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Abstract

A mixture copula is a linear combination of several individual copulas which can be used to generate

dependence structures that do not belong to existing copula families. Thus it is useful in modeling

the dependence in financial data, because different pairs of markets may exhibit quite different

dependence structures in empirical studies. Therefore, rather than selecting one single copula

through certain criteria, we propose using a model averaging approach to estimating financial data

dependence structure in a mixture copula framework. We select weights (for averaging) through a

J -fold Cross-Validation procedure. We prove that the model averaging estimator is asymptotically

optimal in the sense that it minimizes a squared estimation loss. Our simulation results show that

the model averaging approach outperforms some competing methods when the working mixture

model is misspecified. Using 12 years of data on daily returns of four developed economies’ stock

indexes (United States, United Kingdom, Hong Kong and Japan), we show that the model averaging

approach more accurately estimates their dependence structures than do some competing methods.
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1 Introduction

Nelsen (2006) provides a thorough introduction about copula which is defined as “func-

tions that join or couple multivariate distribution functions to their one-dimensional marginal

distribution functions”. Specifically, let X = (X1, ..., Xp)
> be a random vector and

the respective marginal cumulative distribution functions defined as Fi for i ∈ {1, ..., p}.
Then there exists a copula C : [0, 1]p → [0, 1] such that ∀ x = (x1, ..., xp) ∈ Rp,

F (x) = C{F1(x1), ..., Fp(xp)} (see Sklar, 1959). Therefore, copula is flexible; it does not

constrain the selection of marginal distributions so that one can couple various margins to-

gether via a copula to obtain a flexible distribution function. In this paper we propose using

a model averaging approach to estimate a mixture copula model. The mixture copula is a

linear combination of multiple individual copulas.

Copula model primarily are used to study dependence patterns among variables, e.g., the

co-movements among international equity markets. They have been extensively applied in

a number of empirical studies such as: estimating default correlations (Li, 2000); examining

the difference in dependence structures between developed and developing economies (Chol-

lete, Peña and Lu, 2005, Chollete et al., 2009, and Aloui et al., 2011); structure breaks in

exchange rates (Patton, 2006); financial contagions (Rodriguez, 2007); and the cross-state

housing prices during the subprime mortgage crisis (Zimmer, 2012). One fundamental is-

sue for such studies is how to select an appropriate copula to satisfactorily describe the

dependence structure among the variables under study. Almost all of the works mentioned

above presumptively build a candidate set and rely on certain statistical criteria to select

one copula; they then use that copula to measure the degree of dependence among variables.

For example, when studying housing crisis dependence among different states in the United

States, Zimmer (2012) uses both Bayesian Information Criterion (BIC) and the Vuong test.

He shows that a Clayton-Gumbel mixture copula provides a better estimate of dependence

structures than a Gaussian, or Clayton or Gumbel copula.1

In practice, there are many types of copula. One might want to fit the data under

analysis to each existing copula family and then select the most appropriate one. However,

this strategy is not feasible because one can always create a new copula by making certain

transformations on an existing copula.2 Thus, most empirical researchers rely only on several

common copulas, e.g., Gaussian, Clayton and Gumbel, to construct their candidate set. The

argument for this is that the candidate set should be general enough to capture most of the

possible dependence patterns in the real world. Even though this strategy is relatively easy

to implement, it has a cost: one needs to assume that the observations are generated from

1Other methods include comparing which copula gives the largest log-likelihood function value. Interested
readers are referred to Manner and Reznikova (2012), Patton (2012) and Fan and Patton (2014) for details.

2For example, Patton (2006) introduces an symmetrized Joe-Clayton copula by taking a particular
Laplace transformation on the BB7 copula of Joe (1997).
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one of the copula included in the candidate set. That is, one selects the most “appropriate”

copula from the candidate set based on some criteria, and then uses it to describe the

dependence pattern and to evaluate the degree of dependence of the data under analysis.

If one’s candidate set includes the true copula that generates the observations, then the

estimating procedure just described should be effective and efficient. However, the true

data generating copula model is unknown to researchers. In practice, it is highly likely that

one’s candidate set fails to include the true copula. Under such a circumstance, a selected

candidate copula based on some criteria (say, by minimizing BIC) may fail to provide an

adequate description of the true dependence structure.

To take advantage of different copula shapes, Chollete et al. (2005) and Hu (2006)

introduce mixture copula models. In their analysis, a mixture copula is formulated as a

weighted average of several individual copulas, with the weights constrained between 0 and

1 and the weights summing to 1. A mixture copula is more flexible than an individual

copulas because it nests several individual copulas with quite different dependence structures.

As we shall see, a mixture copula can generate dependence structures that do not belong

to any existing individual copula. By combining several widely used individual copulas,

one can build a parsimonious yet flexible mixture copula to capture various dependence

patterns in financial data, such as zero and non-zero tail dependence and symmetric or

asymmetric tail dependence. In their analysis, Chollete et al. (2005) and Hu (2006) consider

a mixture model including Gaussian, Gumbel and rotated Gumbel copulas to evaluate the

dependence structures among stock indexes in developed economies. They find strong left-

tail dependence because the weight associated with the rotated Gumbel copula tends to

be non-zero, while the Gumbel tends to be filtered out due to its small weight. Thus

they conclude that stock markets in developed economies tend to decline simultaneously.

This is consistent with Longin and Solnik (2001), who find that equity returns tend to

take on joint negative extremes. In a more recent work, Cai and Wang (2014) introduce

a penalized likelihood method to estimate weights and copula parameters simultaneously

using the Smoothly Clipped Absolute Deviation (SCAD) method proposed by Fan and Li

(2001) as a penalizer. Cai and Wang (2014) further establish the asymptotic result for

their proposed estimator and use simulations to demonstrate that their proposed method

yields satisfactory estimation results on weights and copula parameters. That is, different

dependence structures are captured well by their estimated mixture copulas via the penalized

likelihood method.

This paper contributes to the existing literature by providing another method to esti-

mate mixture copula models. Specifically, we use a model averaging approach: rather than

choosing one appropriate copula model by comparing different criteria, such as AIC or BIC,

we first fit observations to each individual copula in the candidate set separately. Sometimes
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all individual copulas lead to poor fit. Therefore, we also fit the data to the composite of

all the candidate copulas. We then average over the estimates of each individual copula,

and their composite, and select the associated weights by minimizing a leave-one-group-out

cross-validation criterion. This manner is similar to the Jackknife model average proposed by

Hansen and Racine (2012). We obtain solutions through a standard application of quadratic

programming technique; the leave-one-group-out cross-validation criterion is a quadratic

function of weights. Under certain regularity conditions, we prove that our model averaging

estimator is asymptotically optimal, in that it achieves the infeasible lowest possible squared

estimation loss. The chosen weights help us to construct the optimal combination of each

candidate copula and their composite that can satisfactorily describe the dependence struc-

ture among the variables under study. The distance (measured by the estimation squared

loss) between the estimated mixture copula and the unknown true model is asymptotically

minimized. This is extremely important when the working model is misspecified, i.e., when

observations are generated from copulas that are not included in the model. Cai and Wang

(2014) argue that when the working model is misspecified, their penalized likelihood method

will select a (mixture) copula exhibiting a dependence pattern similar to the unknown true

copula, for example, when observations are generated from a combination of Gaussian and

Clayton, while Clayton is absent in the working model but there is a rotated Gumbel which

also exhibits left-tail dependence. In such a case, Cai and Wang’s (2014) method will assign

a certain weight to the rotated Gumbel to guarantee that the left-tail dependence pattern is

captured by the mixture copula model. Then they conclude that the “best approximated”

copula is chosen.

The model averaging method provides a more solid criterion for the best approximated

copula when the working model is misspecified: the optimal mixture model is constructed

to minimize its distance (the estimation squared loss) to the true model, so that it can best

describe the dependence pattern among variables. Because applied researchers often use

working mixture models that tend to be quite parsimonious, the misspecification problem

should be common. Therefore, model averaging is an alternative method to estimate mixture

copula models which leads to the estimation squared loss being asymptotically minimized.

In the empirical part of the paper, we use our model average approach to study the

dependence structures of the daily returns on equity indexes of four developed economies

(United States, UK, Hong Kong and Japan). The estimation results support the superiority

of the model averaging method over some existing methods in this analysis. Compared to

the penalized likelihood method, the standard copula selection method (such as BIC) and

the maximum likelihood estimation (MLE) method, our model averaging approach exhibits

the smallest squared losses in out-of-sample predictions. The empirical application suggests

that the model averaging method is a useful tool in analyzing the dependence structures of
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stock markets and in risk management.

The rest of this paper is organized as follows. In Section 2 we introduce a mixture copula

model. Section 3 describes how to implement the model averaging approach in estimating a

mixture copula model. In Section 4, we use simulations to compare estimation losses under

the model averaging approach, Cai and Wang’s (2014) penalized likelihood method, the BIC

method and the MLE method. Section 5 presents a real data example. Section 6 concludes

the paper. Regularity conditions and the proof of the optimality of the model averaging

method are presented in Appendix A.

2 Mixture Copula Models: A Brief Introduction

Suppose we have a series of p−dimensional vectors of random variables {Xt}Tt=1, where

Xt = (Xt1, . . . , Xtp)
> and p is a finite positive integer. Let F 0(x) and f 0(x) be the joint

distribution and the density function of X evaluated at x ∈ Rp, and F 0
i (xi) and f 0

i (xi) be

the marginal distribution and the density function of Xi evaluated at xi ∈ R, respectively,

where 1 ≤ i ≤ p.

