
Journal of Econometrics 197 (2017) 76–86
Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Determining the number of factors when the number of factors can
increase with sample size

Hongjun Li a, Qi Li b,a, Yutang Shi c,d,∗
a International School of Economics and Management, Capital University of Economics and Business, Beijing, 100070, PR China
b Department of Economics, Texas A&M University, USA
c School of Finance, Nankai University, Tianjin, 300350, PR China
d Wells Fargo & Company, USA

a r t i c l e i n f o

Article history:
Received 17 December 2013
Received in revised form
31 May 2016
Accepted 5 June 2016
Available online 14 November 2016

JEL classification:
C2
C3
C5
G1

Keywords:
Principal components
Factor analysis
Increasing number of factors
Information criteria

a b s t r a c t

Correctly specifying the number of factors (r) is a fundamental issue for the application of factor models.
In this paper we develop an econometric method to estimate the number of factors in factor models of
large dimensions where the number of factors is allowed to increase as the two dimensions, cross-section
size (N) and time period (T ) increase. Using similar information criteria as proposed by Bai and Ng (2002),
we show that the number of factors can be consistently estimated using the criteria. We propose a new
procedure that avoids over estimating the number of factors while allowing for one to search for possible
number of factors over a wide range of positive integers so that it also avoids underestimation of the
number of factors. We conduct Monte-Carlo simulation to investigate the finite sample properties of the
proposed approach.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Factormodels have beenwidely used in economic analyses such
as forecasting economic variables, estimating variance–covariance
matrices with high dimensional data, and estimating average
treatment effects, among others. In practice a few common
factors may capture the variations of a large number of economic
variables. In the finance literature, the arbitrage pricing theory
(APT) of Ross (1976) assumes that a small number of factors can be
used to explain a large number of asset returns. Stock and Watson
(1998) and Stock andWatson (1999) consider forecasting inflation
with diffusion indices (‘‘factors’’) constructed from a large number
of macroeconomic series. Gregory and Head (1999) and Forni
et al. (2000) find that cross country variations have common
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components. Fan et al. (2011, 2013) use factor models to estimate
high dimensional variance–covariancematrices. Factormodels can
also be used to evaluate the impacts of various policies (e.g., Hsiao
et al. (2012)). By assuming that the cross-sectional correlations for
all the units are attributed to the presence of some (unobserved)
common factors, Hsiao et al. (2012), Ching et al. (2012), Bai et al.
(2014), Ouyang and Peng (2015) and Li and Bell (2017) use panel
data methods to construct the counterfactuals and to measure
average treatment effects of some policy interventions based on
factor models.

A fundamental issue of factormodels is the correct specification
of the number of factors, r . When the number of factors is
fixed, Bai and Ng (2002), Onatski (2009), Ahn and Horenstein
(2013), among others, have developed various approaches to
consistently estimate the number of factors. But many empirical
findings suggest that the number of factors may increase as the
dimensions of the data N increases, or T increases. For many
empirical analyses, the estimated number of factors ranges from
one to more than ten, see Ludvigson and Ng (2009), Giannone
et al. (2005) and Forni and Gambetti (2010). This suggests that the
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number of factors may depend on sample sizes. One reason that
the number of factors may increase with sample size is structural
break, new factors may emerge after economic environments
change. Using Bai and Ng’s information criteria, Ludvigson and
Ng (2007) find that the factor structure of their financial dataset
comprising of 172 (N = 172) series quarterly financial indicators
spanning the first quarter of 1960 through the fourth quarter of
2002 (T = 172) can be well described by 8 (r = 8) common
factors. Jurado et al. (2015) update monthly version of the 147
financial time series used in Ludvigson and Ng (2007) and combine
them with an updated version of 132 monthly macroeconomic
series used in Ludvigson and Ng (2010). They find that 12 (r = 12)
common factors can capture the variations of this new dataset
with 279 series (N = 279) spanning the period 1959:01–2011:12
(T = 636). Hence, finding in Jurado et al. (2015) supports the
argument that the number of factors may increase as sample size
increases.

Assuming that the number of factors r is fixed, there are many
papers in the literature analyzing the problem of determining the
number of factors. Some of themnot only fix the number of factors,
but also impose restrictions on the dimensions N and T , such
as Lewbel (1991), Donald (1997), Cragg and Donald (1997), Connor
and Korajzcyk (1993), Forni and Reichlin (1998) and Stock and
Watson (1998). Imposing no restriction on the relation between
N and T except that both N and T are assumed to be large, Bai
and Ng (2002) treat the determination of the number of factors
as a model selection problem, they propose some criteria and
show that the number of factors can be consistently estimated by
minimizing the proposed criteria. To improve the finite sample
performances of Bai and Ng’s criteria, Hallin and Liska (2007),
and Alessi et al. (2010) propose somemodifications to Bai and Ng’s
procedure by introducing a tuning multiplicative constant in the
penalty objective function. Onatski (2009) develops a test of the
null of k0 factors against the alternative that the number of factors
r satisfies k0 < r ≤ k1 for some finite positive integer k1. Onatski
also describes the asymptotic distribution of the test statistic with
critical values tabulated. Onatski (2010) suggests to determine
the number of factors from empirical distribution of eigenvalues
of sample covariance matrix. Ahn and Horenstein (2013) exploit
the fact that the r largest eigenvalues of the variance matrix of
N response variables grow unboundedly as N increases, while
the other eigenvalues remain bounded to estimate the number of
factors. All of the above mentioned works consider the case of a
fixed number of factors (r is fixed). The main difference between
our paper and the existing work is that we consider the problem
of determining the number of factors in a factor model where the
number of factors is allowed to increase as N or T increases.

