~

\\Mz

which is bounded in norm by

1P [ 2 7] 2 Ao

i=1 %i p=1

=2

)

}1/2

]1/2[ ZHTZ% |

which is O,(T~'/2) by (B.1). Thus, (b) follows.
For part (c), the left hand side can be written as

_1/2{2},_1/2(]?:1 pm1p> (Zmqu) _1/2} _1/2’

which is bounded in norm by

k
CRIBN I 3 S|P (3 A | (62 = o)
,1 p=1
Since
S| ~1/2 2
Z 6— ‘P Z ApMipl| =1
i=1 p=1
by (A.3), this gives
k
= o2 Z 5\p'rnzp < \/;
7 p=1

Hence, expression in (B.2) is bounded by
N
02\[”P—1/2“2 Hp—l/g(z Apmzp)H O' - 0_2)

which is further bounded by

1 e -y

1=

. N a1 e
VPP [ 32 o3| PR 32 Aoy
i=1 "1 p=1

Then result (c) follows by noticing that Py = O,(N).

The proofs of the remaining three parts are similar to those of the first three.

details are therefore omitted. O

Lemma B.2 Under Assumptions A-D,

“ ~ N " 1
A= (A= A MEIMAPG = 0)(T72) + Op(IA - AIP) + 0, (| 5 2 (67
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ProOF oF LEMMA B.2. Consider equation (A.14). In the proof of Proposition 4.1, we had
shown A = 0,(1). So term AA’ is of a smaller order and hence negligible. With Lemma

B.2 (a), (b) and (c), equation (A.14) can be simplified as

i)
/
=
¢
S
=0
\
Q
S—
[N}
—_
[ I
N—
—~
os)
w
SN—

A4+ A =0,(T7V?) +

By the identification condition, we know both A’'(%M'S_ M)A and A’(%M’f}gelM)f\ are

diagonal matrices, which implies
ng{A’( M'S M)A — A’(NME 1M)A} =0,

where Ndg denotes the operator which sets the diagonal elements of its input to zeros. By
adding and subtracting terms,
A 1 ~ “ A

ng{(A ~AY (e MS MDA + R

1 A A 1
SMEL M)A~ A) + [NM’
By Lemma A.2 (b), %M’i;elM = & M'S; M +0,(1) = R+0,(1), where the last equation
is due to Assumption C.3. So term (A — A) (£ M'S_ M)A — A) = O,(|A — AJ|?). Given
this result, together with Lemma A.2(a), we have

—(A =)

ee

ng{([\ - A)/(%M’ie‘elM)f\ + A/

%M’i;;M)(A _ A)} (B.5)
N
Z 1/2)

Notice that (A — A)’(%M’ie_elM)lA\ = (A— A)’(%M’ie_elM)/AUf’_lp = AP, where the last
inequality is due to the definition of A. By P = P + op(1) from Corollary A.1 (a), we have

Op(IA =A%)

Z\H

(A — A)’(%M’igelM)fx = AP + 0,(A).

According to the preceding result, we can rewrite (B.5) as

N

Ndg{AP + PA'} = O(|A — AJP*) + Op([% > (67 — o)), (B.6)
i=1

where 0y,(A) is discarded since it is of smaller order term.

Now equation (B.3) has r(r -+ 1) restrictions and equation (B.6) has ir(r — 1) restric-
tions, the r X r matrix A can be uniquely determined. Solving this linear equation system,
we have

A= 0T )+ Op(IA = AI?) + 0, ([ Yo (67 = 07

This completes the proof. [J
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PrOOF OF THEOREM 4.1. We first consider the first order condition (3.4), which can be
written as

diag { (M. = 32) = (M — $2)S MAGN M’ - MAGN M'SZH(M.. - 51.) | =0,
where “diag” denotes the diagonal operator and G = (I, + A’ M'S7!MA)~!. By

1 & 1 & 1
M. = MANM' + % + MAZ > frer + 7 > efiNM + 7 > (ere} — See),
t=1 t=1

with some algebra manipulations, we can further write the preceding equation as

T
61-2 —U? = lz:( 2 0' +2miA = thezt —2m; AGA’MZ MAlthe,-t
Tt 1 T T
a1 &
—2m A Z ftet 1MAGA’ml - QmQAGA’M’ e_elf ;[6136“ — E(eteit)] (B?)
+mi(A — A)(A — A)'m; — 2ml(A — A)N'm; + 2mi(A — AN M'S P MAGA m;
2 2

% ! AGA/mZ

+omA(A — AYM'SPMAGK m; + 22
(7

7

By GPy = PyG = Iy — G, we have G = (Iy — G)Py' = Py'(Iy — G). Then, the third
term on right hand side (ignoring the facttor 2) is equal to

miA(Iy — G)Py A M'S 1MA then_mA(IN G (I — A then (B.8)
t 1

and the sum of the seventh and eighth terms is equal to —2m/(A — A)GA’m;. Define
T

PPN ~_q 1
Z fie/ S MAPSY, ¢ = PyINMISI Y (et —
t=1

Now consider the sum of the fourth and ninth terms. By G = (I N — G) together with

the definitions of 1, this term is equal to

—om/A= Z £l S MAGA m; + 2mA (A — AY M'S  MAGA'm

= —2miA1/z(IN — O)Nmy + 2mAA(Iy — Q)N m;
= 2miApGA'm; — 2mAAGN m; — 2miAY(A — A)'my + 2miAA(A — A)'m;

+miA(A+ A" — o — P )N'm;.
Also, by (A.14), we have

At A=AA+ ¢+ (I — AP+ (I, — A) — PRIAM'SH (Bee — See) B2

or equivalently
AfA—ip—of) =AA+¢— AY— P A— PP NME (S — Bee) S MAPYE.
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Thus, it follows that

—2miA— Z fiey ST MAGA m; + 2miA(A — A M'S  MAGA'm (B.9)

= 2miApGAN'm; — QmiAAGA mi — 2miAD(A — AY'm; + 2miAA(A — A)'my — miAA’ AN m;
—miAGA m; + 2miAA YN My + mIAPY N M/ (See — See)Sot MAPY A m.

Using (B.8) and (B.9), we can rewrite (B.7) as
T
Z — 2mj( Z fuew + 2miAG = Z freit (B.10)

+2m ’AA’ Z freir — 2m; AGA’ Z freit + 2m; AwGA’mZ
T.H T
— 2miAAGA m; — 2miAY(A — A)'m; + 2miAA(A — A)'m;
52 — o2

+ miAA AN m; — 2miAA"YN'm; — 2m], (A A)GA'mZ + 927 Lm, AGA’mZ

Uz

+ miApN m; — m;Apﬁlf\’M'f]e_el(flee — Zee)f]e_ele\PﬁlA’mi
T
A . 1 R R
- QmQAGA’M’EeE}T > leteir — Elereq)] +mi(A — A)(A — A)'m;
t=1
=ai1+aj2+---+a;17, say.

By the Cauchy-Schwartz inequality, we have

N

Z > <17 > (a4 -+ laiar ).

=1

The first term N~ SN Jlayi||> = O,(T~1) by

The second term is bounded in norm by

4C?|A A21N Ly (T
IA - ||N;\\Tt2;fteu = 0p(T7)
by A — A = 0,(1) and
1 X1 2 .
E{N;“T;fteit } :O(T )-

Similarly, one can show that the 3rd, 4th, 5th, 6th, 8th, 11th and 14th terms are all
0,(T~1). The 7th term is bounded in norm by

. . 1 XN
(AA)P - AP - 1G)? - ||A|!2)NZ [,
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which is O(N 2T + 0,(N2)- O,(1& = Al +-0,(N ) 0,3 K162 = a?) by G =
Op(N71Y), A= A+o0,(1) and Lemma B.2. This result can be simplified to 3 LS N il =
op(T71) + op(||f\ Al%) since Op(N72) - Opl+ SN (62 — 0?)] is of smaller order than
+ SN (67 — 02)2. Similar to the 7th term, the 9th and 10th terms are both of the order
op(T~1 )+0p(HA A|?). The 12th term is op(HA Al[?) by G = O,(N~1). The 13th term
is of smaller order term than ]{, SN (62 — 02) and therefore negligible. The 15th term
is op(% YL, (62 — 02)) by Lemma B.1 (f). The 16th term is O,(T~!). The last term is
Op(Hf\ — AJ|*). Given the above results, we have

1 & A
~ 2.0 = 0))? = 0p(T ) + oA =A%) (B.11)
i=1
Next, we derive bounds for [|[A — A||2. By equation (A.16), together with Lemma B.1(b),
(d), (e) and (f) and Lemma B.2, we have
N

A=A=0,(T7V%) +0,( Z )42, (B.12)

Substituting equation (B.12) into (B.11), we have %Zi]\;(&? —02)%2 = 0,(T~Y). This
proves the second result of Theorem 4.1. [

To prove the first result of Theorem 4.1, we need the following lemmas.

Lemma B.3 Under Assumptions A-D, we show

T
(a) P]glA’M’E;;% > (ereh — See) S MAP!
t=1
= OP(N_lT_l/Q) + OP(N_l/zT_l) + Op(T_3/2)3

T
S efi = Op(NTVAT7H2) 4+ O, (T7h);
(¢) PRIAM'SZH (B — Se) S IMAPYY = O,(N~1T1/2);

1, etarn o _
(d) fotegzeelMRleOp(N 1/2T 1/2)+OP(T 1);

T
() PN (MIST) 2> lerel — Sl S5 M) Ry
= Op(NT'T7V2) + Op(NTV2T ) + Op(T2/2);
(f) PRIAM'S N (Bee — See) S MRY = O,(NTIT71/2).
PROOF OF LEMMA B.3. We first consider (a). We rewrite it as

L1 & 1N A AL
1A’( M'E = Z(ete; — See) S M)AP,
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Since we already know that ||[P~1|| = O,(1) and A = Op(1), we only need to consider
the term in the big parenthesis, which is

1z
NZT 2; Z mim 5= Z:l[eitejt — E(eiejr)]
i=1j=1 1] t=
1 1y/1 1\
NZT ;]Zlmz (5'722 OTQ) (AJQ O_JQ) ; elte]t - eztejt)]
11 1
N2T ;]21 iy oy (Ajz sz) t;[@it@jt — E(eireji)]
1 1,1 1\&
N2T Z Z mzm;ﬁ (? ;) Z[eitejt — E(eiejt)]
i=1j5=1 J 2 1 =1
1z
N2T Z Z mim;— o Z[eitejt — E(ejejt)).
i=1j=1 J t=1

By the Cauchy-Schwarz inequality, one can show the first term is bounded in norm by

Cs(% i(&? - 01'2)2) (% g: % H% zT:[eitejt - E(eitejt)]H2>1/2;
; i=1j=1 " t=1

which is Op(T*:"/ 2) by the second part of Theorem 4.1. The second term equals to

1 L 1 T
N2T Z Z m ; 2 ( ) Z eiejr — E(eireji)]
i=1j=1 i ] t=1
1Y 1 1y, 1 L&
= N Z m; (? — ?) <ﬁ Z Z ;mi[eitejt — E(eitejt)D,
j=1 J J i=1t=1 "4
which is bounded in norm by
1 X 1201 X 1 XL 2-1/2
Oy 208 -] Iy X (g 2 qamilene = Bleaesl) |

which is O,(N~1/27~1). Similarly, the third term is also O,(N~Y2T~1). The last term is
O,(N~'T~1/2). Hence result (a) follows.
Next, we consider (b). The left hand side of (b) is equivalent to

1 oeql & 1 Y
NM Eee T Zetft Z Ale Zeltft
t=1 =1
AR | 11 1.1 &
ZWZZPTM éezt‘l'NZ:(g—?)TZmzftlezt
i=1t=1 "1 =1 1 1 t=1



The first term is O,(N~Y/2T~1/2). The second term is bounded in norm by

. N e 1/2 1/2
oty et -t g ZHT e |

=1

)

which is O,(T~!) by the second part of Theorem 4.1. Hence. result (b) follows.
For part (c), the left hand side of (c) is equivalent to

A 1A 1 ~ ~ ~
P‘lA’<ﬁM’Ee‘;(Zee — Do) S M)AP,

It suffices to consider the expression in the parenthesis:

1 & 62 — o2 1 &, (62— a)2\1/2
¥ 2 %< (5 Zumzn) (N;Hmiu T

which is O,(N~'T~1/2) by the second part of Theorem 4.1. This proves result (c). The
proofs of results (d), (e) and (f) are similar to those of (a), (b) and (c). The details are
therefore omitted. [

Lemma B.4 Under Assumptions A-D,

1
VNT

ProOOF OF LEMMA B.4. Consider equation (A.14). Using the results in Lemma B.3 and
the fact that A’A is of smaller order term than A and therefore negligible, we have

A=A - A M'SIMAPY = Op)(—=—=) + O, ( )+ O, (J|A — AJ?).

1

A+ A= OP(WHO,,(;). (B.13)
Now consider the term A’ M’ (32t — B2 1) MA, which can be written as
LA - s ma = A [i i mam, 02 _ UZZ}A (B.14)
N ce ce N 2 1”624
= _A,[;[ imzm;@?;a }A + A'{l i\fzmzmZ (6 A,;gafl?)2}A
i=1 i i—1 i

by the boundedness of m;, 52,07 by Assumptions C and D. Substituting (B.10) into the
first expression on the right hand side of (B.14) and using the arguments before (B.11),
one can show that the first expression is Op( \/7) + 0p(%). Hence, we have

1 A _ 1 1
NA’M’(E@; _ EEBI)MA = Op(\/ﬁ) —+ Op(f) (B15)
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Now consider (B.4). Using the same arguments as in the derivation of (B.6) except that the
result for %A’M’(i};} — ¥ )MA is given by (B.15) instead of o,([+ N (62 — a2)/?),
we have

1
Ndg{AP + PA'} = O (W) +0 ( )+ O, (J|A — AJ?). (B.16)
Solving the equation system (B.13) and (B.16), we have
1
A=0 +0 + Op(||A = A
W) + On) + Oyl — A1),

as asserted in this lemma. This proves Lemma B.4. [

PROOF OF THEOREM 4.1 (CONTINUED). Using the results in Lemma B.3 and Lemma B.4

and noticing that ||A — A2 is of smaller order than A — A and therefore negligible, we have

from (A.16)
1 1

\/ﬁ) + Op(f),

as asserted by the first result of Theorem 4.1. This completes the proof of Theorem 4.1.

A=A =0,

Corollary B.1 Under Assumptions A-D,

1 1
——) + Op()-
\/NT) o(7)

Corollary B.1 is a direct result of Lemma B.4 and Theorem 4.1.