As in Hu (2006) and Cai and Wang (2014), a mixture copula model is a linear combination

of several individual copulas. Specifically, a mixture copula model can be written as

C(u;θ, ω) =
L∑
k=1

ωkCk(u;θk) =
L∑
k=1

ωkCk
{
F 0

1 (x1), . . . , F 0
p (xp);θk

}
, (1)

where {C1(·), ..., CL(·)} is a set of candidate copulas with a vector of unknown parameters θ =

(θ>1 , . . . ,θ
>
L)> and a p-dimensional marginal distribution u = (F 0

1 (·), . . . , F 0
p (·)). Let ω =

(ω1, . . . , ωL)> denote the weight parameters with 0 ≤ ωl ≤ 1 and
∑L

l=1 ωl = 1. In equation

(1), both the copula parameters θ = (θ>1 , . . . ,θ
>
L)> and the weights ω = (ω1, . . . , ωL)>

control the shape of the mixture copula’s dependence structure.

One may want to include many existing individual copulas into a mixture model to cover

every possible dependence pattern. But in application this may make the mixture model

too complicated, and the estimation burden of such a large mixture model can be very

costly. In practice, one may only consider a few individual candidate copulas and hope

that a combination of them can generate a flexible copula which can catch the dependence

structure well for a given data. We present the flexibility of some mixture copulas through

scatter plots. Each panel in Figure 1 is a scatter-plot of an i.i.d. sample of size 1000

generated from three types of widely-used copulas. Each margin has the standard normal

distribution and the parameter for the corresponding copula is calibrated to imply a strong

dependence with Kendall’s τ = 0.5. From Figure 1 (a) - (c), it can be seen that the Clayton

copula displays strong dependence in the left tail while the Gumbel copula exhibits strong
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right tail dependence. Unlike Clayton and Gumbel which exhibit asymmetric dependence

structure, the Gaussian copula is symmetric and the stronger dependence appears in the

center. Figure 1 (d) - (f) present scatter plots from three mixture copulas with equal weights

on each component. Figure 1 clearly demonstrates that, after mixing with Clayton and

Gumbel, a Gaussian copula begins to exhibit some asymmetric tail dependence. Therefore,

the flexibility of a mixture copula stems from its ability of nesting various copula shapes.

Each individual copula is nested as a special case.

[ INSERT FIGURE 1 ABOUT HERE ]

In our model averaging approach, besides estimating parameters associated with cop-

ulas (and marginal densities), we need to further estimate a vector of weight parameters

(ω) introduced by mixture copula models. Chollete et al. (2005) and Hu (2006) indepen-

dently propose a two-stage semiparametric method in estimating a mixture copula model.

Specifically, in the first stage, the marginal distributions are estimated nonparametrically

to avoid the misspecification of marginals. In the second stage, the estimated marginals

or the empirical CDFs are plugged into the copula and then copula parameters are esti-

mated by the maximum likelihood method. Finally, to facilitate the estimation of weight

parameters for each nested copula, an iterative procedure, namely, the EM algorithm, is

implemented. Cai and Wang (2014) provide the asymptotic results for mixture copula es-

timators. They propose a data-driven copula selection method via the penalized likelihood

with a shrinkage operator so that parameter estimation and model selection are achieved

simultaneously. In our framework, the model averaging approach estimates a mixture copula

based on a criterion function that minimizes a squared loss function. In the next section, we

discuss the estimation procedure and prove that our proposed model averaging estimator is

asymptotically optimal in the sense of minimizing a squared estimation loss.

3 Theoretical Model

We consider a class of Semiparametric COpula-based Multivariate DYnamic (SCOMDY)

models proposed in Chen and Fan (2006b). Define
{
Y>t ,Z

>
t

}T
t=1

as a vector stochastic process

where Yt is of dimension p, and Zt is a vector of predetermined or exogenous variables.

Denote zt−1 as the information set at time t, i.e., zt−1 is the sigma-field generated by

{Zt,Zt−1, ...;Yt−1,Yt−2, ...}. The class of SCOMDY models are specified as follows:

Yt = µt(β01) +
√
Ht(β0)εt,

where

µt(β01) = E (Yt | zt−1)
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and

Ht(β0) = diag(h1,t(β0), ..., hp,t(β0)),

in which

hi,t(β0) = E[(Yit − µit(β01))2 | zt−1], i = 1, ..., p.

The unknown parameters β01 and β0 are of fixed dimensions and β0 = (β>01, β
>
02)>, where

β01 and β02 do not have common elements. We further assume that the standardized inno-

vations
{
εt ≡ (ε1t, ..., εpt)

>} are independent of zt−1. Also, for each i ∈ {1, ..., p}, {εit}Tt=1

are independently and identically distributed (i.i.d.) over t with E (εit) = 0 and E (ε2
it) = 1.

Moreover, different component of
{
εt ≡ (ε1t, ..., εpt)

>} is allowed to be contemporaneously

correlated. That is, {εit, i = 1, ..., p; t = 1, ..., T} are independent across the t-index, but we

allow for contemporaneously dependence across the i-index. The SCOMDY models speci-

fied here can cover many commonly used specifications such as ARCH, GARCH, and vector

autoregressions (VAR); see Chen and Fan (2006b) for a detailed discussion on this.

Our purpose is to estimate the joint distribution of εt based on a mixture copula model.

Since {εt} are unobservable, following Chen and Fan (2006b), we first estimate β0 by a

moment-based method, and obtain estimator β̂ = (β̂>1 , β̂
>
2 )> and residuals {ε̂t} = [Yt −

µt(β̂1)]/

√
Ht(β̂). Given the residuals {ε̂t}, we estimate the marginal distributions of εit,

i = 1, ..., p, through the rescaled empirical distributions of the residuals:

F̃i(xi) =
1

T + 1

T∑
t=1

I {ε̂it ≤ xi} , i = 1, ..., p.

Suppose that we have K − 1 individual copulas

Ck(u;θk) = Ck
{
F 0

1 (x1), . . . , F 0
p (xp);θk

}
, k = 1, . . . , K − 1, (2)

where F 0
i (·) is the true (but unknown) marginal distribution of εit, i = 1, ..., p, u =

(F 0
1 (x1), . . . , F 0

p (xp)) is an arbitrary point in [0, 1]p, and θk is a finite dimensional parameter

associated with the kth copula. In this paper we assume that K is fixed. In applications,

K is often small, therefore, we maintain the fixed K assumption and leave the theoretical

investigation of allowing for K →∞ as T →∞ to a future research topic.

When {εt}T
t=1 is thought to be generated from the kth copula, we can estimate Ck(u;θk)

by the Quasi Maximum likelihood estimation (MLE) method after replacing the unknown

margins with the estimators, F̃i(·), i = 1, ..., p, as stated in Chen and Fan (2006b). Let

ũ = (F̃1(x1), . . . , F̃p(xp)) and denote the resulting estimator as

Ck(ũ; θ̂k) = Ck

{
F̃1(x1), . . . , F̃p(xp); θ̂k

}
, k = 1, . . . , K − 1. (3)
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We note that if the candidate set only consists of single copulas while the true copula is

a mixture of them and is not close to any of these individual copulas, an averaging estimator

based on these single copulas can perform poorer than the ML estimator based on a mixture

copula. Therefore, we also add the mixture copula into our model average copula candidate

set, i.e., we add a mixture of the K − 1 copulas into the candidate set. Consequently, our

candidate set contains K copulas in total. The first K−1 are single copulas and the unknown

parameters in each copula are estimated by the ML method, the last one is a mixture of the

first K − 1 copulas and the parameters as well as the weights in the mixture copula are also

estimated by the ML method. We denote the mixture copula as the Kth copula. Let

CK(ũ; θ̂K) = CK

{
F̃1(x1), . . . , F̃p(xp); θ̂K

}
≡

K−1∑
k=1

ω̆kCk

{
F̃1(x1), . . . , F̃p(xp); θ̆k

}
,

where ω̆1, . . . , ω̆K−1 and θ̆1, . . . , θ̆K−1 are the maximum likelihood estimates, and θ̂K ≡
(ω̆1, . . . , ω̆K−1, θ̆

>
1 , . . . , θ̆

>
K−1)>. Here ω̆k is constrained to be between 0 and 1 and the sum-

mation equals 1. For each single copula k, θ̆k also has its own constraint. For example, the

parameter (the correlation coefficient) for Gaussian copula should be between −1 and 1. We

use the rescaled empirical distributions of the residuals to replace the unknown marginals,

and use the ML method to estimate the finite dimensional parameters.

Let C0(u;θ0) = C0

{
F 0

1 (x1), . . . , F 0
p (xp);θ0

}
be the true copula. Note that C0(u;θ0) can

be outside the set {C1(u;θ1), . . . , CK−1(u;θK−1)} and it may not be a mixture copula based

on {C1(u;θ1), . . . , CK−1(u;θK−1)}. The goal of this paper is to approximate C0(u;θ0) by

the model averaging approach.

Write w = (w1, . . . , wK)> as a weight vector belonging to the set3

W =
{
w ∈ [0, 1]K :

∑K

k=1
wk = 1

}
.

Then, the model averaging method is to use the following weighted average of all candidate

copulas to approximate the true unknown copula

C(ũ; θ̂,w) =
K∑
k=1

wkCk(ũ; θ̂k), (4)

3Note that in Ando and Li (2014),
∑K

k=1 wk is not restricted to be one when selecting weights, but
in other recent model averaging literature such as Cheng and Hansen (2015, JoE) and Zhang et al. (2016,

JASA), the
∑K

k=1 wk = 1 restriction is imposed. In this paper, we keep this restriction because less restriction
on weights can make it harder to find the optimal weights. In Ando and Li (2014), the candidate models
have no overlapping regressors, but in the current paper, the first K−1 copulas are nested in the Kth copula,
using this restriction is appropriate for our method. In Appendix A, we compare model averaging methods
imposing and without imposing this restriction. We find that the out-of-sample predicting error imposibg
the restriction is smaller than that without imposing the restriction, but the difference is not statistically
significant.
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where θ̂ =
(
θ̂
>
1 , . . . , θ̂

>
K

)>
.