Specifically, this paper is designed to provide an approach
which enables one to estimate the number of factors consistently
when the number of factors is allowed to increase as N, T → ∞.
We extend themethod of Bai andNg (2002) to penalize the number
of factors with a penalty function which is determined by the
sample sizes, N and T , as well as the maximum possible number
of factors allowed in the estimation. As the factors are unobserved,
the estimation procedure takes two steps. First, assuming the
number of factors to be an arbitrary number 1 ≤ k ≤ kmax, we
estimate the factors (F k) using the principal components method,
where kmax = kmax,N,T is the maximum number for possible
number of factors, which is assumed to be greater than or equal
to the true number of factors, whose value is determined by N
and T and it increases as N , T increases. Second, we select the
number of factors k̂ by minimizing a criterion modified from Bai
and Ng (2002), which is a function of k and the estimated factors
(F k). This criterion depends on the usual trade-off between good fit
and parsimony. We show that this method produces a consistent
estimator of the number of factors r . However, simulation results
show that the selected number of factors k̂ can be sensitive to the
choice of kmax and it tends to choose a k̂ that is larger than r when
kmax is large. We propose using a new (‘mode’ based) selection
procedure to overcome this problem so that the selected k̂ is not
sensitive to different kmax values used in practice.

The rest of this paper is organized as follows. Section 2 sets
up the model and presents the assumptions associated with
the model. Section 3 presents the estimating procedures and
the theoretical properties of the proposed estimators. Section 4
reports simulation experiments to examine the finite sample
performances of our proposed method when r increases with N
or T . Concluding remarks are given in Section 5. All the proofs are
given in the Appendix.

2. Factor models

We consider the problem of determining the number of factors
(r) in a static approximate factor model, allowing r = rN,T → ∞,
as N → ∞, or T → ∞, or both N, T → ∞, but with a slower rate
than min{N, T }, i.e., max{r/N, r/T } → 0, as N, T → ∞.

Let Xit denote the response variable for unit i at time t, for
i = 1, . . . ,N , and t = 1, . . . , T . Our model is of the following
form

Xit =
1

√
r
λ0′

i F
0
t + eit , (1)

where F 0
t is an r × 1 vector of common factors, λ0

i is the r × 1
vector of factor loadings, and eit is the idiosyncratic error of the
response variable Xit . The factors, factor loadings and idiosyncratic
errors are not observed. Without loss of generality, we can assume
that E(Xit) = 0. If this is not the case, we can de-mean the data
first.

Note that at the right-hand-side of our model (1), we divide
λ0′

i F
0
t by

√
r . This is because we allow for r to diverge when

N, T → ∞. If we do not divide λ0′

i F
0
t by

√
r , then the variance of

the systematic part, λ0′

i F 0
t , is proportional to r and the variance of

idiosyncratic error eit is finite, the variance of noise part over the
variance of information part will go to zero, or equivalently, the
goodness-of-fit R2 will converge to one. By dividing λ0′

i F
0
t by

√
r ,

we have Var(r−1/2λ0′

i F
0
t ) = O(1) and we can obtain a reasonable

goodness-of-fit that is not too close to one.
Let tr(A) denote the trace of a square matrix A. The norm of a

matrix A is defined as ∥A∥ = [tr(A′A)]1/2. We use M1 to denote a
generic positive constant and use N to denote the set of natural
numbers. We make the main assumptions as follows:

Assumption A (Factors and Loadings).

1. For all t , r−2E∥F 0
t ∥

4 < M1;
2. There exists a r × r positive definite matrix ΣF such that

∥T−1T
t=1 F

0
t F

0′

t − ΣF∥
p
−→ 0 as T → ∞;

3. max1≤i≤N r−2E∥λ0
i ∥

4
≤ M1 < ∞;

4. Let Λ0 be the N × r factor loading matrix with its ith row given
by λ0

i . Then there exists a r × r positive definite matrix D such
that ∥N−1Λ0′

Λ0
− D∥

p
−→ 0 as N → ∞;

5. Let λ0
il and F 0

tl be the lth components (l = 1, . . . , r) of λ0
i and F 0

t ,
respectively. Then for all (i, t),

E{[r−1/2
r

l=1

E(λ0
ilF

0
tl )]

4
} ≤ M1.

Assumption B (Idiosyncratic Components). As N, T → ∞ and 0 <
limN,T→∞

T
N < ∞,
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1. For all i and t , E(eit) = 0, E|eit |8 ≤ M1;
2. E(N−1e′

set) = E(N−1N
i=1 eiseit) = γN(s, t), |γN(s, s)| ≤ M1

for all s, and that

T−1
T

s=1

T
t=1

|γN(s, t)| ≤ M1;

3. E(eitejt) = τij,t with |τij,t | ≤ |τij| for some τij and for all t;
furthermore, N−1N

i=1
N

j=1 |τij| ≤ M1;
4. E(eitejs) = τij,ts and (NT )−1N

i=1
N

j=1
T

t=1
T

s=1 |τij,ts| ≤

M1;
5. for every (t, s), E|N−1/2N

i=1[eiseit − E(eiseit)]|4 ≤ M1;
6. We assume that there exist a T × T matrix L, a N × N matrix R,

and a T × N matrix ε such that

e = LεR

where L (T × T ) and R (N × N) are arbitrary non-random
positive definite matrices, and ε = (εti) is a T × N matrix
consisting of independent elements with uniformly bounded
7th moment and E(εit) = 0.

Assumption C. 1. Weak Dependence Between Factors and Id-
iosyncratic Components:

E

 1
N

N
i=1

 1
√
Tr

T
t=1

F 0
t eit


2
 ≤ M1;

2. Weak Dependence Between Factor Loadings and Idiosyncratic
Components:

E

 1
T

N
t=1

 1
√
Nr

N
i=1

eitλ0
i


2
 ≤ M1.

Conditions in Assumption A are modified from Assump-
tions A–B in Bai and Ng (2002) by taking care of the fact that
r → ∞ as N, T → ∞. It is easy to see that Assumption A1
holds true if E[(F 0

tl )
4
] = O(1) for all t = 1, . . . , T and for all

l = 1, . . . , r . A2 imposes a restriction on the rate of r . For example
withΣF = T−1T

t=1 E(F 0
t F

0′

t ), it can be easily shown that A2 holds
true if r = o(T 1/2) and

T
t=1
T

s≠t Cov(F 0
tl F

0
tm, F 0

slF
0
sm) = O(T ) for

all l, m ∈ {1, . . . , r}. This is because E[∥T−1T
t=1 F

0
t F

0′

t −ΣF∥
2
] =

T−2T
t=1
T

s=1
r

l=1
r

m=1 E{[F 0
tl F

0
tm − E(F 0

tl F
0
tm)][F 0

slF
0
sm − E(F 0

sl
F 0
sm)]} = O(r2/T ) if for all l,m = 1, . . . , r , it holds thatT

t=1
T

s≠t E{[F 0
tl F

0
tm − E(F 0

tl F
0
tm)][F 0

slF
0
sm − E(F 0

slF
0
sm)]} = O(T ).