A=A - AN MEIMAPY = 0,(

Lemma B.5 Under Assumptions A-D,

1N, jeirng 1 IR Ry _
f Z ftellfzeelMRNl = T Z; ftegzeelMRNl + OP(N 1/2T 1) + OP(T 3/2);
t=

T T

A 1A | 1
(0) PﬁlA'M/E;}fE etf£=P]§1A’M’ZQJT§ erfl + Op(N~Y2T71) 4 0,(T~3/?);
t=1 t=1
1 & 1 XX 1 X Kig— oF
—M (S} -8 WM = 33" —mm(ed — o) + —= > mymj
(C) N ( ee) NT Pt O',;lm mz<ezt Uz) + NT P mim; 0_21

+ O, (N7IT=Y2) 4 O,(NTV2T~Y) 4+ 0,(T73/?).

Proor or LEMMA B.5. Equation (B.10) can be written as

1 T
62 —0? = =S (e} — o) + R, (B.17)
T t=1
where
A ~ T
R, = —2m/AGR M) 2 Z ereit — Eereit)] + S;
with
S; = —2ml( Z freir + 2m, AGE Z freit + 2m!, il Z freir — 2m, Aaat Z freit

tl tl tl



+ 2m§AwélA\/mi — QmQAAé]\/mi — Qm;Aw(A — A)/mi 4 Qm{AA(/AX _ A)/mi
52 _ o2
+miANA" AN m; — 2miAA" YN m; — 2m); (A A)GA/mZ +2 gi —0;

m; AGA’mZ

Uz

+ miAGA My — MAPGIN M'S 7} (S — See) S MAPG A my + mi(A — A)(A — A)'m,.

Given that ¢ = O,(N~Y2T71/2) 4+ 0,(T~") by Lemma B.3 (b), A—A= O,(N~Y27=1/2) ¢
O,(T™!) by Theorem 4.1, A = Op(Nfl/szl/Q) + O,(T1) by Corollary B.1, by the same
arguments in the derivation of (B.10), we have

1 N
N Y 8 =0p(NT'T72) + Op(N?T71) + O, (T 7). (B.18)
=1

‘We now consider
2

)

N T

1 A R

N g ‘m;AGA'M'Z 11 E ereir — E(eeir)]
i=1 t=1

which is bounded in norm by

. . T 2
C*ANI* - IGw? Z | SME > leveu = Bleveu)]|

Since A = A + 0p(1) and G = O,(1), it suffices to consider the term
’2

9

L Z Larst LS e - Blerea)

t 1

which, by the Cauchy-Schwarz inequality, is bounded by

11 &1 & 2

QN Z ‘ﬁ Z 3y Z[eﬁezt E(ejtez-t)]‘

1=1 j=1"J t=1

N ~2 92 T

1 1 — 05 2

Y2y 2|7 2 gty Lleseu — Elegen)]
=1 7j=1 777 t=1
The first expression is O,(N~1T~!). The second expression is bounded by
ol & 1 & 2 _2
o5 > (67 - N2 Z Z E > leuse Bleaeq)]|”| = 0p(T72).
j=1 i=17=1

Given the above result, we have

N T
1 'AARN AT 1 2 1 1
— Z m; AGAN' MY Z ereir — Eleeir)]| = Op( )+ Op(73)
N o ’ P ’ NT T
This results, together with (B.18), gives
1 1 1
— Op(=5). B.19
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Notice that

1 &, e 1 XL
NT ; frey X o M = NT ; ; &—szteitmz
N T N 52 2
= % ; ; Uligfteztml — % ; ; Ui&i?g;i freim
The second term can be written as
N T T / L NTy /
T2 ;;2 5% thezt oym, —l—ﬁ;;%Riﬂeitmi
The second term of the above equation is bounded in norm by
51N 21/21N1T 971/2
lrximd] gz el ]

which is O,(N~V2T~1) 4 0,(T~3/2) by (B.19). The first term can be written as

SRl 1 o2\m/ 1 e &; — o} 2 2y, ./
17 ZZZ?ftezt PImi = NT2 ZZZ 1&2 T Jrei(eis — o7 )my.
i=1t=1s=1"1 i=1t=1s=1 %%
The first term of the above expression is O,(N~/27~1). The second term is bounded in
norm by
N 1/2 N T T 1/2
1 1 1 2 1 2
5 A2 22 2 2
Clwxet- sl Sl Iz a4
1=1 =1 t=1 t=1
which is O,(T~3/2). Given the above results, we have
NszT:fte;i;elM— thet M+ 0 (\Fl )+ Oy (Ti/Q) (B.20)
t=1 NT

Given (B.20), together with R = R+ 0, (T_l/Q) we immediately obtain (a). Given (B.20),
together with P = P + O,(T""/2) and A = A + O,(—~=) + O (%), we also have (b).

(i
We now consider (c). The left hand side of (c) is equal to
N »2 2 N »2 2 N (52 2)2
1 9; — 9y / 1 9; — 0 r L (67 —07) /
——Zimvn’:—— Mimy; + — Y ey,
A2 92 (3 4 (2 A9 4 (3
N & &jo; ! N ; o; ' N; 207 !

We use 71 and io to denote the two expressions on the right hand side of the above equation.
We first consider 7. Substituting (B.17) into this term, we obtain

N ~2 2
1 05 — o} 1 1
S DL UM o) OB Ao W
N o i—1t=1 %
1 ol 1 A AR /A—ll d
+2N ; U—;ltr {AGA M3, T ;[etezt — E(eseir)]m ]mzm - Z S;m;
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Consider the second expression. The (v, u) element of this expression (v,u =1,...,k) is

N T
1 A . 1
tr[ﬁ D AGNM'S, 11 Z ereit — eteit)]gm;mwmm}

= i

which can be proved to be O,(N~'T~Y2) + O, (N~/2T~1)4-0,(T~3/?) similarly as Lemma
B.3(a). The third term is bounded by

1 N 1/2 B B B B B
(ox [NZSE} = Op(NTIT7Y2) £ O,(N~Y2T71) + 0,(T~3/?)
=1

by (B.18). Hence, we have

1 1 1 1
ZZ 04 2ymiml 4+ O, (Tﬁ) + Op(m) + Op(m).

zltll

Proceed to consider i2. By

we can write 29 as

1, o2 S A | 2 R2m
= Z [ (e5,—0; )} mimi—{-Qﬁ Z 27 {f Z(ezt )}R mim,+-— Z 52 4 m;m
N0 =1 i=1 %% "1 4 =1

We analyze the three terms at right-hand-side of the above equation one by one. The
second term is bounded in norm by

QCSLNETQ 221/2iNR21/2
wXlpxe o] [y R

i=1

which is O,(N~1/27~1) by (B.19). The third term is bounded in norm by

1 1

0812732 (NT)+0( 5)

i=1

by (B.19). Finally, the first term can be written as

Len 11l o 22./1N@2—UZ‘21T2 2
N;a?{T;(eit_Ji)} mzmi—ﬁg 6?0? [T;(ezt—al)} mim;

The first term of the above expression is equal to

1 & Kig — 0} !+ O (N~-Y2—1
i=1

(2

The second term is bounded in norm by

|5 S5t - ol v E Sy

=1 =1 t=1

411/2
o2 } — 0,(T%2).

47



Hence, we have

RN Yo i 1
_ o .
= o PTERYNT T P TeR

Summarizing the results on i; and iz, we have (c). O

PrOOF OF THEOREM 4.2. We first derive the asymptotic behavior of A. Consider equation
(A.14), using Lemma B.3 (a) and (f), Lemma B.5 (b) and Lemma B.4, we have

A+ A =n+1 +O0y(NTIT7V2) 4 O,(NTY2T71) + 0,(T~3/?),
where

-1 1
n= NT thet MAP™

Let vech(B) be the operation which stacks the elements on and below the diagonal of
matrix B into a vector, for any square matrix B. Taking vech operation on both sides, we
get

vech(A + A') = vech(n + 1) + Op(N"'TY/2) + Op(N"V/2T 1) 4+ O,(T /7).

Let D, be the r-dimensional duplication matrix and D;" be its Moore-Penrose inverse. By
the basic fact that vech(B + B’) = 2D, vec(B), for any r X r matrix B, we have

2D vec(A) = 2D vec(n) + Op(NTIT7Y2) 4 O,(N7V2T~Y) 1 0,(T73/%).  (B.21)
Furthermore, define
! 1

g1 S&Emml, / NHZA_U !
C:A[Nizz ;1 (eit_ai)}/L M:A[NT; Z]A'

’ﬂ

Proceed to consider equation (B.4). By Lemma B.5(c) and A — A = O,(N~1/27-1/2) 4
Op(T~1) by Theorem 4.1, we have

/ 1 1
Ndg{A (NM STIMYA = A) + (A — A (NM S M)A
= Ndg{¢ — u} + Op(NT'T712) + Op (NPT + 0p(T/2).
Using the same arguments in the derivation of (B.16), we have
Ndg(AP + PA') = Ndg(¢ — p) + Op(N"'T7H2) + Oy (NTH2T7) + 0, (T7%2).

Let veck(B) be the operation which stacks the elements below the diagonal of matrix B
into a vector, for any square matrix B. Let D be the matrix such that veck(B) = Dvec(B)
for any r X r matrix B. By the preceding equation,

Veck(AP + PA,) = Veck(( — /’L) + Op(N—lT—l/Q) + Op(N_1/2T_1) + Op(T_3/2),
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or equivalently
Dvec(AP + PA') = Dvec(¢ — ) + Op(N~'T7V2) + O, (NPT + O,(T72).
Using vec(ABC) = (C" ® A)vec(B), we can rewrite the preceding equation as

D(P& 1)+ (1@ P) K, Jvec(4) = Dvec(C— )+ 0y (N TY2) 40, (N V2T 40,(T%2),

(B.22)
where K, is the r-dimensional communication matrix such that K,vec(B’) = vec(B) for
any r x r matrix B. By (B.21) and (B.22), we have

2D _|2D;fvec(n) 0 0
[D[(P@Ir) + (Ir®P)KT]] vee(d) = [ 0 ] + [Dvec(o] - [Dvec(,u)
1 1
p m) + Op(m)-

(B.23)

oD+ 2D 01 )
D; = r Dy = r Dy = | a"(rt)xr?)
! [D[(P ® L)+ (I ® P)Kr]] ro lO ] rl l D

The above result can be rewritten as

Dyvec(A) = Davec(n) +Dsvec(¢) —Dzvec(p) + O, (N

Also, notice that

;) 1 ~ mim; o 2 ;1 QAN | 2 2
vec(Q) zvec[ANTZZ 1 Z(eit—ai)A] =(A®A) ﬁzzj(ﬂ%@mz)(et—q)

i=1t=1 g; i=11t=1 g
and
1 Xkia—ot 1 X1 .
vec(u) = vec {A NT Zl : = L mimiA] =(A®A) NT Zl J—?(mi ®@m;)(kia —07).
1= 1=

Given the above three results, we can rewrite (B.24) as

N T
vec(A) = DDy (PN @ Ir)ﬁ Z Z 2 (m; ® fr)ei (B.25)

+ D7Dy (A ® AY

—D;'D3(A®A)
10) (L 0 L) 0,( 1
+ p N\/T)+ p(\/NT + p



Consider equation (A.16). Using the results of Lemma B.5 (a) and (b) and Lemma B.3
(e) and (f), we have

T
N—N= A’A’+—thet STMR 4 PN TMz erfIN
t=1

(B.26)

Notice that

and

T N T
vec| P~ 1A’ ME etft’A’} —vec[PlA’ZZ
t=1 i=1t=1

N T
1 _
= K}, vec |:ANT Z Z ?fteztm{LAP 1:|

where K, is the commutation matrix such that K,,,vec(B) = vec(B’) for any m x n
matrix B.

Taking vectorization operation on the both sides of (B.26), we have

A | NIy
vec(A — A') = [K,W[(PflA’) @A+ R Ir] — 3N (i @ fi)eq
NT == o
1 1 1
— Kir (I ® A)vec(A) + Op(m) + Op(m) + Op(m) (B.27)
Substituting (B.25) into (B.27),
1 L&
A7 / 2 2
vec(A—A):Blﬁ;;U—ZQ(ml®ﬁ eit — IBQNT;; 1(m; @m;)(ej — o7)
A+ Op(m) + Oy ) + Ol ), (B.28)
T "NVT VNT T3/27 '

where

By = K, [(P'A) @ Al + R @ I, — Ky (I, @ D7Dy [(PTIA) @ 1],
By = Kk (I ® A)DI 'D3(A® A,

A= BQ*ZZ mz®mz K”L74_O-'zl)‘

11t1
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Given the above results and by a Central Limit Theorem, we obtain as N,T — oo and
N/T? -0,
A 1
sqrtNT {vec(A' —A) - TA} 4 N(0,Q),

where ) = lim Qp with
N—oo

1 & ki —
Oy =By(R® L) IB%1+]B32[NZH,4 oi (mim}) ® (mim}) | By,
=1

~.

This completes the proof of Theorem 4.2. [J

PROOF OF THEOREM 4.5. By the definition of f; = (AM'SIMA)"'A/M'S} 2 and A,
we have

n ! H—1 1 A rro—1

fimfo==Afi+ PTG NMS fey
From Corollary B.1, we know A = O)( \/7)

+ Op(7), then the first term of the above
equation is Op(\/t) + Op(#). From Corollary A.1 (a

)(b), we know P = P + 0,(1) and
P=0 »(1), and from Assumption C.3, we know Py, = lim P where Py is positive definite

N—o0

matrix. Consider the part + LA'M'S e, which can be rewritten as
/ / 1 12 —0;
Z AQA mie; = —A M'S_, Z 57,7 Nmgeir + — Z AQ Y'mien
-1 7 N = oio;

where m; is the transpose of the ith row of M. Use a1, a2, a3 to denote the three terms on
the right hand side of the above equation. Term as can be shown to be O (\/7) +0 (TS/Q)
by the equation (B.10). Term agz can be shown to be OP(W) +0,(7) by equation (A.16).
Then we have

1

1. ~A 1 _ 1
NA'M’Eeelet = NA'M’Zeelet + Op(ﬁ) + Op(f).
Therefore,
N 41 _ 1 1
fi—fi=P INA’M’Eeelet + op(ﬁ) + Op()

Based on the above result, by a Central Limit Theorem, we obtain as N,T — oo and
N/T? =0,
VN(fi = 1) % N0, PZ)).

This completes the proof of Theorem 4.5. [

References

Ahn, S.C. and Horenstein, A.R. (2003). Eigenvalue ratio test for the number of factors.
Econometrica, 81 (3), 1203-1227.