We would like to make a comment on the above model averaging estimator. Here we

will omit the (F̃1(x1), . . . , F̃p(xp)) argument in copula functions to save space and simplify

notations. The Kth copula is a ‘mixture’ of the first (K − 1) individual copulas which is

estimated as
∑K−1

k=1 ω̆kCk

(
θ̆k

)
, where ω̆k and θ̆k, k = 1, ..., K−1, are the ML estimates of ωk

and θk based on the mixture copula model. The model ‘averaging’ is a linear combination

of the K copulas: C1

(
θ̂1

)
, . . . , CK−1

(
θ̂K−1

)
and

∑K−1
k=1 ω̆kCk

(
θ̆k

)
, where θ̂k is the ML

estimator of θk based on the kth copula, k = 1, ..., K − 1. At a first glance, one may get

an impression that the Kth copula is redundant as it looks like a linear combination of the

first K − 1 copulas. However, this is not the case because θ̆k differs from θ̂k in general.

Hence, the Kth mixture copula is not a linear combination of the first K−1 copulas. In fact,

simulations (not reported here to save space) show that by adding the Kth mixture copula

to the candidate set, the model averaging estimator performs much better than an estimator

that only averages over the first K − 1 copulas.

A crucial question in model average estimation is how to select the weight w. In this

paper we use a J-fold (J > 1 is a finite positive integer) Cross-Validation (CV) method

to choose weights, which is similar to the Jackknife model averaging method (Hansen and

Racine, 2012). Specifically, we divide the data set into J groups such that for each group, we

have M = T/J observations except that the last group may have more data (if T/J is not

an integer). In the jth group, we have observations ε̂(j−1)M+1, . . . , ε̂jM for j = 1, ..., J . Write

Ck(ũ; θ̂
(−j)
k ) as the estimator of Ck(u;θk) with the jth group removed from the sample, i.e.,

it is the same as Ck(ũ; θ̂k) except that one drops the jth group in the MLE. Let θ̂
(−j)

=(
θ̂

(−j)>
1 , . . . , θ̂

(−j)>
K

)>
. Then similar to C(ũ; θ̂,w) defined in (4), we define the leave jth

group out weighted averaging estimator C(ũ; θ̂
(−j)

,w) as

C(ũ; θ̂
(−j)

,w) =
K∑
k=1

wkCk(ũ; θ̂
(−j)
k ), j = 1, . . . , J.

An empirical estimator of C0(u;θ0) that only uses the jth group data is denoted by

C̃(j)(x) =
1

M

M∑
m=1

I(ε̂(j−1)M+m ≤ x), (5)

where x = (x1, ..., xp) is an arbitrary point in Rp, I(·) is an indicate function, and the

comparison between ε̂(j−1)M+m and x means comparison componentwise in the p-dimensional

vector. We emphasize that the superscript (−j) denotes “leave the jth group data out” and

the subscript (j) means “only use the jth group data”.

Define U0t ≡ (F 0
1 (ε1t), . . . , F

0
p (εpt)) and Ũt ≡ (F̃1(ε̂1t), . . . , F̃p(ε̂pt)), then our J-fold CV
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criterion is given by

CVJ(w) =
J∑
j=1

M∑
m=1

{
C(Ũ(j−1)M+m; θ̂

(−j)
,w)− C̃(j)(ε̂(j−1)M+m)

}2

. (6)

The weight w is selected via

ŵ = argminw∈WCVJ(w),

and we estimate C0(u;θ0) by the model averaging estimator C(ũ; θ̂, ŵ) as defined in (4)

with ŵ replacing w.

To ease exposition, we introduce/summarize notations used in the paper. The T × 1

vector of the true copula evaluated at (ε1, ..., εT ) is denoted by

C0 = {C0(U01;θ0), . . . , C0(U0T ;θ0)}> . (7)

The vector of copula estimated by the kth candidate copula using all observations (when

k = K, the Kth copula is a composite of the candidate copulas) evaluated at (ε̂1, . . . , ε̂T ) is

Ĉk =
{
Ck(Ũ1; θ̂k), . . . , Ck(ŨT ; θ̂k)

}>
. (8)

The vector of the weighted average of the estimated candidate copulas
{
Ĉ1, . . . , ĈK

}
eval-

uated at (ε̂1, . . . , ε̂T ) is denoted by

Ĉ(w) =
K∑
k=1

wkĈk =
{
C(Ũ1; θ̂,w), . . . , C(ŨT ; θ̂,w)

}>
. (9)

The leave-M -out vector of copula estimated by using the kth candidate copula evaluated at

(ε̂1, . . . ε̂T ) is

Ck =
{
Ck(Ũ1; θ̂

(−1)

k ), . . . , Ck(ŨM ; θ̂
(−1)

k ), ..., Ck(Ũ(j−1)M+1; θ̂
(−j)
k ), . . . , Ck(ŨT ; θ̂

(−J)

k )
}>

.

(10)

The vector of the weighted average of C1, . . . ,CK evaluated at (ε̂1, . . . , ε̂T ) is

C(w) =
K∑
k=1

wkCk

=
{
C(Ũ1; θ̂

(−1)
,w), . . . , C(ŨM ; θ̂

(−1)
,w), . . . , C(ŨT ; θ̂

(−J)
,w)

}>
. (11)

The vector of the empirical estimator of C0 using M observations evaluated at (ε̂1, . . . , ε̂T )
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is

C̃ =
{
C̃(1)(ε̂1), . . . , C̃(1)(ε̂M), ..., C̃(j)(ε̂(j−1)M+1), . . . , C̃(J)(ε̂T )

}>
. (12)

Finally, the vector of the model averaging estimator of C0 evaluated at (ε̂1, . . . , ε̂T ) is

Ĉ(ŵ) =
{
C(Ũ1; θ̂, ŵ), . . . , C(ŨT ; θ̂, ŵ)

}>
. (13)

Note that in general we use the ‘hat’ notation to denote estimators based on semiparamet-

ric model estimation methods (because the margins are nonparametrically estimated), while

we use the ‘tilde’ notation to denote nonparametric (empirical function based) estimators.

Proposition 1

(i). Under Conditions C.1 – C.4 presented in Appendix A.1, the bias of the J-fold CV

criterion is a small term relative to the expected CV squared loss. That is,

sup
w∈W

E
∥∥C(w)−C0

∥∥2 − E
∥∥∥C(w)− C̃

∥∥∥2

E
∥∥C(w)−C0

∥∥2 = o(1).

(ii). Under an i.i.d. situation, i.e., {ε̂it, i = 1, ..., p; t = 1, ..., T} are independent across the

t-index, the J-fold CV criterion is an unbiased estimator of the expected CV squared loss

plus a term unrelated to w. That is,

E
∥∥∥C(w)− C̃

∥∥∥2

= E
∥∥C(w)−C0

∥∥2
+ {terms unrelated to w}.

See Appendix A.3 for the proof of Proposition 1. Let h̆k = Ck−C̃ and H̆ = (h̆1, . . . , h̆K).

We can rewrite the J-fold CV criterion as

CVJ(w) =
∥∥∥C(w)− C̃

∥∥∥2

= w ˘>H>H̆w,

which is quadratic in w. Hence, the minimization of CVJ(w) with respect to w can be

implemented easily.

Define a quadratic loss function of the model averaging estimator by

LT (w) = ‖Ĉ(w)−C0‖2. (14)

Like the literature on model selection and model averaging such as Shao (1997) and

Hansen (2007), our goal is to reduce quadratic loss by using model averaging. The following

theorem shows that our method minimizes the quadratic loss asymptotically.
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THEOREM 1 Under Conditions C.1 – C.4 presented in Appendix A.1,

LT (ŵ)

infw∈W LT (w)
→ 1 in probability (as T →∞). (15)

The detailed proof of Theorem 1 is given in Appendix A. Theorem 1 states that our

model averaging estimator Ĉ(ŵ) is asymptotically optimal in the sense that the squared loss

of Ĉ(ŵ) is asymptotically identical to that by the infeasible best possible model averaging

estimator. So the squared loss is minimized approximately. In addition, it is obviously that

infw∈W LT (w) ≤ infk∈{1,...,K} ‖Ĉk −C0‖2, so it is expected that the model averaging can

reduce estimation error relative to using a candidate copula.

Another important question is how to decide the appropriate values of K and J . For the

choice of K, we propose using Cai and Wang (2015)’s method to filter out those candidates

with zero weights. Then the proposed model averaging method could be implemented to

those preserved candidates after the screening. For the choice of J , we follow a method

proposed by Ma and Zhu (2012). Specifically, we choose J from a discrete set consisting

of l candidates J ∈ {J1, J2, ..., Jl}. For each s ∈ {1, ..., l}, we use the block bootstrap

method, with a block size m, to generate a bootstrap sample, and we repeat the process

B times to obtain B bootstrap samples: [
{
Y>t ,Z

>
t

}T
t=1

][1], . . . , [
{
Y>t ,Z

>
t

}T
t=1

][B] . Using the

model averaging procedure discussed above, we can calculate ŵ1
1, ..., ŵ

1
B, ..., ŵ

l
1, ..., ŵ

l
B. For

candidate Js, we can calculate the sample variance matrix using ŵs
1, ..., ŵ

s
B and denote it

as VJs for s = 1, ..., l. Finally, we select J∗ that gives the minimum value of trace(VJ), i.e.,

J∗ = arg minJ∈{J1,...,Jl} trace(VJ). In our simulation, we use m = 10 and B = 100.