Similarly, A3 holds true if E[(λ0
il)

4
] = O(1) for all i =

1, . . . ,N and for all l = 1, . . . , r . A4 is similar to A2, it
holds true with D = N−1N

i=1 E(λ0
i λ

0′

i ), if r = o(N1/2) andN
i=1
T

j≠i Cov(λ0
ilλ

0
jm, λ0

jlλ
0
jm) = O(N) for all l, m ∈ {1, . . . , r}. A5

requires that λ0
ilF

0
tl is a weakly dependent process in l because we

allow for r → ∞.
Conditions in Assumption B are basically the same as Assump-

tion C in Bai and Ng (2002) because the idiosyncratic error eit is
unrelated to r whether r is finite or is allowed to diverge to infin-
ity with the sample size. In particular, B5 is similar to A5 in that
it assumes that, for all (t, s), eiteis is a weakly dependent process
in i. Assumption B6 puts a structure on the idiosyncratic compo-
nents. This structure allows heteroscedasticity in both the time
and cross-section dimensions, and also limited autocorrelation and
cross-sectional correlation in the components.

Finally, Assumption C is similar to assumption D in Bai and Ng
(2002) except that we modified it by dividing the quantity by

√
r

as r is allowed to diverge as N and T tend to infinity. They allow for
limited time-series and cross-section dependence in idiosyncratic
component and also weak dependence between factors (factor
loadings) and idiosyncratic errors.
3. Estimating the common factors and the number of factors

Following Bai and Ng (2002), we estimate the common factor
in a large panel by the principal components method. For k ∈

{1, . . . , kmax}, where kmax is allowed to increase at a slower speed
than min{N, T } such that kmax = o(min{N1/3, T }). Let λk

i and F k
t

denote k×1 vectors of the loadings and factors with the allowance
of k factors in the estimation. Themethod of principal components
minimizes

V (k) = min
Λk,Fk

1
NT

N
i=1

T
t=1


Xit −

1
√
k
λk′
i F

k
t

2

(2)

over 1 ≤ k ≤ kmax, subject to the normalization of either
Λk′Λk/N = Ik or F k′F k/T = Ik, where Λk and F k are the N × k
and T × k factor loading and factor matrices, respectively.

Let ev(i)(A) denote the ith largest eigenvalue of matrix A,
and EV(i)(A) is the eigenvector corresponding to the eigenvalue
ev(i)(A) of the matrix A. If one concentrates out Λk and uses
the normalization that F k′F k/T = Ik, the estimated factor
matrix is F̃ k

=
√
T (EV1(XX ′), . . . , EVk(XX ′)). Given F̃ k, Λ̃k′

=
√
k(F̃ k′ F̃ k)−1F̃ k′X =

√
kF̃ k′X/T is the corresponding matrix

of factor loadings. On the other hand, if one concentrates out
F k and uses the normalization that Λk′Λk/N = Ik, the
solution to the above problem is given by (F̄ k, Λ̄k), where
Λ̄k

=
√
N(EV(1)(X ′X), . . . , EV(k)(X ′X)). The normalization that

Λk′Λk/N = Ik implies F̄ k
=

√
kXΛ̄k/N .

DefineF k
= F̄ k(F̄ k′ F̄ k/T )1/2, a rescaled estimator of the factors.

This rescaled estimator has the asymptotic properties summarized
in the following theorem.

Proposition 1. Under Assumptions A–C, for any 1 ≤ k ≤ kmax =

o(min{N1/3, T }) there exists a (r × k) matrix Hk with rank =

min{k, r} such that

1
T

T
t=1

F̂ k
t − Hk′F 0

t

2 = Op


max


k3r
N

,
k3

T


. (3)

Similar to the results of Bai and Ng (2002), Proposition 1
suggests that the time average of the squared deviations between
the estimated factorsF k and those that lie in the true factor space,
Hk′F 0

t , will vanish as N, T → ∞. However, the convergence rate
depends on not only the panel structureN and T , but also the factor
structure r and k.

Given the results of Proposition 1, we can now analyze the
problem of determining the number of factors. Let V (k, F k) =

minΛ
1
NT

N
i=1
T

t=1(Xit −
1

√
k
λk′
i F

k
t )

2 be the sum of squared
residuals (divided by NT ), where the residuals are from regression
models of regressing Xi on the k factors for all i = 1, . . . ,N , and
Xi = (Xi1, Xi2, . . . , XiT )

′ is a T×1 vector of time-series observations
for the ith cross-section unit. The selecting criterionmodified from
those suggested by Bai and Ng (2002) has the form

PC(k) = V (k,F k) + kg(N, T ), (4)

where g(N, T ) is the penalty factor satisfying two conditions: (i)
kmax · g(N, T ) → 0 as N, T → ∞, (ii) C−1

N,T ,kmax
g(N, T ) →

∞ as N, T → ∞, where CN,T ,kmax = Op


max


k3max√

N
,

k5/2max√
T


.

As V (k,F k) is decreasing in k, the criterion above penalizes k
with a penalty factor kg(N, T ) to select the estimator k̂ such that
asymptotically under and overparameterized models will not be
chosen. Theorem 1 formally establishes this result.
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Theorem 1. Let 1 ≤ r ≤ kmax = o(min{N1/17, T 1/16
}) and k̂ =

argmin1≤k≤kmaxPC(k). Suppose that Assumptions A–C hold, and that
(i) kmax · g(N, T ) → 0, (ii) C−1

N,T ,kmax
· g(N, T ) → ∞ as N, T → ∞.