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71
(1), 135-171.

51



Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica, 77 (4),
1229-1279.

Bai, J. and Li, K. (2012). Statistical analysis of factor models of high dimension, The
Annals of Statistics, 40 (1), 436-465.

Bai, J. and Li, K. (2016). Maximum likelihood estimation and inference of approximate
factor mdoels of high dimension, Review of Economcis and Statistics, 98(2), 298-3009.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models.
Econometrica, 70(1), 191-221.

Bai, J. and S. Ng (2013) Principal components estimation and identification of static
factors, Journal of Econometrics, 176, 18-29.

Carhart, M. M. (1997) On persistence of mutual fund performance. Journal of Finance,
52, 57-82.

Chamberlain, G. and Rothschild, M. (1983). Arbitrage, factor structure, and mean-variance
analysis on large asset markets. Econometrica, vol. 51(5), 1281-1304.

Connor, G. and Korajczyk, R.A. (1986). Performance measurement with the arbitrage
pricing theory : A new framework for analysis. Journal of Financial Economics, vol.
15(3), 373-394.

Connor, G. and Korajczyk, R.A. (1988). Risk and return in an equilibrium APT: Applica-
tion of a new test methodology. Journal of Financial Economics, vol. 21, 255-289.

Connor, G. and O. Linton (2007). Semiparametric estimation of a characteristic-based
factor model of stock returns. Journal of Empirical Finance, vol. 14, 694-717.

Connor, G., M. Hagmann, and O. Linton (2012). Efficient semiparametric estimation of
the Fama-French Model and extensions. Econometrica, vol. 80(2), 713-754.

Connor, G. and Korajczyk, R.A. (1988). Risk and return in an equilibrium APT : Appli-
cation of a new test methodology. Journal of Financial Economics, vol. 21 (2), 255-289.

Doz, C., Giannone D., and Reichlin L. (2012). A quasi-maximum likelihood approach for
large approximate dynamic factor models, The Review of Economics and Statistics, MIT
Press, vol. 94(4), 1014-1024.

Fama, E.F. and French, K.R. (1993). Common risk factors in the returns to stocks and
bonds. Journal of Financial Economics, vol. 33, 3-56.

Fan, J., Liao, Y., and Mincheva, M. (2011). High dimensional covariance matrix estimation
in approximate factor models. Annals of statistics, 39(6), 3320.

Fan, J., Liao, Y., and Mincheva, M. (2013). Large covariance estimation by thresholding
principal orthogonal complements. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 75(4), 603-680.

Fan, J., Liao Y. and Shi X. (2014). Risks of large portfolios, Journal of Econometrics,
forthcoming.

52



Fan, J., Liao Y. and Wang W. (2014). Projected principal component analysis in factor
models, manuscript.

Goyal, A. and Santa-Clara, P. (2003). Idiosyncratic risk matters, Journal of Finance, 58,
975-1008.

Geweke, J. (1977). The dynamic factor analysis of economic time series, in: D.J. Aigner
and A.S. Goldberger, eds., Latent Variables in Socio-Economic Models, (North-Holland,
Amsterdam).

Heckman, J.J., Stixrud, J., and Urzua, S. (2006). The effects of cognitive and noncognitive
abilities on labor market outcomes and social behavior. Journal of Labor Economics,

24(3), 411-482.

Jennrich, R.I. (1969). Asymptotic properties of non-linear Least Squares estimation. Annals
of Mathematical Statistics, 40, 633-643.

Kose, A., C. Otrok, and Whiteman, C. (2003). International business cycles: world region
and country specific factors. American Economic Review, 93:4, 1216-1239.

Lawley, D. N., and A. E., Maxwell (1971). Factor analysis as a statitical method. New
York: Ameriacan Elsevier.

Matteson, D.S., M.W. McLean, D.B. Woodard and S.G. Henderson (2011). Forecasting
emergency medical service call arrival rates. Annals of Applied Statistics, 5, 1379-1406.

Onatski, A. (2010). Determining the number of factors from empirical distribution of eigen-
values, Review of Economics and Statistics, 92(4), 1004-1016.

Rosenberg, B. (1974). Extra-market components of covariance in security prices, Journal
of Financial and Quantitative Analysis, 9, 263-274.

Ross, S. A. (1976). The arbitrage thoery of capital asset pricing. Journal of Economic
Theory, 13, 341-360.

Sargent, T.J., and C.A. Sims (1977). Business cycle modeling without pretending to have
too much a-priori economic theory, in: C. Sims et al., eds., New Methods in Business
Cycle Research (Federal Reserve Bank of Minneapolis, Minneapolis).

Stock, J.H. and Watson, M.W (2002). Forecasting using principal components from a large
number of predictors, Journal of the American Statistical Association, 97, 1167-1179.

Tsai, H. and Tsay, R. (2010). Constrained factor models, Journal of the American Statistical
Association, vol. 105(492), 1593-1605.

Tsai, H., Tsay R.S, Lin M.H and Cheng, C.W. (2016). Doubly constrained factor models
with applications, Statistica Sinica, forthcoming.

Zhou, Z. and Matteson, D.S. (2015). Temporal and spatio-temporal models for ambulance
demand, book chapter in H.Yang and E.K.Lee, eds, Healthcare Data Analytics, Wiley
Series in Operations Research and Management Science.

53



SUPPLEMENTARY MATERIALS

This supplement includes Appendices C-G, where we provide detailed proofs for the
theorems in Sections 5,6 and 9, and more simulation results in addition to Section 8.

Appendix C: Proof of Theorem 5.2

We only derive the asymptotic result under Hy : L = M A. The consistency of the test can

be easily verified. In addition, we note that since AT —A = O ( \/7) +0p(7), the proof for

the statistic calculated by Al is almost the same as the statistic calculated by A. Hence,
we will only consider the statistic calculated by A in the proofs below. We first consider

the term
%(MJ\ _ RSN (MA - T) = % [MA =)~ (£ - )] S [MA - 8) - (L - L)]
— (A—AY [%M’ie_jM} (A—A)— (A —AY [NM SN - )]
- [%(ﬁ - L)’ig;M] (A-A)+ %(i —LYSIML-L)y=1,—I,— I.+1;, say

Consider the first term I,. Notice that

1.« 1
NM’Ze‘elM — NM’E;}M = 0,(1) (C.1)

by Lemma A.4 in the supplement of Bai and Li (2012). This result, together with A—A=
) 4+ Op(7) by Theorem 4.1, gives I, = Op(57) + Op(7z).

Op( -
For the second term I, the term inside the squared parenthesis is
1 1 &1
7 !
NM S HL—-L)= v z; —mi(li =)' (C.2)

According to (A.14) in the supplement of Bai and Li (2012), we know that

li—ly=(L—-LYS LA — AL ML — LY(L — LY'S LA
T

T
N 1 ~ ~A A
—HI'S Z fre) Sl LHL - HL'S ! = )L LA,
t=1 t=1
. N N . 1 T R R N 1 .. .
H(Z Z l 7> leies - E(ez‘tejt)DHli +AY 9zizg(&f — o) H;
i=17=1 t:l i=1 "1t
e 1 & T
+HLS] (T 3 tft)l +HI'S 1L(f 3 fteit) (C.3)
t=1 t=1
N X 1 ,
+H (Y —lim D _lejien - Eejien)]) — Hli— (57 — o?)
j=1"J t=1 gj
Substituting (C.3) into the right hand side of (C.2),
1 1 X1
Isv—1/7 Y NS
SMENL - 1) = (N ; 5 mili) LS - L) (C.4)
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1 ‘A1T 1
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SR
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D
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B
Xy
=
|
=
()=
M

t=1 i=1

Similar to (C.
N N

1 1 1 1

—E— ~l’<——E— 1= o0,(1), C.5

N Pt &3mz 7 N Pt O’?mz 7 Op( ) ( )

which implies that -+ N &%mzl; = Op(1). Now we analyze the terms on the right hand

side of (C.4) one by one. The first term is Op(ﬁ) +0p(%) due to (C.5) and HLS M-
L)= Op(ﬁ) +0,(%) by (C.10) in the supplement of Bai and Li (2012). The Second term
is Op( 57 )+O0p(72) by the same argument. The third term is O (Nf) by (C.5) and Lemma
C.1 (f) of Bai and Li (2012). The fourth, fifth and sixth terms are all O (\/—) + Op(5)
because L'S'LH = O,(1) by Lemma C.1 (a) and HL'S W ST efh) = (ﬁ) +
O, (%) by Lemma C.1 (e) of Bai and Li (2012). The seventh term is also OP(W) +0p(F)
since I'S'LH = 0,(1) and oSN ~2mzeltft’ = Op(ﬁ) + Op(%), where the proof of
the second result is implicitly contained i in the one of Lemma C.1 (e) of Bai and Li (2012).
The eighth and ninth terms are both O (Nf) + Op(#) by Lemma C.1 (c) of Bai and Li

(2012). The last term is Op(N—\/T) by the same arguments as the third term. Summarizing
all the above results, we have

1 1
ﬁ) +Op(f)-

This result, together with Theorem 4.1, shows that

NM’E YL —1L)=0,(

1 1
+ Op(

I, = Oy( pﬁ)-

Pﬁ)

Term I, is also Oy(57) + Op(7=) since it is the transpose of I,.
We now consider the last term I;. We first rewrite equation (C.3) as

L T
—1; = T ; freir +Ti, (C.6)
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where

Ti=(L—-L)YS LA — AL'S ML — LY(L — LYS LA
o 1< S o1& - e
-1 -1 -1 -1
—HI'S L(T ; foep) Sl LHL — LS, (T ; euf]) L'Sg L,
NP B e Lo ;
_H( SN s zizgf > leirei E(eneﬂ)})mi HY  —ili(57 — of)H;
i=1j=17%19 =1 =1 0
. 1 &
LA ( Zetft)l —HESNE - L)(fote“)
t=1
11 & 1,
—I—H( Z ~—2le Z[e]telt — E(e]telt)]) Hli?(a —o7)
j=1"J t=1 i

fa= 3 2 = )1 = ;é;[; > feu+ T 7 thezt o7
N T T N T
= Jb;;f{;;ft zt} [;lr ;fteit}/ + % ;%[;;ﬂeit}ﬁ
+ ;Z}Qﬂ[;iﬁen]#;fj}ﬂ Y = Il + Iy + I + I,
i=1 % t=1 i=1 %
First consider II,, which can be written as
1Y 4 r1 67— o?
I, = ; { thé’zt] { tz;ftezt] N ; 15_120_22 { thezt] [ thezt}
The first expression of (C.7) is equal to
;] NT Ty 1
NT2 ; Z:l sz::l ;?ftfs[eztezs E(eyeis)] + TL"

1

N&_'lT 1 & ’1N(02—U 1 & ’
Z ol [th;fteit] [th;fte“] _ﬁz ~2 ! [ thezt] [th;fteit}.

z:l
(C.8)

s
I
—

Equation (B.9) in the supplement of Bai and Li (2012) implies that

1 T
ot = L3 (e
t=1
with

1 Y 1
I ;512 = Op(ﬁ) + Op(ﬁ)~
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Consider the first term of (C.8), which can be written as

1253_031§:§:ff[ee Elesess)] + — f:‘}?_"?f (C.9)
T 1 T2 t itCis itCis D) r .
N= o =1 s=1 NT — o
The first term of the preceding equation can be further written as
1 X s 1 L
N Z ) Z Z ftfs [eztezs E(eztezs)]
i—1 % LT i =
] N T T 1 ] NT T4
+NT3 Z Z Z Z gftf [51 uts — E(gi,uts)] NT Z Z Z Z jftf E(Ez uts)
i=lu=1t=1s=1 "1 i=1lu=1t=1s=1 g
where &; uts = (2, — 07)[eiteis — E(eiteis)]. The first term of the above equation is bounded
in norm by

911/2

Y2y N 4 T T
i [FElm X X ke - seof]

which is Op(\/i) +0 (%) The second term is O (\/ﬁ) The third term is O(=).
Given the above analysis, we have that the first expression of (C.9) is Op( \/ﬁ) + Op(%).

~

Consider the second term of (C.9). Ignoring I, this term is equal to

1 S&1 1 &S
N2 2 2 2 o+ y 2 o
i=1t= 1 =1 (2
The first term is O, ( ]\1]T3) The second term is bounded in norm by C? (% N SsH2,

which is O, (

term of (C.8) is Op(\/ﬁ) +0 ( 5).

The second term of (C.8) is bounded by

\/ﬁ) + Op(%) Summarizing all the results, we have shown that the first

T !/
06]1,20 —U [ theth,llﬂ;fteit],

=1

which is further bounded in norm by

i1 L 121 & | T ,
2C N Z {T Z(eit — 0} )} [f tz:;fteit} {T ;fteit]

e NESCIRED SZAIES oA

1—1

The first term is O,(#) and the second term is Oy(75) + Op(5z). Given these results,
we have

1 XL 1 1 1
= NT? ;;; ;ftf eiteis — Eleieis)] + 7o+ Op(ﬁ) + Op(ﬁ)-
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The derivations of II, and II. are similar. So we only consider II.. Substituting the
expression of 7; into II., we have

ee ee NT Pl 5'22 L
/5 —1 1 d Ne-17 7 L d 1 /
~ BLSL(5 Y fie) S LHS 33" —5lifiei
t=1 i=1 t=1 i
HES (A e rsoinL 5oy )
_ ee (th;&t t) ece ﬁ;;&? ftelt
NN 1 I 1 Ny
./‘7 . o . . - . / .
N H(;Jz::l 5—1,2 N]Z l’lj T ;[elteﬁ E(eztejt)])HNT ; ; &iQ lzftezt
SN gL 1 NI
JFHZ glzlé(&g *Ug)HﬁZZ&* ifiei
=1 "1 i=1t=1
A5 (e )Ly
+ ee (T;etft)mgtz;&z ftelt
e 111 &
—HL Zee (L - L)N; 5_12|:T;ft€zt:| [ thezt}
1NN T
+HN22~25-2leZ[€jten_ (ejteit) { thelt}
i=1j=1"3"1 t=1
1 X1 1 & '
_Hﬁzlig(ff?—az){fz:ftezt}
=1 v t=1
Notice that
1 1
;; ~2l flei = p(W) + Op(f),

which is shown in Lemma C.1 (e) of Bai and Li (2012). Given the above result, together
with (L — LYSZMLH = O (\/—) + Op(% ) by (C.10) in the supplement of Bai and Li

(2012), we have that the first term is Op(5) + Op(7). By similar arguments, one can
show that the second term is O,( \/W) +0 ( 3 ), the third and the fourth terms are both

Op(77) + Op(7z). The fifth term is O (\/7) + Op(7%). The sixth term is Op(
The seventh term is Op(57) + Op(72). The eighth term is bounded in norm by

larsi-of 33 HT - e

N3T2 )

9

which is Op(

N | NI Ty
H Z =2 J{]VTQ Z Z Z Tftezt[ejsezs - E(ejseis)]} (ClO)
J ; 7



T T
~ 1
ljﬁ Z Z fieitlejseis — Elejseis)).