4 Numerical Studies

We compare squared estimation losses using our proposed model average method with

three other methods: Cai and Wang’s (2014) penalized likelihood method, the BIC method

which selects one copula by comparing each candidate’s BIC, and the maximum likelihood

method (Hu (2006)). We consider two types of simulations. In Type I simulation, data are

generated from copulas which are included in the mixture copula model. In contrast, in Type

II simulation, the working mixture copula model is misspecified. That is, data are generated

from copulas which are not constituents of the working mixture model. We compare which

method gives more accurate description of the data dependence structure under these two

settings.
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4.1 Simulation Type I

In type I simulation we consider the scenario that data are generated from copulas which

are constituents of our working model. We first consider a bi-variate case that the data are

generated by an AR(1)-GARCH(1,1) process:

yit = γiyi,t−1 + eit, i = 1, 2; t = 1, ..., T,

where eit = σitεit, εit has a standard normal marginal distribution with the dependence

structure between ε1t and ε2t governed by a given form of copula function, and

σit =
√
αi0 + αi1e2

i,t−1 + βi1σ2
i,t−1,

where γ1 = 0.05, α10 = 0.0001, α11 = 0.95, β11 = 0.04 for the first margin; and γ2 =

0.1, α20 = 0.0001, α21 = 0.90, β21 = 0.09 for the second margin. Our working mixture model

includes three commonly used copulas: Gaussian, Clayton and Gumbel. Characteristics of

the three copulas have been discussed in Section 2 and the simulated scatter plots have

been displayed in Figure 1. We first use Cai and Wang’s (2014) method to screen the three

candidate copulas and then decide which one should be kept in the candidate pool. Suppose

all the three candidates have non-zero weights under Cai and Wang’s (2014) method, our

presumed mixture copula is formulated as:

C(u;θ,ω) = ωGaCGa(u;θ1) + ωClCCl(u;θ2) + ωGuCGu(u;θ3),

where CGa, CCl and CGu stand for Gaussian, Clayton and Gumbel copulas, respectively, and

u = (F1(·), F2(·)) denote the two margins. By fitting the data into Gaussian, Clayton and

Gumbel copulas separately, we obtain their maximum likelihood estimates θ̂1, θ̂2 and θ̂3.

We argued in Section 3 that when the true copula is a mixture copula, an averaging

estimator based on single copulas can lead to a poor fit. We thus include a maximum likeli-

hood (ML) estimator of the mixture copula into our model average estimator. Specifically,

let CML(ũ; θ̂4) = ω̆1CGa(ũ; θ̆1) + ω̆2CCl(ũ; θ̆2) + ω̆3CGu(ũ; θ̆3), where ũ = (F̃1(·), F̃2(·)) are

re-scaled empirical CDF estimates of u, ω̆1, ω̆2, ω̆3 and θ̆1, θ̆2, θ̆3 are the ML estimates of

ω1, ω2, ω3 and θ1,θ2,θ3, respectively. Let θ̂4 = (ω̆1, ω̆2, ω̆3, θ̆
>
1 , θ̆

>
2 , θ̆

>
3 )>. Our method then

averages over the four components: three individual candidate copulas plus a ML estimator

of their linear combination. We need to choose wGa, wCl, wGu, wML in our working mixture

copula model

C(ũ, ṽ; θ̂,w) = wGaCGa(ũ, ṽ; θ̂1) + wClCCl(ũ, ṽ; θ̂2) + wGuCGu(ũ, ṽ; θ̂3) + wMLCML(ũ, ṽ; θ̂4)

via the model averaging method by minimizing the estimation losses LT (w) defined in Section

12



3. For simplicity, the model averaging method with our proposed methods selecting K and

J is denoted as MA∗ in this section.

We consider two sample sizes: T = 200 and 500. We will focus on out-of-sample fore-

casting evaluations of different estimation methods. We choose in-sample size equals the

out-of-sample size. For T = 200 (500), we use a sample of 200 (500) to estimate a model and

then we evaluate the estimation squared loss using another 200 (500) out-of-sample data

observations. We consider four different values for J ∈ {2, 4, 5, 10}. For each J , we use

block bootstrap size m = 10 to generate B = 100 bootstrap samples, and use the method

discussed at the end of Section 3 to select J∗. All simulations are repeated 2000 times. We

simulate three mixture copulas with two components and one mixture copula with three

components. Specifically, we have the following four cases for the setup of weights and the

data are simulated from different copulas:

Case 1: ωGa = 1/2, ωCl = 1/2, ωGu = 0;

Case 2: ωGa = 1/2, ωCl = 0, ωGu = 1/2;

Case 3: ωGa = 0, ωCl = 1/2, ωGu = 1/2;

Case 4: ωGa = 1/3, ωCl = 1/3, ωGu = 1/3.

For each case of the above weights, we consider two sets of copula parameters:

Parameter setting 1: θGa = 0.5, θCl = 5.8, θGu = 5.1;

Parameter setting 2: θGa = 0.7, θCl = 7.8, θGu = 7.1.

Therefore, we have 4× 2 = 8 DGPs in total.

Table 1 displays how close the estimated copula is to the true copula in terms of out-

of-sample mean squared estimation loss across the four methods we mentioned earlier: our

proposed model average approach (MA∗), Cai and Wang’s (2014) penalized likelihood (CW),

the BIC method which selects one from a set of candidates based on BIC (BIC), and the max-

imum likelihood method. To save space and for expositional ease, we only present the ratios

of out-of-sample prediction errors of CW to MA∗ (CW/MA∗), BIC to MA∗ (BIC/MA∗)

and MLE to MA∗ (MLE/MA∗). Therefore, MA∗ is superior to CW, or BIC, or MLE if

the ratio is greater than one. To further check whether such a superiority is statistically

significant, we implement the Diebold-Mariano (DM) test and report the p−value for each

case.

[ INSERT TABLE 1 ABOUT HERE ]

13



As we stated above, Table 1 presents the out-of-sample prediction performance of the

four competing methods. The number of out-of-sample observations is equal to the number

of in-sample observations. Hence, for 200 and 500 in-sample observations, the out-of-sample

predictions include 200 and 500 observations, respectively. The results in Table 1 show that

mixture copula models perform better than using an individual copula (BIC). Among the

four competing methods, BIC gives the largest prediction errors for all cases (BIC/MA∗

is greater than one and larger than CW/MA∗ and MLE/MA∗), while the performances of

CW and MA∗ are similar to each other because the estimation MSE ratios of CW/MA∗ and

MLE/MA∗ are all close to one, and their p−values are quite large in almost all cases.

In terms of out-of-sample prediction errors, Type I simulation demonstrates the superi-

ority of using a mixture copula model over a model that uses only one individual copula.

Furthermore, for the estimation of a mixture copula model, the performance of our proposed

model average approach is similar to those of Cai and Wang’s (2014) method and the MLE

method.

4.2 Simulation Type II

The working model is misspecified in Type II simulations. The purpose of Type II

simulation is to examine how the proposed model average approach performs when data are

generated from copulas which are outside one’s candidate set, a situation which should be

common in empirical studies as the true model is always unknown to researchers.

In the simulation setup, our working mixture model is still comprised by Gaussian, Clay-

ton and Gumbel copulas but the true observations are generated from a linear combination

of Frank, Survival Joe (SJ) and Joe copulas. These three copulas are also widely used in

empirical studies. The Frank copula is similar to the Gaussian copula as it does not exhibit

tail dependence, but has relatively stronger dependence in the center of the distribution.

The Joe copula, like the Gumbel copula, exhibits right tail dependence. The Survival Joe

copula is a 180◦ rotation of Joe, so it exhibits left tail dependence as the Clayton copula.

We consider four cases: in the first three cases, the true copula is generated from a linear

combination of two of the Frank, Joe and Survival Joe copulas. In the fourth case, each

candidate copula has the equal weight, i.e., 1/3. Specifically, we consider the following four

weighting setups:

Case 1: ωFrank = 1/2, ωSJ = 1/2, ωJoe = 0;

Case 2: ωFrank = 1/2, ωSJ = 0, ωJoe = 1/2;

Case 3: ωFrank = 0, ωSJ = 1/2, ωJoe = 1/2;

Case 4: ωFrank = 1/3, ωSJ = 1/3, ωJoe = 1/3,
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and we use the following two sets of different copula parameters:

Parameter setting 1: θFrank = 5.5, θSJ = 4.8, θJoe = 4.5;

Parameter setting 2: θFrank = 7.5, θSJ = 6.8, θJoe = 6.5.

We present the out-of-sample prediction results of the four competing methods under

Type II simulation in Table 2. Same to the Type I case, the number of out-of-sample

predictions is the same with the corresponding sample size of the in-sample data. The

patterns in Table 2 show that MA∗ exhibits more accurate out-of-sample predictions than

CW, BIC and MLE because the estimation MSE ratios of CW to MA∗, BIC to MA∗ and

MLE to MA∗ are all greater than one, and most p-values are quite small.

[ INSERT TABLE 2 ABOUT HERE]

The simulation results show that our model averaging method outperforms CW, BIC and

MLE methods when the working mixture copula is misspecified. This finding has important

implications for empirical studies as the true copula is always unknown to researchers and

the misspecification of one’s working mixture model should be quite common in practice.