Then

lim
N,T→∞

Prob[k̂ = r] = 1. (5)

A formal proof of Theorem 1 is provided in the Appendix.
Conditions (i) and (ii) together define the type of penalty factor that
should vanish at an appropriate rate. They are sufficient conditions
for estimation consistency so that theymay not always be required
for consistently estimating the number of factors.

Remark 1. Since we often need to divide some quantities by r , we
rule out the case that r = 0. Allowing for r = 0 in our framework
will complicate the regularity conditions, notations and proofs.
Therefore, we did not consider the case that r = 0 in our paper. The
r = 0 case is covered in Bai andNg’s (2002). Their procedure can be
used to select the number of factors even when the true number of
factors is 0. We also conducted some simulations which show that
both Bai andNg’s (2002) originalmethod and themodifiedmethod
proposed in our paper work well when r = 0.

Note that the condition imposed in kmax is asymmetric in (N, T ).
This result is induced by Proposition 1. The details can be found
in the proof of Proposition 1 given in the Appendix. As a referee
correctly points out, if in the proof of Theorem 1, instead of

using the result of Proposition 1 that T−1T
t=1

F̂ k
t − Hk′F 0

t

2 =

Op


max


k3r
N , k3

T


, one may use N−1N

i=1

λ̂k
i − H̃k′λ0

i

2 =

Op


max


k3
N , k3r

T


,1 where H̃k is a r × k matrix with rank(H̃k) =

min{r, k}. Then the condition that 1 ≤ r ≤ kmax =

o(min{N1/17, T 1/16
}) in Theorem 1 will be replaced by 1 ≤ r ≤

kmax = o(min{N1/16, T 1/17
}). The result is still asymmetric in N

and T , but the roles of N and T are exchanged.
In fact, it is possible to obtain a symmetric result (of kmax

in N and T ) under some stronger regularity conditions, i.e., one
can obtain a symmetric condition for kmax as 1 ≤ r ≤

kmax = o(min{N1/16, T 1/16
}) in Theorem 1 under some stronger

assumptions. We state this result in the following proposition.

Proposition 2. Under the same conditions as in Proposition 1 except
that we strength some conditions as follows: (i) λil is non-random
with λil ≤ λ̄ < ∞ for all i = 1, . . . ,N and l =

1, . . . , r; (ii) E(eitejt) = 0 for all t ∈ {1, . . . , T } and for all j ≠ i,
i, j ∈ {1, . . . ,N}, E(F 0

tl F
0
tm) = 0 for all t ∈ {1, . . . , T } and for all

m ≠ l, l, m ∈ {1, . . . , r}; (iii) eit and F 0
s are independent with each

other for all i, t and s. Then

1
T

T
t=1

F̂ k
t − Hk′F 0

t

2 = Op


k3


1
N

+
1
T


. (6)

The proof of Proposition 2 is given in the appendix. Under
Proposition 2, the condition 1 ≤ r ≤ kmax = o(min{N1/17, T 1/16

})

in Theorem 1 can be replaced by 1 ≤ r ≤ kmax =

o(min{N1/16, T 1/16
}). That is, we obtain a condition on kmax that is

symmetric in N and T .

1 This result can be proved similar to the proof of Proposition 1, its proof is
available from the authors upon request.
Remark 2. The zero correlation assumption on Ftl used in Proposi-
tion 2 is quite strong. However, it can be replaced by some weakly
dependence assumptions such as ρ-mixing or β-mixing processes
withmixing coefficients decay to zero at certain rates. But this will
make the presentation (regarding regularity conditions) as well as
the proofs of Proposition 2much longer. Therefore,wewill not pur-
sue a proof of Proposition 2 under weak regularity conditions in
this paper.

Similar to Bai and Ng (2002) we have the following Corollary.

Corollary 1. Under the Assumptions of Theorem 1, if one replaces
PC(k) in Theorem 1 by the class of criteria defined by

IC(k) = ln

V (k,F k)


+ kg(N, T ),

then the conclusion of Theorem 1 holds true.

Corollary 3.1 states that the class of criteria IC(k) can also
be used to consistently estimate the number of factors in factor
models where the number of factors possibly increases with the
sample size.

Letσ 2 be a consistent estimate of (NT )−1N
i=1
T

t=1 E(eit)2. Bai
and Ng (2002) generalize the Cp criterion of Mallows (1973) and
suggest three PCp criteria as follows:

PCp1(k) = V (k,F k) + k ·σ 2

N + T
NT


ln


NT
N + T


,

PCp2(k) = V (k,F k) + k ·σ 2

N + T
NT


ln(min{N, T }),

PCp3(k) = V (k,F k) + k ·σ 2

ln(min{N, T })

min{N, T }


. (7)

It is easy to check that these criteria satisfy the two conditions
for the penalty factor in Theorem1 if kmax = o


ln
 NT
N+T

1/6
. The

three criteria have different finite-sample properties while they
are asymptotically equivalent. In applications, Bai and Ng (2002)
suggest to replace σ̂ 2 with V (kmax,F kmax) = (NT )−1N

i=1
T

t=1 ê
2
it ,

where êit = Xit −
1

√
k
λk′max

i
F kmax
t for i = 1, . . . ,N and t = 1, . . . , T ,

the residuals for the linear regression of X on F kmax . Thus, the
number of factors estimated using these three criteria may be
sensitive to the selection of kmax. We will propose a method that
avoids the sensitivity of selected k̂ depending on kmax.

Corollary 3.1 suggests the following three ICp criteria can also
be used to select the number of factors:

ICp1(k) = ln

V (k,F k)


+ k ·


N + T
NT


ln


NT
N + T


,

ICp2(k) = ln

V (k,F k)


+ k ·


N + T
NT


ln(min{N, T }),

ICp3(k) = ln

V (k,F k)


+ k ·


ln(min{N, T })

min{N, T }


. (8)

The main advantage of the three criteria given in (8) is that
the scaling factor σ̂ 2 is automatically removed by the logarithmic
transformation. We do not need to estimate σ 2 before selecting
the number of factors. Therefore, the number of factors estimated
using ICp criteria is insensitive to the selection of kmax.