LAY
H ljfieilejseis — E(ejseis)]
2°%7 t“ jstis 1stis
NT? j=li=1t=1s=1 a;0;
LGl 1 1
_HZ J~2 23 lj{NT2 ZZZ —thezt[ejsew — E(ejseis)]}
=1 99 i=1t=1s=1"i

N | NI T
_HZ Tz(lj — lj){NTQ ZZZ ?ftelt[ejsezs — E(ejseis)]}.
J ; 1

The first term is Op(w7) since its variance is O(xz7z). The second term is bounded in

norm by

C-IINﬁ!'[;[g:U_U }1/2[ i:V:HNT

||M2

rr 211/2
ZXI%%%%—M%%W],
t=1s

which is O,(—==) by Theorem 5.1 of Bai and Li (2012). The third term is bounded in

NT3
norm by
N N T T
C-HNEIH-{;[; A1) [1 ;HNlTQ;;Z = Heulejsen — E(ejseisﬂmm,

which is also O,( 1\1de) by Theorem 5.1 of Bai and Li (2012). The second term of (C.10)

can be written as

2 92 2 Z Z ftezt ejSeZS - (ejseis)]
s

J t=1s=1

1 - L& 6207 . ) 1 L&
/
+NHZ Z 5_Z2~20_; ( 2 Z Z ftezt €jsCis — E(ejseis)}
i=1j=1 %iY5% t=1s=1
N ~92 2 N T T
1 - cfr—or 1 1
+NHZ %‘JZ” NT? Z Uzlj ZZ reitlejseis — Eejseis)].
i=1 [ j=1"7 t=1s=1

The first term is bounded in norm by

N
C- HNﬁH . [% Z(&j — a } {NQ ZZ Hftelt ejseis — E(ejseis)]

j=1 i=1j=1

H2} 1/2

)

which is Op(7z) by Theorem 5.1 of Bai and Li (2012). The second term is bounded in

norm by
N

N
SREEIIES CAT BT DETUR A

j=1 7=1
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[ 353 [evtson — Bepen]”
i=1j=1

which is also Op(7z) by Theorem 5.1 of Bai and Li (2012). The third term is bounded in
norm by

N o

c-nwﬁn[fvf:(&%—a % ZHNTQJZ

53 s~ Bepen]]

t=1s=1

2 )
95

which is Op(\/%) by Theorem 5.1 of Bai and Li (2012). Summarizing all the results, we
have that that the ninth term is O,( \/7) + Op(7z). The last term is bounded in norm

by

)

N N
O[5 Y@~ o?) }”T}VzuT sea ]
=1 =1

1=

which is O, (). Given the above analysis, we have
1 1
W) + Op(73)-

Term II, is bounded in norm by C'+ Efv T2 Using the argument to prove II., we can

1. = O,

show that it is bounded in norm by @) (\/7) + Op(72)-
Given the above analysis, we have

N T T
1 1 1
itCis — 1tCis *Ir o) (o)
Ia = NTQ;;; Sy fileweis — Bee N+ e + 0ol =) + Ol
Summarizing the results on I, ..., I;, we have

1 N A ~ ~ A
N( MA - L)% (MA—L)

LSS L fftleweis — Bleucsd] + A0+ Op(—~) +0,5)

NTQZ Lilag 2 tJsl€it€is €it€is T D \/W p\ 2 )s

Now consider the term \/ﬁ SN ST ST U—lzftf; leireis — E(eireis)], which we use w to
7

denote. Then the variance of tr(w) is

N 1 K, 1 X1 FF’
var (tr(w ; U—fvar{f ;; ftfseiteis} =N ; ;?V&r[ T el}
where e; = (€1, €52, - - ., €;7). By the well-known result that
var(V'BV) = — 30! Z V2 +o {tl BB') + tr(BQ)}
where V' = (v1, v, ...,vr)" with each v, is iid over ¢ with mean zero and variance o2 and

py = E(v}), and B is a T x T matrix with its tth diagonal element denoted as by, together
with the fact that e; is iid over ¢t with mean zero and variance 02 then we have

Var{egﬁ;jvei} = (g — 304); (ftft> —i-U;'I {tr(Ff/ FJ{?’) +tr<Fj€’/ FI{?/H
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where iy = E(e},). By the IC that FITF = I, the above equation can be rewritten as

FF/ / 2
var {6;762} = (g — 3014) Z (%) + 0?27'
t=1
/e 2
Notice that 322, (%) = LSS (I f)? is Op(), since & S5E . (f11:)? is Op(1) from
Assumption A. Meanwhile from Assumption B, we know both o? and p4 are bounded.

Therefore as T" — oo, the first term on the right hand side of the above equation goes to

zero, hence
FF’
var {6;761} =o}2r

which implies that var(tr(w)) = 2r. Hence as N,T — oo and N/T? — 0,

W & tr{ NT2<

This completes the whole proof of Theorem 5.2. [J

Appendix D: Partially constrained factor models

We first give detailed derivations of equations (6.2)-(6.4). The first order condition for A

1S

A

NM'SZH M., — )52 M = 0. (D.1)

The first order condition for I" is

SN (M. —32)32 = 0. (D.2)
The first order condition for .. is
diag[S>ZH (M., — $.)32 = 0. (D.3)

By (D.1) and (D.2), together with the definition of ®, we have
PEN M, -2 =0, (D.4)

where & = [MA, . Let G = (I, + &'S1®)~1. By the Woodbury formula

e

or equivalently



Now equation (D.1) can be written as

0= [I,,,0] [ ] M. = S2)82'M = [1,,, 015 (M, — )8 M
= [I,,,0]Gd'S ! S2IM = (1,068 H (M. — 3.) (57 — S eGa/ S M.
Using (D.6), we have
[I,,,01Gd' S (M., — $.)S M = 0. (D.7)

By identification condition IC’, we see that Gisa diagonal matrix, which we partition into

So we can rewrite (D.7) as

or equivalently
NM'SH M. — 3.8 M =o. (D.8)

Proceed to consider (D.2). Post-multiplying 3.. on both side of (D.2) gives,

which implies that
'S N M. —3.) = 0. (D.9)

ee

For ease of exposition, we introduce a matrix A in a partial constrained factor model, which
is defined as
AL ()Y 1O(P'S10) 7 = (& - @) LOHL,

where Hy = &/ 2;}@. We partition matrix A as

An A
A= .
[Am Aso
By definition, we have
Ay = (A = AYM'SIMAPSY, A = (A — A) M'S FQN :

where Py = A’M'S'MA and Qn = IVS2!T. With some algebra manipulations, together
with A’ M’S2'T = 0 by the identification condition, we can rewrite the first order condition
(D.8) as

N =N = AN — ApT'STI MR — PN MS N (See — Bee) S0 MR
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T T
1 1
+(I— Ay thet MR — élTtheQ IMRY + PytA'M'S, Tzetng’
= t=1
PPN . . o 1 & . .
+PJ;1A’M’2;61T Z ergi TS MR + P]glA’M’E;;T D (ereh — See) S MRY.
t=1 t=1

The above result can be alternatively written as

. . . 1 & . .
N — N =-ApN - AL TSI MR + 7 > heS ) MRy (D.10)
t=1

T
TP MIS o Z ecfiN + PtAMIS) . Z eg S MR + T,
t=1

where
A A . . 1 L . .
Tr = —PyINM'S N Bee — See) X0 MR — lllf Z frei S MR
T A
thet MRV + PIAM'S Z ey — Vo) So MR

By similar arguments as above, the first order condition (D.9) can be written as

. 1<
Yi—vi=a5 > giei + Tiv (D.11)
=1
where
/ /Y 115 1 67 — o}
Jip = —Agvi — AjpA'm; — A22 th@n + QN N Eee T Zetgt% QN Vi % 6 -
T
1
12T Z freir + QNIF EeelT Z erfyN'mi + QNlr ZeelT Z[et@it — E(eceqr)].

Similarly, we can rewrite the first order condition (D.3) as
diag (M= — 32) = MAGA M/ (M- — ) — (M — $2)8 MAGA'M) = 0.

Given the above result, with some algebra computation, we have

T
i f Z(ez?t - 012) + '-71',023 (D12)
where

Jio2 = —=2%Tir — (i — %)’ (v~—%)—2m (A= A)A'm

A~ A~

—ml(A — A)(A — A)'m; — 2ml(A — A)= Z freir + 2m Agr Z frea
T

e 1
+2miAGIN M'S M (A — A)— ; freir — 2miAGL A M'S:, lT ; erfiN m;
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+2mlAG A M'S M (A — A)N'm; + 2miAGIA M'S MA(A — A)'m;
+2mAGIA M'SIM (A — A)(A — A)'m; + 2mAG A M'SZHE — Ty
2miAG N M'S T Jir + 2miAG N MSHT = T (Bi — i)

52 — o2 R . 1 T
+2m; 'AGLIA'm; T 2m;Ag1A’M'Z;}T Z etgyyi
t=1

>
SO

T
—2m;Ag1A/M,E_ Z Eteit — eteit)].
—1
Equation (D.6) is equal to

'SP + B — 0P — S + O thet+ Zeth’@'—i— Zetet zeeﬂi—l@_o.
t 1

The above equation can be written as

A+ A =AA+(T-A) thet SO+ HY 'S eeTZeth’I A)  (D.13)

The expression on the left hand side of the preceding equation is equal to

A A~ 1 ey A 1 S
Ndg { N(c1> O)YL 1D + N@’zg;(cb —P)— —(D-D)/T D - D)+ Ncb’(z;; - 2—1)<1>} .

Given the above result, by the definition of A, we have

Ndg(AH + HA') (D.14)

1 . - A 1 XL ¢ i
:ng{N(q>_q>)’2;;(q>—<1>)—NZ¢2¢§1( g Zd) -2},

where H = 'S ’H /N. Now we use the above results to prove Theorem 6.1. First we can
show that

11 5 p
NZ;W& oil|” =0 (D.15)
and
1 N
=Y (670250 (D.16)
N =1

Notice that the present model is a mixture of a standard factor model and a constrained
factor model. In Proposition 4.1, we have shown the consistency of the MLE for a con-
strained factor model. In Proposition 5.1 of Bai and Li (2012), the consistency of the
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MLE for a standard factor model is shown. By combining the arguments in the proofs
of Proposition 4.1 and Proposition 5.1 of Bai and Li (2012), one can prove the above two
results.

Along with the argument of consistency, using (D.9), (D.10), one can further show that

1 1
\/ﬁ) + Op(?),

1 X1 )
NZ?H% il :Op(f)a (D.17)

Equation (D.13) corresponds to equation (A.14) in the pure constrained factor model.
Using the arguments as in the derivation of (B.13), one can obtain a similar result

1

VNT

By the consistency results (D.15) and (D.16), one can show that H = H + 0,(1). So
A(?fl—%) is of smaller order term than A and therefore negligible. Similar to the derivation
of (B.16), one can show that

)+ 0y(2

(D.18)

1 1

Ndg(AH +HA") = Op(ﬁ) +Op(f). (D.19)

The equation system (D.18) and (D.19) gives

(D.20)

Using the above result, it can be shown that

1 1
p(ﬁ) + Op(f)-

The above result, together with (D.9), gives

t7i,02 =0

[

T
Z +Op( )-

t:

VT (6% -

’ﬂ

Similarly, using the results in Lemma B.3 and (D.20), we have

1 1
i = Op(——==) + Op(=)-
Z,F p(\/ﬁ) + P(T)
This result, together with (D.10), gives
T
VT (% — thezt + 0p(1
t=1
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Let ¢ = (M'S;M)"*M'S_!T. Tt can be shown that Lemmas B.3 and B.5 continue to
hold for a constrained factor model. Given this, we can rewrite (D.10) as

NN = AN — AL+ = thet SMRY +P1AM’2661;,ZeftA' (D.21)

1 1
m) + Op(m)-

+ PN M) TZegtw +0p (7) Op(

We note that

1 XX
vec( thet MRN)_vec(NZZQteZtmR >
. 1_ N1
_ p-1
—(R ®Ir1)ﬁ;;;’?(mz®ft)ezta
T
Vec< 1AMZ€61TZ et fiA )zvec(P‘lA' SN 2mzfteztA)
i=1t=1
:K;mvec< ZZ thm eaNP~ )
i=1t= 1
1 XX
= K [PTIA) @ A=) 0> " —(mi @ fi)ea,
' NT = = oi
—1 NI
vec( A’MEeelTZegtw):vec( 1A’ ;z::—z thelﬂb)
N T 4
:K;mvec( ZZﬁgtm eu\NP~ )
} ; N1
= Kipn [([PTIN) @ 0] =D 0>~ —(mi ® ge)ear.
' NT =50

In addition

/ / A/
_A/ A/ _ / / — _ Ifr ,Or , 11 21 — —E,A,\I],,
11 21"7Z} [ 1 1X 2] |‘A/12 A/22 w/ 1

where U = [A,¢], By = [0 Iy, ] and Fy = [O”X”] . Given the above result, we have

72 X711 I’r’g
veo (Ap A + Ay ) = vee(B{A'V') = Kpy, veo(WABL) = Ky, (B} @ W)vec(A).
Taking the vectorization operation on both sides of (D.21), we get

1

T
1
—5 \my; ®ft Cit (D22)
T 22 (me® fe

1t=1 9

™M=

veo(A' = N) = [(R™' @ I,) + Ky, [(P7'A) @ A

7

1 £l 1
+ Ky, [(P7IA) @ 9] ~T > ? mi @ gi)ei — Kir, (B} @ W)vec(A)
i=1t=1 "1
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1 1 1
Tﬁ) + Op(\/NT> + O (T3/2)

Now consider (D.13) and (D.14). Again, using similar arguments as in the derivation of
(B.21), one can show by (D.13) that

+ Op(

1 1
s o) + Ol ) + Ol )

where n* = £ S el R OH N with Hy = &' '®. To proceed the analysis, we first

2D; vec(A) = 2D} vec(n*) + O,( (D.23)

consider the expression J; ;2. The sum of the 3rd term and the 10th term is equal to

~

—2ml(A — M)A 'm; + 2mAGI N M'S MA(A — A)'my
= 2m/(A — A)(A — A)'m; — 2miAG (A — A)'my — 2miAG A M/ M (A — A)(A — A)'m;.