Next, we examine the performance of the four estimation methods with copula functions

that have three or four components. We generate additional 3rd and 4th components via

yit = γiyi,t−1 + eit, i = 3, 4; t = 1, ..., T,

where eit = σitεit, εit has a standard normal marginal distribution with the dependence

structure among ε1t, ε2t, ε3t and ε4t governed by a given form of copula function, and

σit =
√
αi0 + αi1e2

i,t−1 + βi1σ2
i,t−1,

where γ3 = 0.09, α30 = 0.0001, α31 = 0.94, β31 = 0.05 for the third margin; and γ4 =

0.15, α40 = 0.0001, α41 = 0.91, β41 = 0.08 for the fourth margin. The other parts of the

setup for simulations is similar to the two-component case discussed earlier. Both the in-

sample (estimation) size and the out-of-sample (forecast) size are T = 500. To save space,

we only conduct Type II simulations for the three and four components copula cases. Our

working mixture model is still comprised by Gaussian, Clayton and Gumbel copulas but the

true observations are generated from a linear combination of Frank, Survival Joe (SJ) and

Joe copulas.

Table 3 displays the ratios of mean squared out-of-sample prediction losses of the

model averaging method to the other three competing methods for the 3-component and

4-component copula cases. If the ratio is greater than 1, it implies that MA∗ outperforms
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the corresponding competing method. As documented in Table 3, it can be seen that MA∗

outperforms the other three competing methods in all cases.

[ INSERT TABLE 3 ABOUT HERE]

In Appendix A, we run additionally simulations to compare the performance between:

(1). the original model averaging method with fixed K and J (no selections of K and

J ; denoted as MA hereafter) and MA without
∑K

k=1 wk = 1 constraint; (2). MA and

MA with the screening step to select K (MAS); (3). MA with our proposed data-driven

method selecting J and MA with J ∈ {2, 4, 5, 10}, respectively. All the simulation results

are documented in Appendix A. In Table A1, the out-of-sample forecast performance between

MA and MA without
∑K

k=1wk = 1 constraint does not exhibit significant difference because

the ratio is close to 1. Table A2 demonstrates that, even though the ratio between MAS and

MA is less than 1, the difference of the two methods is not statistically significant based on

the DM test. This indicates that the additional screening step does not effectively improve

the performance of MA. Table A3 shows that MA with selected J outperforms MA with

fixed J in most cases and the difference is significant in most cases. This proves that the

proposed J selection strategy is useful in improving the performance of MA.

5 An Empirical Study

In this section we use a real data to examine the performance of using the model average

approach to estimate a mixture copula model. We consider daily returns of Morgan Stanley

Capital International (MSCI) equity indexes for four developed economies: United States

(US), United Kingdom (UK), Hong Kong (HK) and Japan (JP). The daily data span 12

years from August, 2002 to December, 2014, for a total of 3220 observations. We download

these equity indexes from Datastream and calculate log returns of the four indexes. For

comparing purposes, the currency for the daily indexes in United Kingdom, Hong Kong and

Japan are converted into US dollars based on their respective contemporary exchange rates.

We split the data into two equal parts: the first 1610 observations (training set), ranging

from August of 2002 to October of 2008, are used to fit a model, and the remaining 1610

observations (testing set) are used to examine the out-of-sample prediction accuracy across

the competing methods. Table 4 displays the summary statistics for daily log-returns of

MSCI indexes for the four markets. Over the 6 years between 2002 and 2008, HK market

had the highest average daily return while the UK market had the highest median daily

return. The skewness is negative for all markets, indicating higher probabilities in having

extreme daily losses than having extreme daily gains in these markets. Kurtosis for US, UK

and HK markets are greater than 3, while it is smaller than 3 for JP market. These statistics
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indicate that it can be difficult to correctly specify each marginal distribution in practice

and nonparametric methods should be used to estimate the margins.

[ INSERT TABLE 4 ABOUT HERE ]

Table 5 demonstrates the linear correlation coefficients and Kendall’s τs (in parentheses)

for each pair. We observe that the HK-JP pair has the strongest correlation or degree of

dependence based on both correlation coefficients and Kendall’s τs. Figure 2 shows pairwise

scatter plot for each pair. Daily returns in each pair appear to be positively correlated

especially for US-UK, JP-HK and UK-HK pairs. Figure 2 also displays a violation of the

elliptical multivariate distributions. Asymmetry and extreme data can be observed from

each pair. Figure 2 further confirms the existence of large amount of extreme data in

the lower left corner for UK-HK, JP-HK and JP-UK pairs. Simply choosing one most

“appropriate” copula from a candidate set may not be able to discover characteristics of the

joint distribution. To take advantage of the flexibility of each individual copula, we consider

a mixture copula model.

[ INSERT TABLE 5 ABOUT HERE ]

[ INSERT FIGURE 2 ABOUT HERE ]

Spurious regression results may be generated if a pair of time series data is processed

inappropriately (see Granger and Newbold, 1974; Chen and Fan, 2006a). Hu (2006) also ar-

gues that, due to the clustering of large volatilities, data with conditional heteroscedasticity

can lead to underestimation of the degree of dependence. Preliminary examination indi-

cated the existence of both autocorrelation and conditional heteroscedasticity in the daily

returns for the four economies. To filter both effects, we specify an AR(1)-GARCH(1,1)

model. The filtered daily percentage changes (the residuals) are then substituted into the

working mixture copula model. An AR(1)-GARCH(1,1) model is a special case of the class

of SCOMDY models stated in Section 3. According to Theorem 1, the model averaging

method should generate an asymptotically optimal estimator in the sense of minimizing the

squared estimation loss.

Next, we fit the filtered daily returns in the four economies into a mixture copula model

which includes Student’s t, Clayton and Gumbel.4 We implement the model averaging

4We thank a referee for suggesting the use of a Student’s t copula. Compared with a Gaussian copula,
a Student’s t copula is more suitable to financial data since it has the tail dependence property and is able
to capture correlations in the extreme market movements.
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method, Cai and Wang’s (2014) penalized likelihood method, the BIC method and the MLE

method to estimate the mixture copula model respectively. To compare the estimation

performance across the four methods, we follow a procedure as suggested by Genest and

Rivest (1993). Specifically, we construct five 7× 7 cross-classification tables for each of the

six pairs. For each pair, the numbers in the first cross-classification table is computed using

the observed data and the other four tables are computed using the four competing methods,

respectively. Let G represents a table and Gi,j be the number appears at the cell (i, j) (i.e.,

in the ith row and jth column of table G) for a pair of markets (call them markets 1 and

2), where i, j = 1, ..., 7. Let ui and vj be the upper bounds for determining counts Gi,j in

cell (i, j), where ui and vj are defined as the i/7 and j/7 percentiles of the two return series,

respectively (i, j = 1, ..., 7). Then a pair of observations (u, v) belongs to the cell (i, j) if

ui−1 < u ≤ ui and vj−1 < v ≤ vj. Thus, Gi,j, the entry in cell (i, j), is the number of

times the daily return of market 1 falls between the (i − 1)/7 and the i/7 percentile of its

data range, and that of market 2 is within the (j − 1)/7 and the j/7 percentile of its data

range. For example, the number recorded in the cell (3, 2) indicates the number of times that

daily return percentage changes of the first market is between the 29th (2/7) and the 43rd

(3/7) percentile of its data range, while that of the second market falls within 14th (1/7)

and 29th (2/7) percentile of its data range. Thus, if the two markets are strongly positively

correlated, we should see that most observations lie on the principal diagonal. If they are

strongly negatively correlated, then most observations should lie on the diagonal which is

perpendicular to the principal one. If they are independent to each other, then the number

of observations in each cell should be similar to each other.

We take UK-HK pair as an example. For observed frequencies, the cell at the top-left

represents the number of times when indexes in UK and Hong Kong market are both below

the 14th (1/7) percentile of their respective ranges; that is, the number of times when both

markets face downturn risk simultaneously. Similarly, the cell at the bottom-right shows the

frequency that both daily returns are above the 86th (6/7) percentile. During the period

between August 2002 and October 2008 (a total of 1610 observations), there are 83 times

that daily returns of MSCI indexes in UK and Hong Kong are both lower than their 14th

percentile. In contrast, there are 64 times that daily returns in UK and Hong Kong market

are both higher than their 86th percentile. Thus, UK and Hong Kong stock markets exhibit

higher probability to co-move downward than to co-move upward. US-HK, UK-JP and JP-

HK display similar left tail dependence structures. Such a pattern is not significant in the

US-JP and US-UK markets.

We evaluate the fit of an estimation method by comparing the sum of squared differences

between the estimated count and the observed count over all the 7 × 7 = 49 cells. We

now describe how to compute the estimated count in each cell. Let Ĉ denotes an estimated
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copula. The estimated count in cell (i, j) for example, can be obtained by multiplying the

probability Ĉ(ui, vj)− Ĉ(ui, vj−1)− Ĉ(ui−1, vj) + Ĉ(ui−1, vj−1) to the sample size 1610. Let

Gi,j and GMA∗
i,j denote the frequency observed and the frequency estimated by the model

averaging method in cell (i, j) respectively. Then, we define the estimation squared error as:

QMA∗ =
1

k2

k∑
i=1

k∑
j=1

(Gi,j −GMA∗

i,j )2. (16)

In our case, k = 7. By the same manner, we can calculate estimation squared errors for

CW, BIC and MLE methods, which are respectively denoted as QCW , QBIC and QMLE.