As the estimated k̂using PCp criteriamaybe sensitive to kmax, the
selection of kmax is an important issue in practice. Bai andNg (2002)
suggest to select kmax by setting kmax = 8[(min{N, T }/100)1/4]
where [A] denotes the integer part of a real number A. But their
theoretical result does not cover this case as this kmax increases
(without bound) with N and T . Using some ad-hoc rules to select
kmax may lead to kmax < r , which will lead to an underestimation
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Fig. 1. Sensitivity of PCp1 Criterion to kmax: 200/60 case. Note: The values of k̂
estimated by PCp1 for N = 200, T = 60 and r = 7 with kmax ∈ [1, 40].

of the number of factors because if kmax < r , then we will have
k̂ ≤ kmax < r . On the other hand, if kmax is too large (kmax ≫

r), simulations show that the selected k̂ tends to overestimate
r(k̂ > r). We propose a new procedure to resolve this problem.
We propose to let kmax take a wide range of values. For each value
of kmax, we select a k̂kmax that minimizes the PCp criteria. We then
select the value of k̂ that appears most times among the different
k̂kmax values, i.e., we select the mode of k̂kmax (over a wide range
of kmax). We use a specific example to illustrate this selection
procedure. We generate a simulated data of N = 200, T = 60
with the true number of factors r = 7. We let kmax take values
from {1, 2, . . . , 40}. For each different 1 ≤ kmax ≤ 40, we select a
k̂kmax by minimizing PCp1 criterion. The result is presented in Fig. 1.
From Fig. 1 we observe that when kmax < r = 7, we select
k̂ = kmax < 7 as expected; when 7 ≤ kmax ≤ 16, we select
k̂ = 7; when kmax > 16, the selected k̂ > 7. Moreover, k̂ increases
with kmax. We also notice that k̂ = 7 is selected ten times (when
kmax = 7, 8, . . . , 16), while all the other values are chosen nomore
than three times. For example, when 17 ≤ kmax ≤ 19, the selected
k̂kmax = 8, i.e., k̂kmax = 8 is selected three times. According to our
selection rule, k̂ = 7 is selected because k̂ = 7 appears most times
(10 times).

Fig. 2 plots k̂–kmax curves for different N , T and r values.
We see that although k̂ increases with kmax for most cases, our
proposed procedure can select the correct number of factors
because k̂kmax takes value r more often than taking any other values
for all cases reported in Fig. 2. Hence, our proposed procedure
of selecting k̂ is not sensitive to kmax provided that one let kmax
take a wide range of values. Therefore, we suggest letting kmax to
take values in {1, 2, . . . , [6 log(max(N, T ))]} where [A] denotes
the integer part of a real number A. [6 log(max(N, T ))] is around
41, 45 and 55 when max(N, T ) = 1000, 2000 and 10000. This
setting is also consistent with our simulation since we let r =

[1.5 log(max(N, T ))] in our simulations in Section 4.

4. Simulations

In this section we conduct Monte Carlo simulations to
investigate how ourmodified criteria of Bai and Ng (2002) perform
when the number of factors is allowed to increase with N or T .
For simplicity of the comparison with the simulation results in Bai
Fig. 2. Sensitivity of PCp1 Criterion to kmax . Note: Each line represents k̂ estimated
by PCp1 for each case of different sample size. The notation in the graph shows the
sample size and the true number of factors for each case. For example, 100/60(6)
means that N = 100, T = 60 and r = 6.

and Ng (2002), we first fix T and allow N and r to increase. When
T is fixed as 60, we let N = 100, 200, 500, 1000, 2000 and r =

[1.5 log(N)], where [A] denotes the integer part of a real number
A; for T = 100, we let N = 40, 60, 100, 200, 500, 1000, 2000 and
r = [1.5 log(N)]. The simulation results for this case are reported
in the upper part of each table for each data generating process
(DGP). Next, we check the performance of the criteria when N is
fixed and T keeps increasing. When N = 100, we let T = 40,
60, 100, 200, 500, 1000, 2000 and r = [1.5 log(T )]; when N = 60,
we let T = 100, 200, 500, 1000, 2000 and r = [1.5 log(T )]. The
simulation results for this case are reported in the lower part of
each table for each DGP. We replicate the suggested estimating
procedure 1000 times and the reported results are the averages of
k̂ over 1000 replications.

The data generating processes (DGP) have the following form:

Xit =
1

√
r

r
j=1

λijFtj + eit ,

where λij ∼ i.i.d. N(0, 1), Ftj ∼ i.i.d. N(0, 2).
We consider three DGPs here. In the base case, we set the DGP

as eit ∼ i.i.d.N(0, 1). This base DGP is denoted as DGP1. The
simulation results for this case are reported in Table 1. We see
that all information criteria give precise estimates of the number
of factors.

For the heterogeneity case of DGP2, we set the idiosyncratic
shocks to be heterogeneous. We let eit = uit + δtϵit where
uit ∼ i.i.d.N(0, 1), ϵit ∼ i.i.d.N(0, 1), and δt = 0 for even t ,
δt = 1 for odd t . Thus the variance of the idiosyncratic shocks
is 1 when t is odd and 2 when t is even. We denote this DGP as
DGP2. The estimated values of k̂ are reported in Table 2 where
the boldfaced numbers indicate incorrect selection of the number
of factors. Similar to the homogeneous cases, PCp1, PCp2, and PCp3
performwell under all kinds of combinations of N and T . The other
three criteria ICP1 and ICp2, and ICp3 also perform well in general,
although occasionally theymay select k̂ that is slightly smaller than
the true number of factors r when sample size is small.
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Table 1
Estimated number of factors: DGP1.