By A’M'S; M = 0, we can rewrite the 13th term as —2m}AG A’ M'S; (0 —T)J; r. Further
consider the sum of the 1st, 8th, 9th, 12th and 16th terms, which is equal to

I . 1 FA . .
— 29 Tir — 2m;AglA’M'Ee_elf Z erfiNm; + 2miN G AN M'S ) M(A — A)A'm;
t=1

T
n A A~ ~ 1
+2mAG A M'S N — Ty, — ZmQAglA'M’E;}T Y ewgivi
t=1

1 & 1
= 29} A + 29[ AL N'mi + 29[ Ay > grei — 29/QN' TS = 7 Z etgivi + 27 Al — Z frea
t=1
52 _ o2

a1 & 1
- 27;QN1F,2661T Z e f{Nm; — 29jQN' TS — T Z[eteit — E(ereqr)] + 29/Q% %%

1
—2ml(A — NG A M’ZeelT Z et fIN'm; + 2miAG PN M’ze;T Z es fiNm;

—2miAPSIA M) = Ze FINm; + 2mh(A — NGIAM'S M(A — A)A'm

— 2miAG Al N my + 2m, AA' W N'm; + 2m; (A NGAM'SHT — D)y 2m-AQA1A’21%~

+ 2mi A Ay v — 2ml(A — A)GIAM'S: 11

e T Z evgii + 2miAG Py A S ] . Z egiyi

t=1 t=1

a1 &
— 2m;AP]§1A’M’Ee_e1 T Z etgyyi

= ¢! {A LA - 1<I) ZeelT Zetht thet <I>’HN }d)@ + 27, AL 27 thelt

270,2

1
+ 279, A 1277 Z freir — 27QN'T EeelT Z[etez‘t — E(esen)] + 27/Qy %%

—2ml(A — NG A M'S!

o TZe fIN'm; + 2miAG PN M'S, 11 Ze fiNm;

eeT
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+2ml(A — NG A M'S M (A — A)N'm; — 2miAG A N'm; — 2miAGL Al

T
+oml(A — MG A ML (E — Ty — 2m)(A — A)@lA'M'i;el% 3" e

+ 2m;A§1P]§1A’M Eeel T Z etgyyi

= ¢/ A'Agy; — 2¢’A’ Z hie, S OH N G — GHN DD (Bee — o) ol OH N s + 27 AL o Z gieit

1 e
+ ¢;/HN1(I) 2eelj—v Z(eteé - Eee ) (I)/HN1¢% + 27@ 12T Z ftelt + 271QN 7% 62
t=1 %
1 U
—2ml(A — NG A M'S = 7 Z es fiNm; + 2m§AQlP§1A’M’E;}T > e fiNm;
t=1

+2mi(A — NG A'M'S: 1M(A MA'm; — 2miAGL A N, — 2m4AQ1Aglyi

+2ml(A — NG A M'SHE — Ty — 2mi(A — A)GIA M'S 11 Zetgt%

ee T
1 T
+2m/, AglP A’ MY ZeelT Z etgyyi — 2%{QN1F EeelT Z[eteit — E(eteir)).
t=1
Given the above result, we can rewrite 67 — o7 as
T
Z f)/l) ( '72) + 1027

where

Tipe = mj(A — A)(A = A)Y'm; — 2mf(A — A) = Z frei + 2m, Agl— Z freir

tl tl

+2mAGAM'S I M(A = A) Z frei + 2mIAG A MSZIM(A — A)(A — A)Y'my

t 1
—2mAGIN M'SHT — D) Jir 4 2mlAG AN M'SHD — T)(5i — )
AQ 02 . . T
—I—Qm AglA’mz 0_12 L 2m;Ag1A/M/Eeelf ;[eteit — E(eteit)]

~

—2m4A¢1( A — A)'m; — 2mAGIA M/ M (A — A)(A — A)'m;

+ LA Aps — 2¢lA’ Z hee, S OH N ¢ — GIHN O (Bee — Bee) S OHN + 29 Ay~ o Z Gi€it

=
T R o 0_2
+oiH N O EeelT Z(ete; — S S OHN ¢+ 291 A 127 Z freaw + 29/QR % &
1 NPTV
—2ml(A — A)GIANM'S) T Z ecfiN'm; + 2m;AglP]§1A/M/Ze_elf Z ecfiN'm;
t=1 t=1

—|—2m; (/A\ - A)gAlA,M/ie_elM([\ - A)A'ml - 2m2AgA1A’HA'ml - 2m;AgA1A'21%
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T
+2mli(A = N)GANM'EHT —T)y; — 2ml(A — A)glA’M’E;}T > ewg)i

T

1 41
+2m; AglP YA/ M ZeelT Z etgiyi — Q%QNIF S T Z[eteit — E(etet)).
t=1

Given the expression of ‘7;:02, one can show that

bibl 1 1 1
— J = Op(———) + Op(=+)-
Z 4 ‘7 o? <N\/T)+ p(\/NT)+ p(T3/2)
Given this result, we have
1 & Gid) o 1NT¢Z¢’ 1 1 1
—Z (67— —ZZ L(es— ——7“17-[—|—O (—=)+0,( )+O0p( )
N & o; NT &= & o} NVT VNT T3/2
Let Ey = [0pyxrys Iry). We introduce the following notation for ease of exposition:
i ¢}
ZZ ok i - 2)7
i=1t=1 i
o 1 1 @ 1
i —7"17-1 + 7 Z i4—0l) — szEé
Using similar arguments as in the derivation of (B.22), one can show that
1 1
DIy 1)+ (16 K ) K Jvec(4) = DveelC” = %)+ Oyl 5-72) + Ol ) + Onl s -
Let D;,D2 and D3 be defined the same as in the main text. Similar to (B.24), we have
1 1 1
Dyvec(A) = Davec(n®) + Dsvec(¢*) — Davec(p*) + Op(—=) + O, +0
vvec(4) = Davec(s) + Davee (") = Davee() + Oyl - =) + Ol =) + Onl 775 -

Also notice that

N T
vec(n*) = VGC[ thet @HN} —V(—}C{%ZZ% e ™ }
i=1t=1 Yi
=H'® Ir)L > i(ﬁbz ® hy)eit
NI == o?
1 XX
(H eI )W;;g@?l[\ m; + Eyvi) @ (E1ft + Eagr)eit
) / 1 NI
=[(H BN E]ﬁ;;ag(mz@ft)ezt
1 X1
+ [(H lElA/) X EQ]W 21; ?(mz b2y gt)ezt



1 L4
+ [(H T Er) ® By)—= Z Z —5 (7 ® gt)eir,
NT i=1t=17i
N T / N
1 618} 1 1 P
vec(¢™) —vec—zz 4Z —sz b @ ¢;)(e ),

[NT i—1t=1 i } NT == o

1 ¢l¢/ 4 1 /

vec(u*) = vee| =rmH + —= Z 5 (Kia —0;) — = E2Ey

[T NT = o; ! T }

1 X1

NTZX;U

Given the above result, we have

1
(¢ ® ¢i)(Kia — 0F) + Tvec [r17-[ - EQEQ}

1 N
vec(A) = Dy ' Do[(Hy' E1A) @ By]—= >

NT a mz ® ft)ezt
=1t

1

M=
@qw‘ —

1

+ ]D)lil]D)Q[(/H]iVlElA,) X EZ] 2 (mz & gt)ezt

Z‘H
M=
MH

Il
N o=

i gy

Il
—_

)

T -
1 N

+ Dy Do[(Hy B) ® Brl o DD
NT i=1t=1

| -

(7 ® fi)eir

Q
SN

1

N T
+ DD [(HY E2) ® Ea]l—= > ) — (7 @ gi)eit
NT i=1t=1

—_

&Q

= 1 SAd 1 2
2:1 t=1 "1

1 X1 1
Z —5 (0 @ ¢i)(Kia — af) + Tvec [rl’HN — E2E5:| }

— ]D)1D3{
z*l 9;

1 1

NiﬁH—Op(i)—l—O o (

+ Op( JNT
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Now we define

(D.24)

B} = R ® I, + Kir, [(PT'A) ® A] — Kiy, (B @ U)D7 ' Do[(Hy' E1A) ® E4],

By = Kior, [P © 6] — Kpory (B} © U)D} ' Da[(Hy' E1) © B,
B} = — K, (B] © U)D; 'Da[(Hy' Es) © B,
B} = —Kjr, (B} © U)D; 'Do[(Hy' Ea) ® B,

B = — K, (B} @ U)D; 'Dj,
N

1
A* = K, (B} @ U)D IID)g[ 2—6 bi @ ¢i)(Kia — o) +vec(riHy — E2EY)|.
3 ’L

=1

Substituting (D.24) into (D.22), we can rewrite (D.22) in terms of B} as

A 1 X Z Al
vec(A — N) = B{ﬁ ZZ ﬁ(mz ® fi)ei + Bi— NT - ZZ (A m; @ gi)eit
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1 N
+1533NTZ

1=1t=1 "1
+ B (618 6)(e} — o?) + A
SNT & & P &P = Ti) T

1 1 1
N7\/T) "‘Op(\ﬁT) + 0 (T3/2)

Given the above result, by a Central Limit Theorem, we have

g

.
I
_

t=1

Mz
M=

1
—

+ Op(

A 1
VNT[vec(A' — &) TA*} 4 N(0, %),
where Q* = lim Q3 with
N—o0

=Bi(R®I,)BY +B5(P® I,)B5 + B3(Q ® I, >IB%*’ +B3(Q ® I,)BY
1 N

+BY(S® 1, )BY +BY(S' ® L )BY + B} Y 5 (9i6) © (@i6) (i1 -

1= 1

Appendix E: More simulation results

1 L1
(%®ft €zt+B4NT227 Vi @ gt)eit

U?)}IB%E’.

In Section 7.1, we present the comparison results of MLE and PC estimates when errors

follow normal distribution. In this appendix, we provide addition comparison results when

errors follow t-distribution and x?2-distribution, in the following Table E1-E4.

Table E1: k=3, r =1, and ¢; ~ t5.

Azx1 MLE PC

N T | MAD | RMSE | RAvar | MAD | RMSE | RAvar

30| 30| 0.0451 | 0.0717 | 2.1513 | 0.1016 | 0.1499 | 4.4964
50 | 30 | 0.0328 | 0.0523 | 2.0249 | 0.0682 | 0.0997 | 3.8633
100 | 30 | 0.0229 | 0.0346 | 1.8956 | 0.0465 | 0.0676 | 3.7001
150 | 30 | 0.0198 | 0.0293 | 1.9675 | 0.0384 | 0.0547 | 3.6675

30 | 50| 0.0319 | 0.0495 | 1.9184 | 0.0781 | 0.1114 | 4.3136
50 | 50 | 0.0227 | 0.0365 | 1.8257 | 0.0558 | 0.0804 | 4.0183
100 | 50 | 0.0166 | 0.0262 | 1.8536 | 0.0367 | 0.0522 | 3.6946
150 | 50 | 0.0142 | 0.0220 | 1.9064 | 0.0302 | 0.0426 | 3.6906

30 | 100 | 0.0227 | 0.0371 | 2.0298 | 0.0679 | 0.0965 | 5.2859
50 | 100 | 0.0154 | 0.0251 | 1.7734 | 0.0448 | 0.0642 | 4.5430
100 | 100 | 0.0111 | 0.0179 | 1.7883 | 0.0280 | 0.0394 | 3.9425
150 | 100 | 0.0094 | 0.0151 | 1.8436 | 0.0221 | 0.0313 | 3.8328

Table E2: k=8, r =3, and ¢;; ~ t5.
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A3zx1 MLE PC
N | T| MAD | RMSE | RAvar | MAD | RMSE | RAvar
30 | 30 [ 0.3478 [ 0.4961 | 14.8830 | 0.5800 | 0.8257 | 24.7707
50 | 30 | 0.2379 | 0.3498 | 13.5469 | 0.3959 | 0.5677 | 21.9853
100 | 30 | 0.1461 | 0.2217 | 12.1448 | 0.2236 | 0.3244 | 17.7679
150 | 30 | 0.1156 | 0.1751 | 11.7477 | 0.1661 | 0.2415 | 16.2004
30 | 50 | 0.2584 | 0.3742 | 14.4935 | 0.5165 | 0.7541 | 29.2059
50 | 50 | 0.1727 | 0.2530 | 12.6510 | 0.3226 | 0.4753 | 23.7656
100 | 50 | 0.1154 | 0.1826 | 12.9116 | 0.1816 | 0.2686 | 18.9961
150 | 50 | 0.0930 | 0.1429 | 12.3777 | 0.1402 | 0.2069 | 17.9150
30 | 100 | 0.1880 | 0.2761 | 15.1209 | 0.4626 | 0.7075 | 38.7519
50 | 100 | 0.1249 | 0.1928 | 13.6358 | 0.2734 | 0.4208 | 29.7560
100 | 100 | 0.0812 | 0.1321 | 13.2061 | 0.1410 | 0.2144 | 21.4392
150 | 100 | 0.0639 | 0.1025 | 12.5593 | 0.1065 | 0.1592 | 19.5004

Table E3: k=3, r =1, and €; ~ x%(2).

Azx1 MLE PC
N | T | MAD [ RMSE [ RAvar [ MAD | RMSE | RAvar
30 | 30 [ 0.0409 | 0.0649 | 1.9461 | 0.0941 | 0.1394 | 4.1808
50 | 30 | 0.0319 | 0.0497 | 1.9248 | 0.0707 | 0.1011 | 3.9147
100 | 30 | 0.0225 | 0.0351 | 1.9249 | 0.0459 | 0.0654 | 3.5813
150 | 30 | 0.0207 | 0.0320 | 2.1499 | 0.0388 | 0.0553 | 3.7093
30 | 50 | 0.0335 | 0.0541 | 2.0942 | 0.0841 | 0.1216 | 4.7105
50 | 50 | 0.0229 | 0.0362 | 1.8116 | 0.0569 | 0.0826 | 4.1296
100 | 50 | 0.0172 | 0.0281 | 1.9877 | 0.0371 | 0.0526 | 3.7186
150 | 50 | 0.0135 | 0.0208 | 1.7992 | 0.0285 | 0.0401 | 3.4761
30 | 100 | 0.0220 | 0.0362 | 1.9845 | 0.0673 | 0.0959 | 5.2502
50 | 100 | 0.0165 | 0.0274 | 1.9405 | 0.0456 | 0.0647 | 4.5738
100 | 100 | 0.0109 | 0.0175 | 1.7453 | 0.0281 | 0.0397 | 3.9739
150 | 100 | 0.0088 | 0.0141 | 1.7298 | 0.0219 | 0.0311 | 3.8117

Table E4: k=8, 7 =3, and €; ~ x?(2).