The estimation squared errors and the ratios are displayed in Table 6. Among all cases,

the model averaging method exhibits the smallest estimation squared errors, while the BIC

method which relies on the comparison of BIC among Student’s t, Clayton and Gumbel

copulas gives the largest estimation errors. The empirical study again shows that the model

average approach gives more accurate estimates of dependence structures comparing with

other competing methods. The in-sample fit results reported in Table 6 supports our model

averaging method.

Next, we consider the out-of-sample prediction performance of the four competing meth-

ods based on the daily observations between October 2008 and December 2014. The esti-

mated frequencies are based on our estimated mixture copula model under MA∗, CW, BIC

and MLE, respectively. The out-of-sample predicting errors are calculated in a similar way

as we did to calculate the in-sample estimation losses. We present the prediction squared

errors of each competing method and the ratios of CW to MA∗, BIC to MA∗ and MLE

to MA∗ for each pair. The results are displayed in Table 7. It is obvious that the model

averaging method exhibits the smallest predicting errors, indicating a good out-of-sample

prediction performance of the model averaging method.

We notice that the dependent structure among different stock markets may change sig-

nificantly as time goes by, especially during the period that the financial markets fluctuate

acutely. Ideally, one should allow for the parameters in a mixture model to change over

time to capture the dynamics among the international financial markets. Although some

approaches on time-varying copulas have been developed (see, for example, Patton (2006)

and Manner and Reznikova (2012)), the extension of our semiparametric (with nonparamet-

ric marginals) model averaging method to the time varying copula framework is a challenge

research problem (e.g., Fan and Patton (2014)) and we leave it as a future research topic. To

partially deal with the time varying nature of the dependence structure among the returns

from the four developed stock markets, we use a rolling window method to examine the

performance among MA∗, CW, BIC and MLE. Specifically, we first estimate MA∗, CW,

BIC and MLE based on six years’ observations from 2002 to 2008 and then predict the
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dependence structure among US, UK, JP and HK in 2009. Next, we re-estimate MA∗, CW,

BIC and MLE by using the observations from 2003 to 2009 and then predict the depen-

dence in 2010. We repeat this procedure and make the final prediction on the dependence

structure in 2014 based on the previous 6 years’ observations. By doing this, we can update

our mixture model by using the most recent 6 years’ observations. We define the estimation

squared error of MA∗ based on the rolling window method (RW) as:

Qrw
MA∗ =

1

k2

k∑
i=1

k∑
j=1

6∑
l=1

(Gl,i,j −GMA∗

l,i,j )2,

and in our case, k = 7. By the same manner, we calculate estimation squared errors for

CW, BIC and MLE methods, which are respectively denoted as Qrw
CW , Qrw

BIC and Qrw
MLE. The

estimation squared errors and the ratios are displayed in Table 8.

[ INSERT TABLE 7 & 8 ABOUT HERE ]

We have two observations in Table 8. First, our model averaging estimator still outper-

forms CW, BIC and MLE in terms of squared estimation loss based on the rolling window

method. Second, compared with the results in Table 7, the estimation losses in Table 8

are smaller in magnitude (except the HK-JP pair). This is expected as we can improve the

prediction accuracy by updating the copula model via using the most recent data through

the rolling window method.

Finally, we compare the performance of the four methods: MA∗, CW, BIC and MLE

based on a four-component copula model by including all the four markets in a four-

component copula. The calculating procedure is exactly the same as the two-component

copula. However, in calculating the prediction squared errors under the four-component

copula we do not split the data into the 74 cross-classification table because doing so will

make observations in each cell too small. Instead, we respectively consider results from 24, 34

and 44 cross-classification tables. For example, for the 24 cross-classification case, we order

the returns of each stock and divide them into two parts, one part below the median return

(we use 1 to denote this) and the other part above the median return (we use 2 to denote

this). Then we can label the 24 = 16 cells as (i1, i2, i3, i4) for i = 1, 2 and j = 1, 2, 3, 4. The

cell (1,1,1,1) denotes the case that all four indices are below their respective median returns;

similarly, (1,1,2,2) denotes the case that the first two indexes (say, United States and United

Kingdom) are below their medians while the last two indexes (say, Hong Kong and Japan)

are above their medians. Let Gi1,i2,i3,i4 and GMA∗
i1,i2,i3,i4

denote the frequency observed and the

frequency estimated by the model averaging method in cell (i1, i2, i3, i4), respectively. Then,
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we define the estimation squared error as:

Q24,MA∗ =
1

24

2∑
i1=1

2∑
i2=1

2∑
i3=1

2∑
i4=1

(Gi1,i2,i3,i4 −GMA∗

i1,i2,i3,i4
)2. (17)

The 34 and 44 cross-classification tables are defined similarly. The corresponding pre-

diction squared errors of the four methods for each cross-classification table are reported in

different rows of Table 9. From Table 9 one can see that our MA∗ method outperforms the

other three methods in terms of prediction squared errors using a four-component copula.

[ INSERT TABLE 9 ABOUT HERE ]

6 Concluding Remarks

In this paper we propose to use a model averaging method to estimate a mixture copula

model. Unlike the BIC method which selects only one individual copula based on the com-

parison of BIC, the model averaging method estimates a mixture copula model by choosing

weights (associated with components of individual copula) optimally in the sense of minimiz-

ing the estimation squared loss. Simulation studies show that the model averaging method

performs similarly to the penalized likelihood method proposed by Cai and Wang (2014)

and the MLE method when observations are generated from copulas included in the working

mixture copula model. However, when the working mixture copula model is misspecified,

that is, when observations are generated from copulas not included in the working mixture

model, the model averaging method outperforms Cai and Wang’s (2014) penalized likelihood

method, the BIC method and the MLE method. An empirical example shows that the model

averaging method provides satisfactory estimates of the dependence structures among four

international stock markets. Thus, the model averaging method provides a useful tool to

estimate mixture copula models and can be utilized by practioners in financial industry for

portfolio diversification and risk management.
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Type I simulation: Out-of-sample forecast (sample size=200)
θGa = 0.5, θCl = 5.8, θGu = 5.1 θGa = 0.7, θCl = 7.8, θGu = 7.1

CW/MA∗ MLE/MA∗ BIC/MA∗ CW/MA∗ MLE/MA∗ BIC/MA∗

ωGa = 0.5, ωCl = 0.5, ωGu = 0 0.9931 1.0821 1.2043 0.9943 1.0526 1.1832
(0.61) (0.08) (0.00) (0.23) (0.11) (0.01)

ωGa = 0.5, ωCl = 0, ωGu = 0.5 0.9831 1.0574 1.1937 0.9922 1.0169 1.1491
(0.59) (0.11) (0.01) (0.63) (0.87) (0.04)

ωGa = 0, ωCl = 0.5, ωGu = 0.5 0.9951 1.0643 1.1739 0.9816 1.0713 1.1756
(0.49) (0.13) (0.02) (0.41) (0.07) (0.01)

ωGa = 1/3, ωCl = 1/3, ωGu = 1/3 1.0022 1.0754 1.1928 0.9983 1.0983 1.1749
(0.64) (0.07) (0.01) (0.89) (0.05) (0.00)

Type I simulation: Out-of-sample forecast (sample size=500)
θGa = 0.5, θCl = 5.8, θGu = 5.1 θGa = 0.7, θCl = 7.8, θGu = 7.1

CW/MA∗ MLE/MA∗ BIC/MA∗ CW/MA∗ MLE/MA∗ BIC/MA∗

ωGa = 0.5, ωCl = 0.5, ωGu = 0 1.0006 1.0679 1.1923 0.9926 1.0538 1.1749
(0.71) (0.08) (0.00) (0.83) (0.12) (0.01)

ωGa = 0.5, ωCl = 0, ωGu = 0.5 1.0135 1.0365 1.2173 1.0219 1.0766 1.2207
(0.19) (0.14) (0.00) (0.14) (0.09) (0.00)

ωGa = 0, ωCl = 0.5, ωGu = 0.5 0.9908 1.0749 1.1697 0.9877 1.0621 1.2134
(0.91) (0.08) (0.02) (0.16) (0.13) (0.00)

ωGa = 1/3, ωCl = 1/3, ωGu = 1/3 0.9945 1.0693 1.2158 0.9833 1.0421 1.2036
(0.54) (0.09) (0.00) (0.67) (0.12) (0.00)

Table 1: Ratios of squared prediction losses for Type I simulation. The data are generated from linear com-
binations of Gaussian, Clayton and Gumbel copulas with the associated weights denoted by ωGa, ωCl, ωGu.
θGa, θCl, θGu represent for copula parameters for Gaussian, Clayton and Gumbel. MA∗ = Model Average
with selected J and selected K; CW = Cai and Wang’s (2014) penalized maximum likelihood; BIC = Base-
line approach based on BIC comparison; MLE = maximum likelihood estimation method. Each simulation is
repeated 2000 times. Values in the parenthesis indicate the p−value obtained through the Diebold-Mariano
Test.
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Type II simulation: Out-of-sample forecast (sample size=200)
θF = 5.5, θSJ = 4.8, θJ = 4.5 θF = 7.5, θSJ = 6.8, θJ = 6.5

CW/MA∗ MLE/MA∗ BIC/MA∗ CW/MA∗ MLE/MA∗ BIC/MA∗

ωF = 0.5, ωSJ = 0.5, ωJ = 0 1.0801 1.1728 1.2159 1.0739 1.1642 1.2207
(0.06) (0.01) (0.00) (0.07) (0.02) (0.00)

ωF = 0.5, ωSJ = 0, ωJ = 0.5 1.0933 1.1324 1.2283 1.0845 1.1175 1.1934
(0.05) (0.05) (0.00) (0.06) (0.03) (0.01)