N T r PCp1 PCp2 PCp3 ICp1 ICp2 ICp3

100 60 6 6 6 6 6 6 6
200 60 7 7 7 7 7 7 7
500 60 9 9 9 9 9 9 9

1000 60 10 10 10 10 10 10 10
2000 60 11 11 11 11 11 11 11

40 100 5 5 5 5 5 5 5
60 100 6 6 6 6 6 6 6

100 100 6 6 6 6 6 6 6
200 100 7 7 7 7 7 7 7
500 100 9 9 9 9 9 9 9

1000 100 10 10 10 10 10 10 10
2000 100 11 11 11 11 11 11 11

100 40 5 5 5 5 5 5 5
100 60 6 6 6 6 6 6 6
100 100 6 6 6 6 6 6 6
100 200 7 7 7 7 7 7 7
100 500 9 9 9 9 9 9 9
100 1000 10 10 10 10 10 10 10
100 2000 11 11 11 11 11 11 11
60 100 6 6 6 6 6 6 6
60 200 7 7 7 7 7 7 7
60 500 9 9 9 9 9 9 9
60 1000 10 10 10 10 10 10 10
60 2000 11 11 11 11 11 11 11

DGP1: Xit =
1

√
r

r
j=1 λijFtj + eit ; r = [c ∗ ln(N)] for the upper part of the table, and

r = [c ∗ ln(T )] for the lower part, where c = 1.5, and [A] denotes the integer part
of a real number A.

Table 2
Estimated number of factors: Heterogeneity.

N T r PCp1 PCp2 PCp3 ICp1 ICp2 ICp3

100 60 6 6 6 6 5 5 6
200 60 7 7 7 7 7 7 7
500 60 9 9 9 9 8 8 8

1000 60 10 10 10 10 10 10 10
2000 60 11 11 11 11 11 11 11

40 100 5 5 5 5 5 5 5
60 100 6 6 6 6 6 6 6

100 100 6 6 6 6 6 6 6
200 100 7 7 7 7 7 7 7
500 100 9 9 9 9 9 9 9

1000 100 10 10 10 10 10 10 10
2000 100 11 11 11 11 11 11 11

100 40 5 5 5 5 5 5 5
100 60 6 6 6 6 5 5 6
100 100 6 6 6 6 6 6 6
100 200 7 7 7 7 7 7 7
100 500 9 9 9 9 9 9 9
100 1000 10 10 10 10 10 10 10
100 2000 11 11 11 11 11 11 11
60 100 6 6 6 6 6 6 6
60 200 7 7 7 7 7 7 7
60 500 9 9 9 9 9 9 9
60 1000 10 10 10 10 10 10 10
60 2000 11 11 11 11 11 11 11

DGP2: Xit =
1

√
r

r
j=1 λijFtj + eit ; eit = uit + δtϵit , where δt = 0 for t even, and

δt = 1 for t odd; r = [c ln(N)] for the upper part of the table, and r = [c ln(T )] for
the lower part, where [A] denotes taking the integer part of a real number.

For the last case, denoted as DGP3, we allow the idiosyncratic
to be autocorrelated. We set eit = ρeit−1 + vit , where ρ = 0.5 and
vit ∼ i.i.d.N(0, 1). The estimation results are reported in Table 3.
The results for this case are almost the same as those of the base
case except for (N, T ) = (60, 200) with r = 7, ICp1 and ICp2
select r = 6. All other four information criteria perform quite
well in accurately estimating the number of factors for all (N, T )
combinations for DGP3.

Summarizing the results for all the DGPs we observe that PCp1,
PCp2, and PCp3 have the best overall performance. ICp1, ICp2, and
ICp3 performwell when the sample size is large (min{N, T } >100).
Table 3
Estimated number of factors: Autocorrelation.

N T r PCp1 PCp2 PCp3 ICp1 ICp2 ICp3

100 60 6 6 6 6 6 6 6
200 60 7 7 7 7 7 7 7
500 60 9 9 9 9 9 9 9

1000 60 10 10 10 10 10 10 10
2000 60 11 11 11 11 11 11 11

40 100 5 5 5 5 5 5 5
60 100 6 6 6 6 6 6 6

100 100 6 6 6 6 6 6 6
200 100 7 7 7 7 7 7 7
500 100 9 9 9 9 9 9 9

1000 100 10 10 10 10 10 10 10
2000 100 11 11 11 11 11 11 11

100 40 5 5 5 5 5 5 5
100 60 6 6 6 6 6 6 6
100 100 6 6 6 6 6 6 6
100 200 7 7 7 7 7 7 7
100 500 9 9 9 9 9 9 9
100 1000 10 10 10 10 10 10 10
100 2000 11 11 11 11 11 11 11
60 100 6 6 6 6 6 6 6
60 200 7 7 7 7 6 6 7
60 500 9 9 9 9 9 9 9
60 1000 10 10 10 10 10 10 10
60 2000 11 11 11 11 11 11 11

DGP3: Xit =
1

√
r

r
j=1 λijFtj + eit ; eit = ρeit−1 + vit ; ρ = 0.5; r = [c ln(N)] for

the upper part of the table, and r = [c ln(T )] for the lower part, where [A] denotes
taking the integer part of a real number.

5. Concluding remarks

In this paper, we consider the problem of determining the
number of factors in large factor models where the number of
factors is allowed to increase, but with a slower rate, as N or T
increases. We extend the analysis of Bai and Ng (2002) to the
case that number of factors can increase with the sample size and
prove the consistency of a modified Bai and Ng’s (2002) procedure
in determining the number of factors. We also propose a (‘mode’
based) new procedure so that our selected number of factors is
not sensitive to the choice of kmax. Monte Carlo simulation results
suggest that the criteria PCp1, PCp2 and PCp3 all have the overall
best performance. Other criteria such as ICp1, ICp2 and PCp3 can
also be used to accurately estimate the number of factors when
the data dimensions are relatively large, say min{N, T } ≥ 100.
One possible future research topic is to find alternative criteria that
can improve the finite-sample performance of Bai and Ng’s (2002)
procedure and our modified procedure such that the new criteria
can accurately determine the number of factors even in small or
medium size samples.
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Appendix A. Proofs

Proof of Proposition 1

We will first prove a lemma (Lemma 1) below which will be
used in proving Proposition 1.