Az MLE PC
N| T [ MAD [RMSE | RAvar | MAD | RMSE | RAvar
30 | 30 | 0.3446 | 0.4909 | 14.7279 | 0.5657 | 0.8061 | 24.1843
50 | 30 | 0.2353 | 0.3481 | 13.4800 | 0.3746 | 0.5424 | 21.0072
100 | 30 | 0.1547 | 0.2475 | 13.5542 | 0.2242 | 0.3258 | 17.8441
150 | 30 | 0.1203 | 0.1893 | 12.6995 | 0.1752 | 0.2559 | 17.1631
30 | 50 | 0.2632 | 0.3831 | 14.8379 | 0.5189 | 0.7618 | 29.5025
50 | 50 | 0.1795 | 0.2697 | 13.4851 | 0.3214 | 0.4769 | 23.8459
100 | 50 | 0.1160 | 0.1803 | 12.7504 | 0.1813 | 0.2632 | 18.6091
150 | 50 | 0.0959 | 0.1656 | 14.3393 | 0.1417 | 0.2096 | 18.1551
30 | 100 | 0.1839 | 0.2687 | 14.7185 | 0.4666 | 0.7114 | 38.9666
50 | 100 | 0.1271 | 0.1945 | 13.7531 | 0.2718 | 0.4124 | 29.1630
100 | 100 | 0.0854 | 0.1452 | 14.5163 | 0.1439 | 0.2214 | 22.1428
150 | 100 | 0.0676 | 0.1151 | 14.1010 | 0.1045 | 0.1617 | 19.8014
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Appendix F: More comparison of W and LR

In this appendix, we compare the empirical size and power of our W test with the LR test
proposed in Tsai and Tsay (2010). Their LR is a modified likelihood ratio test statistic
with the Bartlett’s correction factor,® which is defined as

LR= (T~ % - %T) (InfS] — nfS,)
where 3. = MAA'M + 3., and 3, = LI/ + e, with A, See being the MLE from the
constrained factor model and f}, 266 being the MLE from the unconstrained factor model.
We run simulations based on the same data generating processes as in Tables 3 and 4,
with the empirical size and power results of LR provided in the following Tables F1 and
F2 respectively. Comparison can be made based on these tables as below.

From the empirical size results in Table F1, we have following observations. First, LR
is not working when N > T, as the empirical sizes of LR are close to zero (or exactly
equal zero) when N > T and suffer severe size distortion when N = T. This is due to

the definition of LR, as the correction factor (T — 2]\[67*11 — 2{) might be too small or

even negative when N > T and then LR won’t be able to reject Hy.® This finding might
explain why Tsai and Tsay (2010) only considered the small N(= 30) and large 7'(> 100)
cases in their size analysis. Second, when N is too big, LR is also not working even if
T > N, as the empirical sizes of LR are close to one when N = 100, 200,300 and T" > N.
With comparison, as shown in Table 3, W test statistic works well in all combinations of
(N, T') except some small size distortion under small 7'(= 30). Therefore, in terms of size,
W performs better than LR.

From the empirical power results in Table F2, we can see that LR has very low power
when N > T, due to the same reason as in the size analysis. Although LR has higher power
than W in some cases when T is much bigger than N (like (N, T") = (30, 150) or (100, 500)),
such difference of power between LR and W decreases as « increases and gets close to zero
when v = 2 and 5. With comparison, as shown in Table 4, the power performance of W is
more consistent as it works well in all combinations of (N,T") and very close to one when
a =2 or 5. So overall, W also performs better than LR in terms of power.

In conclusion, the overall performance of W test statistic dominates that of the LR

0ne.®

PTsai and Tsay (2010) adopted the suggestion of Bartlett (1950) and Anderson (2003, p. 581).
®We also check the empirical size for the likelihood ratio test without the correction factor, denoted as

LRy =T (ln|ﬁlc| — ln|i]u|> . In the case N > T, the empirical size of LR is close to one, which might

because without correction factor, LRz is too large due to the T part and LR» rejects Ho most of the time.
®We also run simulations when errors follow student’s or chi-squared distribution, and similar comparison
results can be concluded.
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Table F1: The empirical size of the LR test for the case (k,r) = (3,1) under normal errors
Empirical size of LR
€t N(O, 1) t5 X2(2)
N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
30 30 0.3% 105%  27.4% 1.3%  11.0%  28.6% 0.9% 10.0%  26.7%
50 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
100 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
150 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 50| 23.7% 724%  90.6% | 25.0% 70.3%  88.4% | 25.0% 72.4%  90.0%
50 50 50% 27.8%  55.1% 4.3%  29.3%  55.8% 4.5%  30.8%  56.7%
100 50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1%
150 50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 100 | 64.4% 953%  99.6% | 67.7%  96.1%  99.8% | 69.2%  96.7%  99.6%
50 100 | 77.3%  98.4%  99.7% | 787%  98.5%  99.9% | 80.4%  98.2%  99.6%
100 100 | 29.4%  74.4% 91.1% | 27.6% 77.9%  92.7% | 28.5%  75.0%  91.0%
150 100 0.1% 0.1% 0.3% 0.0% 0.0% 0.3% 0.1% 0.1% 0.1%
30 150 | 79.3%  982%  99.9% | 79.3%  98.7%  99.8% | 785%  98.5% 100.0%
50 150 | 95.7%  99.9% 100.0% | 95.0%  99.7% 100.0% | 93.8%  99.6% 100.0%
100 150 | 96.3% 100.0% 100.0% | 95.8% 100.0% 100.0% | 96.5% 100.0% 100.0%
150 150 | 65.1%  95.2%  98.5% | 65.2%  93.6%  98.3% | 65.2%  95.0%  98.9%

100 100 | 29.4%  744%  91.1% | 27.6% T7.9%  92.7% | 28.5%  75.0%  91.0%
200 100 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2% 0.2%
300 100 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
100 200 | 100.0% 100.0% 100.0% | 99.6%  99.9%  99.9% | 99.8% 100.0% 100.0%
200 200 | 81.5% 93.4% 93.5% | 82.7%  942%  94.8% | 832%  943%  94.7%
300 200 0.3% 0.3% 0.4% 0.1% 0.2% 0.5% 0.3% 0.3% 0.4%
100 300 | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
200 300 | 94.7%  94.7%  94.7% | 94.3%  943%  94.3% | 95.0%  95.0%  95.0%
300 300 | 74.0% 74.8% 748% | 76.6% 76.8%  76.9% | 74.0% 14.3% 74.4%
100 500 | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
200 500 | 934% 93.4% 934% | 94.7%  94.7%  94.7% | 93.8%  93.8%  93.8%
300 500 | 77.4%  T7A4A%  T7A4A% | 75.0%  75.0% 75.0% | 77.0% 17.0% 77.0%
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Table F2: The empirical power of the LR test for the case (k,r) = (3, 1) under normal errors

Empirical power of LR
« 0.2 0.5 2 5
N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
30 30| 16.9% 354%  54.0% | 44.4%  60.8%  73.5% | 89.0%  93.6%  96.6% | 99.6% 100.0% 100.0%
50 30 6.0% 9.5% 11.2% | 25.3%  31.4%  34.9% | 71.9% 76.2%  78.6% | 97.5%  98.5%  98.7%
100 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
150 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 50| 54.8% 84.8%  95.9% | 72.6% 91.3%  97.3% | 96.2%  99.5%  99.9% | 99.9% 100.0% 100.0%
50 50| 33.3% 60.0% 77.7% | 61.5%  782%  87.5% | 95.6%  98.4%  99.4% | 99.9% 100.0% 100.0%
100 50 6.4% 7.4% 83% | 26.3% 31.6% 33.9% | 68.2% 70.5% 72.7% | 94.3%  95.3%  96.1%
150 50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 100 | 79.3%  974%  99.6% | 90.9%  99.4%  99.7% | 99.2% 100.0% 100.0% | 100.0% 100.0% 100.0%
50 100 | 91.0%  992%  99.9% | 95.6%  99.8% 100.0% | 99.9% 100.0% 100.0% | 100.0% 100.0% 100.0%
100 100 | 66.4%  922%  98.1% | 83.0%  95.8%  99.1% | 99.0%  99.9% = 99.9% | 100.0% 100.0% 100.0%
150 100 | 28.9%  36.1%  41.1% | 57.1% 61.4%  63.5% | 85.6%  89.1%  92.4% | 99.8%  99.9% 100.0%
30 150 | 88.4%  99.5% 100.0% | 94.9%  99.8% 100.0% | 99.7% 100.0% 100.0% | 100.0% 100.0% 100.0%
50 150 | 97.7%  99.8% 100.0% | 99.2% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
100 150 | 99.0% 100.0% 100.0% | 99.3%  99.9%  99.9% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
150 150 | 85.7%  97.9%  99.0% | 92.1%  98.3%  98.8% | 99.1%  99.3% = 99.3% | 100.0% 100.0% 100.0%
100 100 | 69.3%  90.4%  97.6% | 84.2%  96.0%  98.9% | 982% = 99.9% 100.0% | 100.0% 100.0% 100.0%
200 100 82% 10.6% 11.4% | 34.6%  38.0%  40.1% | 70.9% 728%  735% | 93.9%  95.0%  95.2%
300 100 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
100 200 | 99.9% 100.0% 100.0% | 99.9% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
200 200 | 90.2%  93.9%  94.1% | 92.9% 94.3%  94.3% | 95.8%  95.9%  95.9% | 98.2%  98.2%  98.2%
300 200 | 195%  23.8%  26.6% | 37.0% 39.9% 425% | 66.7%  70.6%  724% | 82.0% 822%  82.2%
100 300 | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
200 300 | 93.6%  93.6%  93.6% | 93.8%  93.8%  93.8% | 95.1%  951%  95.1% | 97.4%  97.4%  97.4%
300 300 | 75.7% 7.8% 7.8% | 76.0% 76.1% 76.1% | 77.3% 77.3% 77.3% | 85.3%  85.3%  85.3%
100 500 | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
200 500 | 93.1%  93.1%  93.1% | 94.9% 94.9% 94.9% | 94.8% 94.8% 94.8% | 96.8%  96.8%  96.8%
300 500 | 79.7%  79.7%  79.7% | 75.6%  75.6%  75.6% | 80.9%  80.9%  80.9% | 79.9%  79.9%  79.9%

Appendix G: Proofs of the theoretical results in Section 9

In this appendix, we define the following notations:

1, A P A . R .
P= NA’M’W_IMA; R = NM’W‘IM; G= (I + NM'WMA)™Y

A

Py=N-P=AMW'MA, Ry=N-R=MW'M, Gy=N-G.
Then we have If”;\,l =G -G)! and
Sl =W - W MAL + N MW MA) A MW, (G.1)

and

NM'SZ = NMW™ — NM'WMA(L + N MW MA) A MW = GA MW,
(G.2)
Before starting, we first introduce the following lemma, which are useful throughout the
proofs in this appendix. C' is a large enough constant.
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Lemma G.1 From assumptions of A and B”, we have

Further, we have

L3 3 e = 0y
— = ei|| = ;
Niil Tt:l o 8

© LSS ) = o,
NZ' - Tt - it 7 p )

1 & 2
ZZ( > leieje — E eztejt)]) = 0,(T™Y);

=1 t=1

Proof of Lemma G.1 follows directly from Assumption A and B”, so omitted here.

Appendix G1: Proof of the consistency of the MLE in Section 9

Similar to Appendix A, we use symbols with superscript “*” to denote the true parameters
and variables without superscript “*” denote the arguments of the likelihood function in this

section. Let 6 = (A,w?, - ,w%) and let © be a parameter set such that A take values in
a compact set and C—2 < w? < C? for all i = 1,..., N. We assume 6* = (A*, w}?, - ,wi?)

is an interior point of ©. For simplicity, we write § = (A, W) and 6* = (A*, W*).
The following lemmas are useful to prove the following Proposition G1.1, and Proposi-
tion G1.1 will be used in the proofs in the following Appendix G2.

Lemma G1.1 Under assumptions of A, B”, C" and D", we have

1 T
t A*/Ml —1 */ p O
(a) sup o r| Zetft || %
d p
b t 2! ;
(b) Slelg NT r{; erey — } = 0;
(¢) sup kS tr{(@* - W*)Eil} 20,
pco N - 7

where 0* = (A*, W*) denotes the true parameters and X,, = MAN M’ +W.

Proof of Lemma G1.1 (a)(b) is similar to that of Lemma A.1, and proof of G1.1(c) is similar
to that of Lemma S.3(b) in Bai and Li (2016), so omitted here.
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Lemma G1.2 Under assumptions of A, B”, C" and D", we have

= 0, ([ ot — i) ):

H%M«W* -] = 0, 2w,

Given the above results, if N~ SN, (07 — wi?)? = 0,(1), we have

H NA*’M’(W— — W MA

() Ry = Op(N), &= Ry =0,(1);
(d) R = 0p(1).
where R and Ry are defined in the beginning of Appendix G.
Proof of the above lemma is similar to that of Lemma A.2 and hence omitted here.

Lemma G1.3 Under assumptions of A, B’, C" and D", we have

1A71A AfllT 1 1 1/22 712,
(a) P ' AM'W thl(ete;—@)w MAP™ = |P=12|2. 0,(T1/?);

PSP _
(0) PIAMW Zetft [B=Y2] - Op(T™2);
1 ~ .- ~
(c) WIP*A’M’W* (W — W)W MAP~! = [P - 0,(1);

(d) %@*%’M’W*%@-W)w IMAB! = [BV2|2 - 0,(NY/2):

)

| A -
() s 2 JeetW I MR™ = O,(T~17?);
NT st
L X T .
() P MW Zetet WMR™ = ([P 0,112
1 1R/ A sr—1 7 rh—1 p—1/2 L 5 2 22%
(9) WP NMWH (W - W)W MR™! = ||P H'Op([N:J,Z(w _wi)} >;
i=1
1 . .
(h) WP_lA/MW (@ W)W_lMR_l _ H]P;—l/QH . Op(N_l)'

Proor orF LEMMA G1.3. Proofs for (a)-(c) and (e)-(g) are similar to those for Lemma
A3, so we only include the proofs for (d) and (h) which are different from Lemma A.3.
Consider (d). The left hand side can be rewritten as

N N k
%@71/2 [Z 3 ]P,]—Vm% S Ay [@U 1(i = j)w 2] Z Ny 1/2} -1/2,
i=1j=1 Wi )= )

where 1(i = j) is the indicator function, equals 1 if ¢ = j and 0 otherwise. The above
expression is bounded in norm by

=2

N

Yas s @)

i=1j5=1,j7#1

N
oI (3 —HP‘WZApmw
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. 2
which is |[P~1/2(|2 - O,(N~'/?) by the fact that ( i—1 A2 ]P’Nl/2 Sk Apmap ) = r and

(% SN Z;V:L#i(@)ij) ) is Op(1) from Assumption B”. So result (d) follows.