ωF = 0, ωSJ = 0.5, ωJ = 0.5 1.1291 1.1467 1.1908 1.1022 1.1236 1.1968
(0.04) (0.04) (0.00) (0.05) (0.04) (0.01)

ωF = 1/3, ωSJ = 1/3, ωJ = 1/3 1.1327 1.1055 1.1997 1.1237 1.0978 1.2114
(0.04) (0.04) (0.01) (0.04) (0.05) (0.00)

Type II simulation: Out-of-sample forecast (sample size=500)
θF = 5.5, θSJ = 4.8, θJ = 4.5 θF = 7.5, θSJ = 6.8, θJ = 6.5

CW/MA∗ MLE/MA∗ BIC/MA∗ CW/MA∗ MLE/MA∗ BIC/MA∗

ωF = 0.5, ωSJ = 0.5, ωJ = 0 1.1187 1.2001 1.2567 1.1304 1.2213 1.2265
(0.04) (0.01) (0.01) (0.05) (0.01) (0.00)

ωF = 0.5, ωSJ = 0, ωJ = 0.5 1.1531 1.2093 1.2317 1.1613 1.2764 1.2618
(0.03) (0.00) (0.00) (0.02) (0.00) (0.00)

ωF = 0, ωSJ = 0.5, ωJ = 0.5 1.1664 1.2231 1.2504 1.1562 1.2376 1.2703
(0.02) (0.00) (0.00) (0.02) (0.00) (0.00)

ωF = 1/3, ωSJ = 1/3, ωJ = 1/3 1.1981 1.1944 1.2576 1.1683 1.2247 1.2629
(0.00) (0.00) (0.00) (0.02) (0.00) (0.00)

,

Table 2: Ratios of squared prediction losses for Type II simulation. The data are generated from linear
combinations of Frank, Survival Joe and Joe copulas with the associated weights denoted by ωF , ωSJ , ωJ .
θF , θSJ , θJ represent for copula parameters for Frank, Survival Joe and Joe. MA∗ = Model Average with
selected J and selected K; CW = Cai and Wang’s (2014) penalized maximum likelihood; BIC = Baseline
approach based on BIC comparison; MLE = maximum likelihood estimation method. Each simulation is
repeated 2000 times. Values in the parenthesis indicate the p−value obtained through the Diebold-Mariano
Test.

3-component copula: Out-of-sample forecast (sample size=500)
θF = 5.5, θSJ = 4.8, θJ = 4.5 θF = 7.5, θSJ = 6.8, θJ = 6.5

CW/MA∗ MLE/MA∗ BIC/MA∗ CW/MA∗ MLE/MA∗ BIC/MA∗

ωF = 0.5, ωSJ = 0.5, ωJ = 0 1.1631 1.3859 2.0968 1.1954 1.2207 2.5491
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

ωF = 0.5, ωSJ = 0, ωJ = 0.5 1.1927 1.2157 1.9804 1.1368 1.2544 1.8093
(0.01) (0.00) (0.00) (0.01) (0.00) (0.00)

ωF = 0ωSJ = 0.5, ωJ = 0.5 1.1179 1.1038 1.4353 1.1277 1.1184 1.3965
(0.05) (0.04) (0.00) (0.03) (0.04) (0.00)

ωF = 1/3, ωSJ = 1/3, ωJ = 1/3 1.0915 1.1179 1.4843 1.1302 1.1408 1.3951
(0.04) (0.01) (0.00) (0.01) (0.00) (0.00)

4-component copula: Out-of-sample forecast (sample size=500)
θF = 5.5, θSJ = 4.8, θJ = 4.5 θF = 7.5, θSJ = 6.8, θJ = 6.5

CW/MA∗ MLE/MA∗ BIC/MA∗ CW/MA∗ MLE/MA∗ BIC/MA∗

ωF = 0.5, ωSJ = 0.5, ωJ = 0 1.1326 1.2605 2.9317 1.1429 1.2063 2.8970
(0.07) (0.01) (0.00) (0.01) (0.00) (0.00)

ωF = 0.5, ωSJ = 0, ωJ = 0.5 1.1018 1.1916 1.4381 1.0988 1.1543 1.3806
(0.05) (0.00) (0.00) (0.04) (0.00) (0.00)

ωF = 0, ωSJ = 0.5, ωJ = 0.5 1.1942 1.1139 1.4026 1.2237 1.1435 1.4109
(0.00) (0.01) (0.00) (0.00) (0.01) (0.00)

ωF = 1/3, ωSJ = 1/3, ωJ = 1/3 1.1079 1.1834 1.3072 1.1406 1.2267 1.3869
(0.03) (0.01) (0.00) (0.01) (0.00) (0.00)

Table 3: Ratios of squared out-of-sample predicting losses for Type II simulation with 3-component and
4-component multivariate copulas. The data are generated from linear combinations of Frank, Survival
Joe and Joe copula with the associated weights denoted by ωF , ωSJ , ωJ . θF , θSJ , θJ represent for copula
parameters for Frank, Survival Joe and Joe. MA∗ = Model Average with selected J and selected K; CW =
Cai and Wang’s (2014) penalized maximum likelihood; BIC = Baseline approach based on BIC comparison;
MLE = Maximum likelihood estimation method. Each simulation is repeated 2000 times. Values in the
parenthesis indicate the p−value obtained through the Diebold-Mariano Test.
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US UK HK JP
Mean 0.0186 0.0084 0.0295 0.0070

Median 0.0307 0.0492 0.0117 0.0174
min -9.2002 -10.494 -9.0137 -7.3300
max 5.2785 9.2065 10.192 4.2476
S.D. 1.0752 1.2243 1.3534 1.3763

Skewness -0.7713 -0.4470 -0.1229 -0.4189
Kurtosis 7.7132 8.1975 7.3170 1.7011

Table 4: The summary statistics for daily log-returns of MSCI Indexes of United States, United Kingdom,
Hong Kong and Japan.

UK JP HK
US 0.4304 (0.271) 0.0274 (0.037) 0.1147 (0.072)
UK 0.1995 (0.140) 0.3753 (0.209)
JP 0.4880 (0.306)

Table 5: Linear correlation coefficients and Kendall’s τs (Kendall’s τs are in parentheses) across four
markets.

QMA∗ QCW QBIC QMLE QCW/QMA∗ QBIC/QMA∗ QMLE/QMA∗

US-UK 17.59 22.09 28.32 21.13 1.256 1.610 1.201
US-HK 31.17 35.91 36.17 34.49 1.152 1.160 1.107
US-JP 27.12 29.24 29.61 28.74 1.078 1.092 1.060
UK-HK 30.19 33.77 35.43 33.16 1.119 1.174 1.098
UK-JP 20.04 25.21 25.58 24.41 1.258 1.276 1.218
HK-JP 29.17 31.41 35.04 33.11 1.077 1.201 1.135

Table 6: Mean of in-sample estimation errors based on MA∗, CW, BIC and MLE.

QMA∗ QCW QBIC QMLE QCW/QMA∗ QBIC/QMA∗ QMLE/QMA∗

US-UK 112.376 115.403 128.514 119.027 1.027 1.144 1.059
US-HK 42.3517 44.8726 44.1107 44.6314 1.060 1.042 1.054
US-JP 19.0015 20.6804 22.0029 22.6441 1.088 1.158 1.192
UK-HK 30.4812 32.9507 35.1903 34.6621 1.081 1.154 1.137
UK-JP 19.0735 22.2811 21.9532 23.2734 1.168 1.151 1.220
HK-JP 33.7658 35.1526 36.4483 36.0025 1.041 1.079 1.066

Table 7: Mean of out-of-sample predicting errors based on MA∗, CW, BIC and MLE.

27



Qrw
MA∗ Qrw

CW Qrw
BIC Qrw

MLE Qrw
CW/Q

rw
MA∗ Qrw

BIC/Q
rw
MA∗ Qrw

MLE/Q
rw
MA∗

US-UK 32.2715 35.9321 39.2237 38.0735 1.113 1.215 1.180
US-HK 27.0634 28.9637 30.2680 30.1159 1.070 1.118 1.113
US-JP 14.5301 16.5926 17.1104 16.6603 1.142 1.178 1.147
UK-HK 17.1756 20.2027 21.3544 20.1138 1.176 1.243 1.171
UK-JP 17.0035 21.0038 21.1917 20.5104 1.235 1.246 1.206
HK-JP 34.1824 35.1027 39.0723 38.8361 1.027 1.143 1.136

Table 8: Mean of out-of-sample predicting errors of MA∗, CW, BIC and MLE based on the rolling window
method (fixed window width).