Lemma 1. Under Assumptions A–C, we have for some positive
constant 0 < M2 < ∞, and for all N and T ,



82 H. Li et al. / Journal of Econometrics 197 (2017) 76–86
(i) 1
T

T
s=1
T

t=1 γN(s, t)2 ≤ M2;

(ii) E


1
T2
T

s=1
T

t=1


1
N

N
i=1 XitXis

2
≤ M2.

Proof. (i) See the proof of Lemma 1(i) in Bai and Ng (2002).
(ii) If suffices to prove that for all (i, t) that E(X4

it) ≤ M . Now
E(X4

it) ≤ 8r−2E[(λ0′

i F
0
t )4]+8E(e4it) ≤ 16M1 by Assumptions A5

and B1. �

Proof of Proposition 3.1. Recall that F̂ k
=

√
k

N XΛ̃k and Λ̃k
=

√
k

T X ′F̃ k. From the normalization F̃ k′ F̃ k/T = Ik, we also have
(Tk)−1T

t=1 ∥F̃ k
t ∥

2
= 1. Following Bai and Ng (2002), using Hk′

=

(F̃ k′F 0/T )(Λ0′

Λ0/N), we have

F̂ k
t − Hk′F 0

t =
k
T

T
s=1

F̃ k
s γN(s, t) +

k
T

T
s=1

F̃ k
s ζst

+
k
T

T
s=1

F̃ k
s ηst +

k
T

T
s=1

F̃ k
s ξst ,

where ζst = e′
set/N − γN(s, t), ηst = F 0′

s Λ0′

et/(N
√
r), and ξst =

F 0′

t Λ0′

es/(N
√
r) = ηts.

Because (x + y + z + u)2 ≤ 4(x2 + y2 + z2 + u2),
∥F̂ k

t − Hk′F 0
t ∥

2
≤ 4(at + bt + ct + dt), where at =

k2

T2

T
s=1 F̃

k
s γN(s, t)

2 , bt =
k2

T2

T
s=1 F̃

k
s ζst

2 , ct =

k2

T2

T
s=1 F̃

k
s ηst

2 and dt =
k2

T2

T
s=1 F̃

k
s ξst

2. It follows that

(1/T )
T

t=1 ∥F̂ k
t − Hk′F 0

t ∥
2

≤ (4/T )
T

t=1(at + bt + ct + dt).
By Cauchy’s inequality, we have ∥

T
s=1 F̃

k
s γN(s, t)∥2

≤T
s=1 ∥F̃ k

s ∥
2


·

T
s=1 γN(s, t)2


. Thus,

1
T

T
t=1

at ≤
kk2

T


1
Tk

T
s=1

∥F̃ k
s ∥

2


·
1
T


T

t=1

T
s=1

γN(s, t)2


= Op


k3

T


by Lemma 1(i) and the fact that (Tk)−1T

t=1 ∥F̃ k
t ∥

2
= 1 (this

follows from F̃ k′ F̃ k/T = Ik).
For bt , we have that

1
T

T
t=1

bt =
k2

T 3

T
t=1

 T
s=1

F̃ k
s ζst


2

=
k2

T 3

T
t=1

T
s=1

T
u=1

F̃ k′
s F̃ k

uζstζut

≤
k2

T


1
T 2

T
s=1

T
u=1

(F̃ k′
s F̃ k

u )
2

1/2
 1
T 2
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u=1
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ζstζut
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1/2
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k3
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 1
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ζstζut
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1/2

= k3

 1
T 4
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T
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ζstζut

2
1/2

= Op


k3

N


,

where the last equality follows from


1
T4
T

s=1
T

u=1

T
t=1

ζstζut

21/2
= Op(N−1) as shown in the proof of Theorem 1 of Bai

and Ng (2002).
From E(T−1T

t=1 ζstζut)
2

= E(T−2T
t=1
T

v=1 ζstζutζsvζuv) ≤

maxs,t E|ζst |
4 and

E|ζst |
4

=
1
N2

E

 1
√
N

N
i=1

(eiteis − E(eiteis))


4

≤
1
N2

M1

by Assumption B5, we have

1
T

T
t=1

bt ≤ Op(k3)
1
T


T 2

N2
= Op


k3

N


.

For ct , we have

ct =
k2

T 2

 T
s=1

F̃ k
s ηst


2

=
k2

T 2

 T
s=1

F̃ k
s F

0′

s Λ0′

et/N
√
r


2

≤
k2

N2
∥e′

tΛ
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√
r∥2


k
Tk

T
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∥F̃ k
s ∥
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r
Tr
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∥F 0
s ∥
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=
k2

N2
∥e′

tΛ
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√
r∥2Op(kr)

because 1
Tk

T
s=1 ∥F̃ k

s ∥
2

= 1 and 1
Tr

T
s=1 ∥F 0

s ∥
2

= Op(1).
It follows that

1
T

T
t=1

ct = Op(kr)
k2

N
1
T

T
t=1

 e′
tΛ

0

√
Nr

2
= Op


k3r
N


because 1

T

T
t=1

 e′tΛ
0

√
Nr

2 = Op(1) by Assumption C2.

The term (1/T )
T

t=1 dt = Op


k3r
N


can be proved similarly.

Combining the above results, we have shown that

(1/T )

T
t=1

∥F̂ k
t − Hk′F 0

t ∥
2

≤ (4/T )

T
t=1

(at + bt + ct + dt)

= Op


k3r
N


+ Op


k3

T


.

Alternatively, Proposition 3.1 can be proved by concentrating
out Ft . Following the similar steps, we can show that

(1/N)

N
i=1

∥λ̂k
i − Hk′λ0

i ∥
2

≤ (4/N)

N
i=1

(ai + bi + ci + di)

= Op


k3

N


+ Op


k3r
T


. �

Proof of Proposition 2

Proof. From the proof of Proposition 1 we know that

1
T

T
t=1

∥F̂ k
t − Hk′F 0

t ∥
2

≤ (4/T )

T
t=1

(at + bt + ct + dt)
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and that T−1T
t=1 at = Op(k3/T ) and T−1T

t=1 dt = Op(k3/N).
Therefore, we only need to show that T−1T

t=1 ct = Op(k3/N) and
T−1T

t=1 dt = Op(k3/N). Since the proofs are similar, wewill only
prove for the term related to ct .