Next consider (h). Similarly, the left hand side can be rewritten as

p-1/2 Sl ~-1/2 1 . L la—
N3/2 [ZZ;]PN wz:l/\pmw{@m 1(i = j)w i|11\)?m:|R ;
: = p:
which is bounded in norm by
B 1||( —HP‘”ZZ&pmz ) ( zH S oym|)”,
= p=1 =1 j=1,j#i

which is ||[P~1/2|| Op(N71) by R = Op(1) from Lemma G1.2(c) and H Z;V:l,#i (O)Z-jij =
O,(1) from Assumption B”. Hence we have result (h). O

Proposition G1.1 (Consistency) Let 6 = (A, W) be the MLE that mazimizes (9.1).
Then under Assumptions A,B", C" and D", together with IC", when N,T — oo, we have

R 1 N
A-ADo; NZ(@?—wi?)?&o.

PrROOF OF PROPOSITION G1.1. Similar to the proof of Proposition 4.1, we consider the
following centered objective function

L) =T'(0) + R1(0),

where

Ftoy 1 1 e S
L'(9) = -+ n[Z=| Ntr(E Sz )+1+ In |27 |

and 1
+ - Rt —1
RY(0) = — e[ (M - B2)22Y,

where ¥, = MAAN'M'+W and X%, = MA*AY M’ +W*. By the definition of M., we have

R0) = —2yunlun 3 frzs] - oSt - 098] - gulior - wss]
t=1

By Lemma G1.1, we have supy |RT(0)| = 0,(1). Then using the same approach as in the
proof of Proposition 4.1, we get ZT(§) > —2|op(1)|, which implies

]. S ]- * 1 s nr—1 p
7 10 W] — < In [W*] + e[ W W] —1 50, (G.3)

%tr[MA*A*’M’i;j] N (G.4)
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The above arguments further imply

~ > (@F —wi?)? 5 o. (G.5)
i=1

which is the second result of Proposition G1.1, and other results as following:

G= op(1); PX{l = op(1); (G.6)
%A*’M’W**MA* — (I, — A)%A’M’W‘lMﬂ(Ir —A) 5o, (G.7)
%([\ — AYYM'WIMA - A¥) — A(%A’M’W*lMA)A’ 2 0. (G.8)

where A = (A — A*)’M’W*M/A\I@’R,l. A A
We now consider the first-order condition for A. Post multiplying (9.2) by A implies
NM'SH M, —S.)SZ2MA = 0.
By (G.2), we can simplify the above equation as
NM'W M., — S )W IMA =0,

which can be further rewritten as

A MW MARN MW MA = —A MW= (W — W)W MA

. . . R . 1L . .
AN MW IMAAY MW MA + A’M'W*MA*T > fiegW I MA

t=1
. . 1 & . A . 1 & . .
+A’M’W*1T S ef N MWTIMA + A’M’W’lf > (ere; — O )W T MA
t=1 t=1
+A MW (O — W)W MA.
By the definitions of P and A, we have
1 1 &
o / D—1 A7 /v —1 / w\—1 AD—1
L= (I = A)' (I = A) + 5P A'M'W T;(etet—([) YW MAP
1 & 1 1 &
! * Ivw—1 AmD—1 D=1 A7 ru—1 */
+(IT—A)ﬁtz::1ftetW MAP™! + <P IAM'W T;ett(n—m

(G.9)
—WIP”A’M’W*I(W — WHWIMAP! + mIP>*1A’J\4'V\V*1(@* — WHW M AP!
:i1+i2+-"+i6, say

Compared to (A.14), there exists an extra term ig in the above equation, due to the weak
dependence structure of the error. Based on (G.9) and (G.8), together with Lemma G1.3,
we can show that A = O,(1) and ||P~!|| = O,(1). Furthermore, applying Lemma A.1 of
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the supplement of Bai and Li (2012) and using the identification condition IC2”, we can
prove that A = 0,(1).
Again, we consider the first-order condition (9.2), which can be simplified as (by (G.2))

NMW- M, — S WM =o0.

By the definition of M., the above equation can be rewritten as

) 1 A . P g
AN — A = AN+ (I - A)’T W MR + IP’J_VlA’M’W_lf > ef/A (G.10)
t=1 =1
o1 & . . P . .
+P A MW 7 > lee; — O W MR — Py A/ MW (W — W)W T MR
t=1
+P A MWL O — W)W MR

We want to show all the six terms on the right hand side of the above equation are 0,(1).
From the preceding results that A = 0,(1) and Lemma G1.3 (e), we know the first two
terms are 0,(1). From |[P~!|| = O,(1) and Lemma G1.3 (b)(f)(g)(h), we get that the rest
four terms are also op(1). Therefore we have N — A = op(1), which implies that AL A7
This completes the proof of Proposition G1.1. [J

Corollary G1.1 Under Assumptions A, B”, C" and D",

1o, e 1
(a) NA’M’W_lMA - NA*’M’W**MA* = 0,(1);
(b) IfDN - Op(N)7 P= Op(l)a G= Op(N_1)7 @’N - Op(1)§

©) %([x _AYMWMA = o0y(1),.

PrOOF OF COROLLARY A.1l. Proof for the above Corollary G1.1 is similar to Lemma A.1,
and therefore omitted here.

Appendix G2: Proofs of Theorem 9.1, 9.2 and 9.3

W@k

In this appendix, we drop from the symbols of underlying true values for notational

simplicity. The following lemmas will be useful in the proofs of Theorems 9.1 and 9.2.

Lemma G2.1 Under Assumptions A, B”, C" and D", we have

T
(a) %P*%’M’W*l% S (ere) — O)WIMAB! = 0,(T1/2);
t=1
L st R (W — i arABt — —o, (L S — u2y?] ),
(©) (W — W) = 50|y 2@F - wd?]");

1oy, A Al ~
(d) P IA'M'WHO - W)W IMAP = 0,(N~/?);
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1 & NN B
() ﬁthe;W MR = 0,(T~1/?);

L 5 14 co1 1 d Fr—1 75 —1 —1/2
(f) =P NM'W T;[ete;—@]w MR~ = 0,(T/?);

L A MW (W — W)W MR = L2 2y
(9) +2 (W — W) = =0 ([Ngl(wi—wn} );

T o 14 o I -
(h) 3P WMWHO - W)W IMR™! = 0,(N 7).

The above lemma is strengthened from Lemma G1.3, with its proof similar to Lemma B.1
and hence omitted here.

Based on (G.9) and 1C2”, together with Lemma G2.1, we have the following Lemma
G2.2, which corresponds to Lemma B.2 with modification.

Lemma G2.2 Under Assumptions A, B”, C" and D", we have

N
A= (A=A MW MAPY! = op(\lﬁ)m (=)+0,(|A=A|?)+0, ([;V > (@F—wp)’]

=1

[N
~

Proof of Lemma G2.2 is similar to Lemma B.2 and hence omitted here.

PROOF OF THEOREM 4.1. We can rewrite the first order condition (9.3) as

A

diag { (M — ) — (M = So) W MAGK' M’ — MAGA' M'W— (M. - $) } = 0.

With

1
MZZ_MAA’M’+W+MA thetJr Z et fiN M + = Zetet Q)+ (0-W),
t 1 t 1 t 1

we can further rewrite the first order condition (9.3) as

T
=7 Z ) + 2miA— Z freir — 2mAGA M'W~ DAt then
t=1 t 1 t 1
1 T
—2m A— e, W™ IMAGA'ml — 2m; 'AGA MW~ ereqr — Elege; G.11
;fu ' 2 leen — Blewn)]  (G11)
+ml(A = A (A = A)'m; — 2mi(A — AN)A'm; + 2mi(A — AN MW MAGA m;
~2 2
+2miA (A — AY MW MAGR m; + 25 2L AGA m; — 2m[AGA MW~ (0 — W),.
w.

)

where (O — W); denotes the ith column of the N x N matrix (O — W). Define
1 o Iw—1asram—1 D—1 A’ /A—l1 / ST—LasrAam—1
= 5> fEWIMAPY:  or =Py ANMWT 5 (ere) — O)W MAPL
t=1
@2 = PRIA MWL (W — W)W L MAPR!;
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o3 = P A M'WH(O — W)WM AP,

Using the argument deriving (B.10), we can rewrite (G.11) as

R 1< . 1< a1
w? - w? =7 ;(e%t - w?) —2ml(A — A)T ; frea + QmQAGT ; freat (G.12)
o1 I . 1
/ / IXN AT / NAY
+ 2m;AA T ; freir — 2m; AGA T ; freir + 2m; A1 GA'my;
— 2mAAGA m; — 2m/ Ay (A — N)'my + 2mAA(A — A)'m;
. . A 22— w? ..
+mlAA AN m; — 2miAA Y A'm; — 2m)(A — A)GAm; + 22 Y AGA m,
w;
o n . 1 &
+ mi A1 A'm; — miApaN'm; — 2m§AGA'M’W*1T Z[eteit — E(eseit))
t=1

+ mhi(A — A)(A = A)'m; + miApsA'm; — 2miAGA MW~ (0 — W),

=a;1+a;2+---+a;19, say.

Using the Cauchy-Schwartz inequality, we have

1 X 1 X
= (@7 —w)? <19 (llaiall® + - - + [las0l%).
N =1 N =1

Analyzing term by term of the first 17 terms on the left hand side of the above inequality
(similar to the derivation of (B.11)), and notice that the last two terms are O,(N~2), we

have

N
}V;(w% —w?)? = 0p(T ™) + 0, (N2) + 0, (& — AJP). (@.13)

Next, we consider the term ||[A — Al|. Using Lemma G2.1(b), (e)-(h) and Lemma G2.2,

together with equation (G.10), we have
R 1 N
A=A =0y(T") + Op(NTY) + Op([; D_(@F — wi)?]'/?). (G.14)

N i=1

Substituting equation (G.14) into (G.13), we get + S, (02 —w?)? = Op(T~1) +O,(N~2),
which is the second result of Theorem 9.1. The proof for the first result of Theorem 9.1 is
provided after Lemma G2.4. [J

The following two lemmas will be useful in proving the first result of Theorem 9.1.

Lemma G2.3 Under Assumptions A, B”, C" and D", we have
1o, a1 8 . .
(a) W]P_IA’M’W_lf > (ere; — Q)W MAP!
t=1

= Oy(N"IT712) 4 O (N 12T ) + 0,(T %)
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T

1.~ 44 ~ 1
(4) PTNMWL S ef) = Oy(N VATV + O, (1Y),
t=1

1 ~ ~ ~ ~ A A A
(0) 7P MWW - W)W MART = Op(NTITTYE) + 0p(N )

I

PSPV LA _
(d) =P 'WMW O - W)W IMAP™! = O,(N 1),

1 & . .
(e) o S R WIMR™ = 0,(N~V217Y2) 4 0,(T7Y);
t=1

P N e S—1 7 -1
(f) b N MW T;[ete;—@]w MR
= Op(N'T712) + Oy (NPT 1) + O, (T7%?);

1 - ~ ~ ~ ~ ~
(9) mIP>—1A’J\4’W—1(W — W)W MR = O,(N'T71/2) 4 O,(N~?);

i

o 14 . S -
(h) 3P 'WMWHO - W)W ITMR™! = 0,(N 7).

The above lemma is strengthened from Lemma G2.1, with its proof similar to Lemma B.3
and hence omitted here.

Lemma G2.4 Under Assumptions A, B”, C" and D", we have

1

VNT

Proof of the above lemma is similar to that of Lemma B.4 with Lemma G2.3 (a)-(d) and
the second result of Theorem 9.1, and therefore omitted here.

. P 1 1 R
A= (A=A MWTMAPY = O,( )+ Op() + Opl57) + Op(llA = Al).

PROOF OF THEOREM 4.1 (CONTINUED). Now we prove the first result of Theorem 9.1.
Notice that the term ||A — A||2 is of smaller order than A — A and hence negligible. Then
from (G.10), together with Lemma G2.3 and Lemma G2.4, we have

A 1

A=A =0p(—) + Opl) + Oy~

T N)‘

VNT

This completes the proof of Theorem 9.1. [J
From Lemma G2.4 and Theorem 9.1, we have the following corollary directly.

Corollary G2.1 Under Assumptions A, B”, C" and D', we have
1

A= (R = AYMWMARY = o,,(wlw) +0,(2) + 0plx7)
The following lemma will be useful in proving Theorem 9.2.
Lemma G2.5 Under Assumptions A, B”, C" and D", we have
(a) lifte;W*lMR]—vl = lET:Jf,ge{tivV*M]l%ijvl + Oy( ! )+ O (L) +0 (L)'
T = T4 VNT PENVT Prpsj2’
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(b) @;AMW*I% tz: erfl = P;&A’M’W*l% é:l etfi + O (\FT) +0 (N}/T) + Op(ﬁ);
(@ By AAHHO — W MRS = PR WO - W)W MRS + Oyl ) + Oyl )
(d) PFAMWHO - W)W MAPY = P A MW~ 1O — W)W MAPY! + Op(N\l/T) + Op(ﬁ);
(e) %M’(W‘l - W ! 21; £4ml —w}) + % imm’zﬁf

1 N

-5 m;m miAPY AN MWHO — W)W MAPL A'm;

i=1 {

1 X,
+ = Z mT M AGA MW=L (0 — W),
1

)+ Op(53)-

Oy( )+ On(7572

1 1
+0
fT) p( \/T T3/2
where @} = % Y1 Yo Bl(ef, — wi)(ef, —w?)].
PROOF OF LEMMA G2.5. First we reconsider the equation (G.12), which can be written

as
T A A A
Z ) + mIAPF A MW (O — W)W MAPRA'm, (G.15)
=1
— 2miAGA’M WO - W), + R,
where
_ o . 1Z _
'Ri = —2m§AGA/M/W_1T ;[eteit — E(ete,;t)] + Sz

with Using the argument deriving (B.10), we can rewrite (G.11) as
Si = —2ml( Z freir + 2m; AG Z Jteit (G.16)

+2m ’AA’ Z freir — 2m, AGA'L Z freir + 2mi A1 GA'm;
t 1 t 1

— 2m AAGA m; — 2mi Ay (A — A)'my + 2mAA(A — A)'m;

+ miAA AN m; — 2miAA" Y A my — 2ml(A — A)GA'm; + 2%2“’277@;1&@11'%
+ miApiA'm; — miApaNm; +mi(A — A)(A — A)'m,. 1
By the same arguments in the derivation of (B.18) and (B.19), we have
1<
N Z S? = O0,(N7'T™2) + O,(N2T™) + O,(T™?). (G.17)
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and further

N
1 ~ 1 1
—D R =0p(—=) + Op(=)- G.18
Now consider (a). Notice that
thet 1M - 722 Atheztm
i=11t= 1
N T ~2 2
1 Wi — w;
ZZ gfteztm 7221@72%%% =J1+J2, say.
i=1t=1 W NT Hi= wiw;
The term jo can be written as
1 NTToy 1 1
J2 - frew(efs—wi)m;——— - 2m; 'AGA MW~ ((O) W) | freiem
NTQZ;;; 22T NT;;w?wf{ } !
1 NT oy .
7 o D g [mARY M MW O — W)W MARY A freqm
i1 t=1 Wi Wi

N T
1 1 - . . . .
+= E § —5— Rifteiwm; = jo1 + joo + jo3 + joa, say.
i=1t=1 Wi wy

The term jo4 is bounded in norm by
51N ~21/21N 1 T
Yy SR | 2 3 e

which is O,(N~12T~1) + 0,(T~3/?) by (G.18). Similarly by

2] 1/2

1 Y Aaa ~ 2
T Hzm;AGA'M/W—l(@ —Wy| " = 0,(N ), (G.19)
i=1

and

= 0,(N7?), (G.20)

1 Y P . - 2
T2 Hm;AP;VIA’M’W—l(@ — W)WM AP A m;
=1

we can show that jog = Op(N_lT_l/z) and jog = Op(N_lT_l/Z). Then consider the term
J21, which can be rewritten as
N T T | NT T
2 / ; i
NTQZZZ Gl D IP I D o

i=1t=1s=1 i=1t=1s=1

The first term of the above expression is O,(N~/27~1). The second term is bounded in

2} 1/2

norm by

51NA2 221/21N1T
C [NZ(U% —wy;) } {N;HT;fteit

2 1 o 2 2
'HTZ% - w;
t=1
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which is Op(T_3/ 2). By the preceding results, we have

1 1
WT iyv7) tOrlgmr) |

Combining the above result and R = R + O,(T~/?), we have (a). Combining the above
result and P =P 4 O,(T~'/?) and A=A+0O (\/7) + Op(7) + Op(), we have (b).
Next we consider (c). Notice the expression of the left hand side is O,(N~!) from
Lemma G2.3 (h). Then by R = R+ O,(T/2), P =P+ 0,(T'/%), A = A + Op( ) +
Op(%) + Op(F) and 02 — w? = Oy (T~/2) + Op(NY) + Op(N~/2T71/2) from (G.15), we
have result (c). Result (d) can be proved similarly.
Finally we consider (e). The left hand side of (e) equals

T T
L the;/W*lM = i theQWAM + @) ( ) + @) ( G21)
T &~ NT

Y @2 2 D2 2 N (2 2)2
— wj; 1 We — w3 1 (wA—wA)
i m'm.:_f gmqn,’_{_i %mm —l1—|—l2, say
; 12 ’2 l Ni:l w? o N1=1 z‘zwf '
We first consider [1. By (G.15), [; can be rewritten as
N ~2 2 N T
1 w5 — w; 1 1
ll :_NZ 1w4 Zmzm;:_ﬁ — Zﬂ(ezt_wg)mzm
i=1 v i=1t=1 i
1 m!
_ mlT’L |:m A]P) 1A/M W (@ W)W IMA]P) 1A/m1:|
N= v
e ivj mm; [2m AGA' MW~ (0 — W) ]
N& w
R PR paca / & /
25 Y gt [AGA" MW 7 > lereir - E(ereir)]m}]mim; - D0 Smam!
= t=1 i=1 Wi

=li1+--+1li5, say.

First consider /12. Using the argument to prove (c), we have

1 L mgm 1 —1 1 1 1
llzz_N; w? mi AP A MW O — W)W MAPG A'm; + Oy N O R

Similarly, by the fact that [m;AGA’M'W=1Q — W),;] = O,(N~1), we have

1 N ! 1 1
ha = — 3 U om AGN MW (0 — W); + Op(—=) + Opl(~5)-

N = w} NVT N2
Then consider l14, whose (v, u) element (v,u =1,...,k) equals
1< 1
[ ZAGA’M W L2 lerein - E(eteit)]jm/imwmw]
i=1 t=1 w;

which can be proved to be O,(N~'T~Y2)+ O, (N /2T~ 4-0,(T~3/?) similarly as Lemma
G2.3(a). The last term [;5 is bounded by (using (G.17))

1 N B 1/2 B B B B B
ctl S L& =0T 0, (T o 0,10,
=1

86



Hence, we have

1 XX
= TNT 2 2 (S T wma
i=1t=1 "t
1 m _
NZ AP A MWL O — W)W M AP A'm;
=1
1 & omm!
1oy ! I A v —1
JWZ: o 2mIAGA M'W—HO — W),
FO(=) + Op ) + Oplgrs) + Ol )
NNT fT T3/2
Then consider Iy, which can be rewritten as (by (G.15))

RN I R, 2 | P
b= X 2 b a2y 3 e = b | R
11, AR I AR B AR,

N g it 4 g 3 (@ mam 425 3 [ 3 (el — )| dim
LA
2— 1IN 110y - ’
+N;w?w§dnmml log + -+ -+ log, say

where d; = miAPR A M'W—1(Q — W)W MAPR A'm; — 2m)AGA’ M'W—1(Q — W),;. We
analyze the six terms on the right hand side of the above equation one by one. The term
l99 is bounded in norm by

1 21/21N~21/2
208 % Z! e -udf] [F R

which is O,(N~1/2T~1) by (G.18). The term lp3 is bounded in norm by

1

08127&2 + Op(73):

Opl7)
=1

Similarly, by (G.19) and (G.20), we can show lay = O,(N72), los = O,(N~'T~1/2) and

log = Op(N_3/2T_1/2) + Op(N_lT_l). Finally, the term l2; can be written as

N Z wb [f Z(en —wy )} My = 55 Z W {T Z(eit - W )} mim;
=1 i=1 i=1 i t=1
The first term of the above expression is equal to
L @) ~1/2p—1
N > 5 Op(N~YV27—1).
i=1 1

where w? is defined in Lemma G2.5. The second term is bounded in norm by

10 [1 i(wz - wg)ﬂ 1/2 {1 iv: ’l ZT:(e2t — w?)
N NZTIH Z

i=1

471/2
} = 0p(T7%?).
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So

1 & wzg —1/2p—1 —3/2
Iy = NT;w—?mim;—i-Op(N PT1) +0,(T ).
Hence we have N
1 w? 1 1
7 ; O
;w?mm O ) + O

Combining the preceding results on [; and l2, we have result (e). O

PROOF OF THEOREM 9.2. In order to derive the asymptotic representation of A, we need
to derive the asymptotic behavior of A first. By equation (G.9), together with Lemma
G2.3 (a)(c)(d), Lemma G2.4 and Lemma G2.5 (d), we have

1 1

A+ A =+, +& 40, (NiﬁHO (fTHO viga) + Onl5a)

where
1 &, o . | o .
= 7 2 FeW I MAPT, & = P W MW (O W)W MAP

Taking vech operation on both sides of the above equation, we get

1 1 1
vech(A + A') = vech (i +n’1)+vech(§1)+0p(N\/>) (\/>T)+O (T3/2)+O (~3)-
further implying
2D vec(A) = 2D vee(n) + Dfvec(&a) + Opl~—=) + Op(—) + Oplizg) + Oyl

r r r p N\/T \/7T T3/2
(G.22)
where D; is defined the same as in Theorem 4.2. The above equation has w restric-

tions. Then by the identification condition IC"1, we know both A’(3M'W~'M)A and
N (M’ W-LM)A are diagonal matrices, which implies

ng{A’( MW M)A — A’(NM’W—lM)A} =
further implying (by adding and subtracting terms)

ng{(]\ A (S MWADA + A’(%M’W_IM)(A —A) (G.23)

N

(- AY(y

Using Lemma G2.5(¢) and A — A = Op(N~Y2T=1/2) 4 O, (T~1) + O,(N~1) from Theorem
9.1, we have

MW= M) (A — A)+A’[ M (W1 W‘l)M}A}:O.

ng{A’(%M'W*lM)(A A+ (A A)’(%M’W”M)A}
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= Ndg{¢1 — p1 + &2} + Op( )+ Op( )+ Op(375

1 1
NVT VNT T3/2

where

1 ! 1

N mim,; N 2
G =N g7 XX T DA = N3 Temami]a,

[y

and

1 X mm 1 1 1 1 Y mlm
£y = NZ " mAPI A MW HO-W)W L M APy A’mi—NZ miAGA MW~ (O-W);,

i=1 i i=1 i

with @? = & Ll ST Bl(e2, —w?)(e2, — w?)]. With the same definition of D as given in
Theorem 4.2, together w1th the definition of P, the preceding equation can be rewritten as

1 1 1

veck(AP 4+ PA') = veck(C1 — p1 4 &) + Op(——= \/NT) +Op(573) + Op(353):

1
)+ Op(

NVT

or equivalently

1 1 1 1
m)*’@a(m)*‘O (T3/2)+O (Ng)

Furthermore, we can rewrite the above equation as

Dvec(AP + PA’) = Dvec((1 — p1 + &) + Oy(

1 1 1
T O a0 )
(G.24)

restrictions.

D[(PRI,)+(I,®@P)K,|vec(A) = Dvec((1—p1+E2)+O0p( Ni/TH—Op(
r(r—1)
2

where K. is defined the same as in Theorem 4.2. The above equation has
Then combining (G.22) and (G.24), we have

2D _|2D;vec(m) 0 0
D(P® L)+ (I ®P)Kr]‘| vec(A) = [ 0 1 ] + lDVGC(Cl)] - [Dvec(,ul) (G.25)
Divec(&1) 0
i [ 0 1 [Dvec(fg)
Op(~— Op(— O, (— 0, (=
+ p(rﬁ) + p(m) + (T3/2) + (N )-

Let

Dl = 2D; ]

[D[(P ® I.) + (I,  P) K, ]

together with the same definitions of Dy and D3 given in Theorem 4.2, the above equation
can be rewritten as

Divec(A) = Dyvec(n ) + Davec((1) — D3vec(ur) + %]D)gvec(&) + D3vec(&2) (G.26)

1 1 1 1
O ) + Orls) + Onl(52)-
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Noticing that

1 —1 —1
vec(ny) = vec [NT Z Z ﬁfteitm;AIP’ } =P 'AN® IT)NT Z Z w7

and

where
1
G = Nm;AIP—lA’M’W—I(@ — W)W MAP'A'm; — 2miAGN A MW (OQ — W),,

we can further rewrite (G.26) to get the asymptotic behavior of A as following

N T
vec(A) = (D) "Dy (BN © 1) D0 DT (mi @ few (G.27)
1 NZ:th_ll Z
+ (]D)J{)_l]D)g,(A ® A)’ﬁ ; ; @(ml ® m;)(ej; — w;)
D) 'Ds(A® A)'L ﬁ: zg(mz ® m;)
NT i w?
N N
+ %(ID)J{)*l]D) %((Pflj\g ® (IP’*lA/)) % ;]%ﬁ w(;;])f (m; ® m;)
=1 1 al Si
+ (D) Dy Z; i @m)
T Op(<m) + Opl—=) + Oyl 75) + Opl~5):
N\/> \/NT T3/2 N2

Next consider equation (G.10), which is derived from the first order condition of A. By
Lemma G2.3 (f)(g) and Lemma G2.5 (a)(b)(c), we have

A 1 o 1 1 1
AN — A = A’A’+ﬁ§jfegw MR + P~ A’—MW § et fi N (G.28)

+¢& JrO(—1 )+ Op(—==) + Op(=7 ! )+O(1)

STUPNYT \/ NT 13/ N2
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where
& =Py A M'WHO - W)W MR

Taking vec operation on both sides of the above equation (G.28) and noticing that
N

1 — -
Vec[NTthetW MR~ }Vec[NTiZM:1

1 Y 1
vec[ 1A’ 1Zetft } —vec{ IA'ﬁ;t;w—g eltftA’}
1 Y 1
i = foeam 1
= K}, vec {ANT ; ; w? freim; AP }
1 LK1
1A/ - -
—Kkr[(]P) A)®A]NT;;’U)? (mz®ft)ezta
and
vec@):l((Rl)@(PlA’))li 5 By 0 m)
YN N & e wdw?
i=1j=1,47#i ¢ J
where K}, is defined the same as in Theorem 4.2, we have
. 1 NI
X@qu—Aﬁzzpgme4Aq@@Ay+R—1@1}447§:§:43<m%®fg@t (G.29)
NT = 5 wi
A A 1 1 1 1
® A)vec(A) 4+ vec(&3) + O, (Tﬁ) + Op(m) + O (T3/2) +0 (NQ)'

- KkT(IT

Plug (G.27) into (G.29), then we have

A/ BT 1 Y& 1 B S 1 2 2
vec( 1NT§§*12 m; @ fi)ei — QNTg;qu m; @ my)(es — w;)
+*N+*HT+O(71 )+O(L)+O(i)+0(1) (G.30)
T N PENVT PNT PArs/2

where IB%];, IB%;, A" and TI' are defined in the paragraph before Theorem 9.2. This completes
the proof of Theorem 9.2. [J

PRrROOF OF THEOREM 9.3. Given the results as in Theorem 9.2 and let N,T — oo and
N/T? — 0 and T/N?3 — 0, we can derive the following limiting distribution

A 1
AN AT T
VNT[vec(A' - A) A - S | % N,2),
= = lim ZEy7, and Zn7 is defined in Theorem 9.3. This completes the proof of

where
Theorem 9.3. OJ
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PROOF OF THEOREM 9.4. From equation (G.15) and the analysis in the proof of Lemma
G2.5(e), we know both the second and third terms on the right hand side of (G.15) are
O,(N71), and the last term R; is O,(N~Y2T~1/2) + O,(T~1), which directly implies the
asymptotic representation of 11322 as in Theorem 9.4. Hence we prove Theorem 9.4. [
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