For ct , we have

ct =
k2

T 2

 T
s=1

F̃ k
s F
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et/N
√
r


2
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= Op(k).

Next, we show that A
def
= (TN)−1T

s=1 ∥F 0′
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et∥2
= Op(r).
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NT

T
s=1

E∥F 0′

s Λ0′

et∥2

=
1
NT

T
s=1

r
l=1

r
m=1

N
i=1

N
j=1

E(eitejt)E(F 0
slF

0
sm)Λ0

ilλ
0
jm

=
1
NT

T
s=1

r
l=1

N
i=1
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2)(Λ0
il)

2

= O(r),

because of the zero correlation assumptions that E(eitejt) = 0
for j ≠ i and E(F 0

slF
0
sm) = 0 for m ≠ l. This implies that

A = Op(r). Hence, ct = Op(k3/N). This completes the proof of
Proposition 2. �

From the above proof we can see that the conclusion of
Proposition 2 still holds true if the zero correlation assumptions
are replaced by some weakly dependent assumptions such as
N−1N

i=1
N

j≠i E(eitejtc1,ijlm) = O(1) and r−1r
l=1
r

m≠l E(F 0
slF

0
sm

c2,lmlm) = O(1), where c1,ijlm and c2,ijlm are some bounded
sequences of non-random numbers depending on i, j, l,m.

Proof of Theorem 3.1

Lemma 2. Let Dk = F̂ k′ F̂ k/T and D0 = Hk′F 0′

F 0Hk/T . When
k ≤ r, we have (i) ∥D−1
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Proof. Following Bai and Ng (2002), we have
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by Proposition 3.1 and the fact that 1

T

T
t=1 ∥Hk′F 0

t ∥
2

= Op(kr2),
which is shown below.

From weakly dependent process of F 0
t , it is easy to show that
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Lemma 3. For 1 ≤ k ≤ r, and the Hk defined in Proposition 3.1, we
have
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Proof. For the true factor matrix with r factors and Hk de-
fined in Proposition 3.1, let M0
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Following Bai and Ng (2002), let Dk = F̂ k′ F̂ k/T and D0 =
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=
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=
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F̂
−P0

FH)X i = I+II+III+IV .We consider
each term in turn.
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by Proposition 3.1, Lemma 1(iii) and Lemma 2(i).
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Similarly, one can verify that III is also Op
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where we used ∥D−1
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Lemma 2(ii).
Thus, we have
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Lemma 4. For the matrix Hk defined in Proposition 3.1, and for each
k with k < r = rN,T → ∞, there exists a positive constant C such
that

plim inf
N,T→∞

inf
k

[V (k, F 0Hk) − V (r, F 0)] ≥ C > 0.

Proof.
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Notice that P0
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FH ≥ 0, thus III ≥ 0. For the first term,
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Next,
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Consider the first term 1
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where the last equality follows from Assumption C2. The second
term is also op(1), and hence B = op(1). �

Lemma 5. For any k with r ≤ k ≤ kmax, V (k, F̂ k) − V (r, F̂ r) =

Op


max


k2maxr
N ,

k2maxr
0.5

T


.

Proof.

|V (k, F̂ k) − V (r, F̂ r)| ≤ |V (k, F̂ k) − V (r, F 0)|

+ |V (r, F 0) − V (r, F̂ r)|
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Thus, it is sufficient to prove for each kwith r ≤ k ≤ kmax,
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Let Hk be as defined in Proposition 3.1, with full row rank. Let
the k × r matrix Hk+ be the generalized inverse of Hk such that
HkHk+

= Ir . FromX i =
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Note that
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is positive semi-definite, x′Mk
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by Proposition 3.1.
For term b, we use the fact that |tr(A)| ≤ r∥A∥ for any r × r
matrix A. Thus
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by Proposition 3.1 and Assumption C2. Therefore,
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Thus we have
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Note that
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eigenvalues of the matrix ANT =
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′e, where e = (eti), T ×

N . Let ρ(A) denote the largest eigenvalue of a matrix A. Under
Assumption B6, as Bai and Ng (2002) show, ρ(ANT ) = Op(C−2
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In summary, we have shown that
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Proof of Theorem 3.1

Proof. We shall prove that limN,T→∞ P(PC(k) < PC(r)) = 0 for
all k ≠ r . Since

PC(k) − PC(r) = V (k, F̂ k) − V (r, F̂ r) − (r − k)g(N, T ),

it is sufficient to prove that P[V (k, F̂ k) − V (r, F̂ r) < (r −

k)g(N, T )] → 0 as N, T , k, r → ∞.
Consider k < r . We have the identity:

V (k, F̂ k) − V (r, F̂ r) = [V (k, F̂ k) − V (k, F 0Hk)]

+ [V (k, F 0Hk) − V (r, F 0Hr)]

+ [V (r, F 0Hr) − V (r, F̂ r)].

Lemma 3 implies that the first and third terms are both
Op


max
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N
,

k8max√
T


. Next,we consider the second item. Because

F 0Hr and F 0 span the same column space, V (r, F 0Hr) = V (r, F 0).
Thus the second item can be rewritten as V (k, F 0Hk) − V (r, F 0),
which has a positive limit by Lemma4.Hence P[PC(k) < PC(r)] →

0 if (r − k)g(N, T ) → 0 as N, T , k, r → ∞.
Next, for k ≥ r ,

P[PC(k) − PC(r) < 0] = P[V (r, F̂ r) − V (k, F̂ k) > (k − r)g(N, T )].

By Lemma 5, V (r, F̂ r) − V (k, F̂ k) = Op


max


k3max√

N
,

k2.5max√
T


.

According to our setting, (k − r)g(N, T ) converges to zero at a
slower rate thanOp


max


k3max√

N
,

k2.5max√
T


. Thus, for k > r , P[PC(k) <

PC(r)] → 0 as N, T , k, r → ∞. �

Appendix B

See Figs. 1 and 2.
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