QMA∗ QCW QBIC QMLE QCW /QMA∗ QBIC/QMA∗ QMLE/QMA∗

US-UK-HK-JP (24) 39.0027 47.2095 154.5832 45.3945 1.210 3.963 1.164
US-UK-HK-JP (34) 48.4601 55.1538 163.2781 61.1347 1.138 3.369 1.262
US-UK-HK-JP (44) 41.1866 44.7911 149.4092 47.0136 1.088 3.628 1.141

Table 9: Mean of out-of-sample predicting errors based on MA∗, CW, BIC and MLE with a 4-component
copula. The mixture copula includes Student’s t, Clayton and Gumbel copula. The first row considers
24 = 16 cells, the second row considers 34 = 81 cells and the third row considers 44 = 256 cells.
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(a) Gaussian Copula
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(b) Clayton Copula
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(c) Gumbel Copula
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(d) Gaussian-Clayton Mixture
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(e) Gaussian-Gumbel Mixture
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(f) Clayton-Gumbel Mixture

Figure 1: Scatter plots for Gaussian, Clayton and Gumbel copula and their mixture. All have standard
normal margins and Kendall’s τ = 0.5. For mixture copula, ωk = 0.5.
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Figure 2: Scatter plots for daily return of MSCI Index.
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Appendix A

A.1 Notations and conditions

Let θ̂ =
(
θ̂
>
1 , . . . , θ̂

>
K

)>
, where K is a fixed positive integer. Denote the fixed dimension

of θ̂ by κ. Define θ∗k as the pseudo true value defined by

θ∗k = arg max
θk

E
[
logck(F

0
1 (ε1t), . . . , F

0
p (εpt);θk)

]
, k = 1, ..., K,

where ck(F
0
1 , . . . , F

0
p ;θk) ≡ ∂pCk(F

0
1 , . . . , F

0
p ;θk)/∂F

0
1 ...∂F

0
p is the copula density. Denote

θ∗ =
(
θ∗>1 , . . . ,θ∗>K

)>
. Let C∗(w) = Ĉ(w) |θ̂=θ∗ , νt(w) = ∂C(Ũt;θ̂k,w)/∂θ̂|θ̂=θ̄t

, for t =

1, . . . , T , where θ̄t is between θ̂ and θ∗, Q(w) = {ν1(w), . . . , νT (w)}>, L∗T (w) = ‖C∗(w)−
C0‖2, and ξT = infw∈W L

∗
T (w). We assume that J is fixed and M →∞ as T →∞.

In addition, for the kth copula, we denote Ck {v1, . . . , vp;θk} ≡ Ck(v;θk) and

ck {v1, . . . , vp;θk} ≡ ck(v;θk). Also, we denote lk(v;θk) ≡ log ck(v;θk), lθ,k(v;θk) ≡
∂lk(v;θk)/∂ θk, lθθ,k(v;θk) ≡ ∂2lk(v;θk)/∂θk∂θ

>
k , lθj,k(v;θk) ≡ ∂2lk(v;θk)/∂uj∂θ

>
k and

Ut ≡ (F1(ε1t), . . . , Fp(εpt)).

To prove the asymptotic optimality as stated in Theorem 1, we need the following regu-

larity conditions.

Condition C.1: θ∗ is a finite dimensional vector with constant components and it takes

value in a compact subset of Rκ, θ̂ − θ∗ = Op(T
−1/2).

Condition C.2: Uniformly for w ∈ W , the elements of T × κ matrix Q(w) are uniformly

bounded.

Condition C.3: Uniformly for w ∈ W , T−1/2‖Ĉ(w) − C(w)‖2 = Op(1), T−1/2{Ĉ(w) −
C(w)}>{Ĉ(w)− C̃} = Op(1), and T−1/2{Ĉ(w)−C(w)}>(C0 − C̃) = Op(1).

Condition C.4: There exists a sequence cT → 0 such that Tξ−2
T ≤ cT almost surely.

Remark 2: Condition C.1 requires that θ∗ takes values in a compact set. It rules out

some cases such as the true distribution is normal, while one fits a tν-distribution model

and estimates the degree of freedom ν (as ν∗ = ∞). Condition C.1 also requires that the

convergence rate of θ̂ to the pseudo true value θ∗ is Op(T
−1/2). Chen and Fan (2006b)

show that Condition C.1 holds true under quite general regularity conditions including: (i)

θ∗k are in the interior of the parameter space for k = 1, ..., K, (ii) {Y′t,Z′t}
T
t=1 is stationary β

mixing with the appropriate decay rate, (iii) lθ,k(u;θk), lθθ,k(u;θk) and lθj,k(u;θk) satisfy

some standard smoothness conditions for k = 1, ..., K, and (iv) lθ,k(Ut; θk), lθθ,k(Ut;θk)

and lθj,k(Ut;θk) satisfy some appropriate moment conditions for k = 1, ..., K. Condition

C.2 puts an restriction of the derivative of copulas and requires the derivatives are bounded

uniformly.

31



With Conditions C.1 and C.2, we obtain that uniformly for w ∈ W ,

T−1/2
∥∥∥Q(w)(θ̂ − θ∗)

∥∥∥2

≤ T−1/2
∥∥∥θ̂ − θ∗∥∥∥2

λmax

{
QT(w)Q(w)

}
= T−1/2Op(T

−1)Op(T )

= Op(T
−1/2), (A.1)

where λmax(·) denotes the maximum eigenvalue of a matrix (since C.2 implies that

λmax

{
QT(w)Q(w)

}
= Op(T )), and

T−1/2 {C∗(w)−C0}>Q(w)(θ̂ − θ∗) = T−1/2Op(T
1/2) = Op(1), (A.2)

where we also used the fact that the elements of vector |C∗(w)−C0| are uniformly bounded

by 2.

Condition C.3 requires that as T →∞, the difference between the loss of the regular and

leave-M -out estimators decreases at some rate. This is similar to condition (A.10) of Andrews

(1991) and condition (A.5) of Hansen and Racine (2012). Let θ̂
(−j)

be the estimator of θ with

the jth group removed from the sample and ν
(−j)
t (w) = ∂Ĉ(−j)(ε̂t,w)/∂θ̂

(−j)
|
θ̂
(−j)

=θ̄
(−j)
t

for

t = 1, . . . , T , where θ̄
(−j)
t is between θ̂

(−j)
and θ∗, and Q(w) = {ν̃(−1)

1 (w), . . . ,ν
(−J)
T (w)}T.

From Proposition 3.2 of Chen and Fan (2006b) and Assumptions D and N in that paper,

the estimator θ̂ converges to θ∗ with a root-T rate and the estimators θ̂
(−j)

converges to θ∗

with rate root-(T −M), which is uniformly over j = 1, . . . , J because J is a finite constant.

When the elements of T×κ matrix Q(w) are uniformly bounded, similar to the derivations in

(A.1) and (A.2), we obtain that uniformly over w ∈ W , T−1/2‖Ĉ(w)−C(w)‖2 = Op(T
−1/2),

T−1/2{Ĉ(w)−C(w)}>{Ĉ(w)− C̃} = Op(1), and T−1/2{Ĉ(w)−C(w)}>(C0− C̃) = Op(1).

Condition C.4 imposes a limitation on situations to apply our asymptotic results. It

requires that ξT grow at a rate faster than T 1/2, which implies all candidate copulas are

misspecified. This is similar to the third part of condition (A7) in Zhang et al. (2013)

and condition 7 in Ando and Li (2014). The assumption that all candidate models are

misspecified is a common condition used in proving optimality properties of model averaging

estimators.

Here we would like to comment on the case when the candidate mixture cop-

ula is not misspecified, i.e., the true copula is the mixture copula CK(u;θK) =∑K−1
k=1 ωkCk {F1(x1), . . . , Fp(xp);θk} with

∑K−1
k=1 ωk = 1 and ωk > 0 for k = 1, . . . , K − 1, we

can show that under some regular conditions, the estimated weight of CK(ũ; θ̂K)

ŵK → 1, (A.3)

in probability, as T →∞ (see Appendix A.4 for the regular conditions and the proof), thus
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our method will have the same large sample property as that of MLE. This result is expected

and reasonable, and means our method is adaptable to the “lucky” case that the true copula

is the mixture copula. The simulation results in Table 1 also indicate that under this case,

our MA method performs similarly to MLE. Let w∗ = (0, . . . , 0, 1)>. When the candidate

mixture copula is not misspecified, we have L∗T (w?) = ‖C∗(w?) − C0‖2 = Op(1) because

of the convergence of MLE to the true value. Therefore, Condition 4 is violated when the

mixture copula contains the true copula.

A.2 Proof of Theorem 1

The result below follows from various definitions given in the paper (and some

adding/subtracting terms manipulations)

CVJ(w) =
∥∥∥C(w)− C̃

∥∥∥2

=
∥∥∥{Ĉ(w)−C0

}
−
{
Ĉ(w)−C(w)

}
+
(
C0 − C̃

)∥∥∥2

= LT (w) +
∥∥∥Ĉ(w)−C(w)

∥∥∥2

+
∥∥∥C0 − C̃

∥∥∥2

− 2
{
Ĉ(w)−C(w)

}> (
C0 − C̃

)
−2
{
Ĉ(w)−C(w)

}> {
Ĉ(w)−C0

}
+ 2

{
Ĉ(w)−C0

}> (
C0 − C̃

)
= LT (w) +

∥∥∥Ĉ(w)−C(w)
∥∥∥2

− 2
{
Ĉ(w)−C(w)

}> {
Ĉ(w)− C̃

}
+2
{
Ĉ(w)−C(w)

}>
(C0 − C̃) + 2C(w)>(C0 − C̃)− (C0 + C̃)>(C0 − C̃)

≡ LT (w) + ΞT (w)− (C0 + C̃)>(C0 − C̃), (A.4)

where the last term has nothing to do with the weight vector w, and

LT (w) =
∥∥∥Ĉ(w)−C0

∥∥∥2

=
∥∥∥{Ĉ(w)−C∗(w)

}
+ {C∗(w)−C0}

∥∥∥2

=
∥∥∥Ĉ(w)−C∗(w)

∥∥∥2

+ ‖C∗(w)−C0‖2 + 2 {C∗(w)−C0}>
{
Ĉ(w)−C∗(w)

}
= L∗T (w) +

∥∥∥Ĉ(w)−C∗(w)
∥∥∥2

+ 2 {C∗(w)−C0}>
{
Ĉ(w)−C∗(w)

}
≡ L∗T (w) + ΠT (w). (A.5)

We first prove that if

sup
w∈W

∣∣∣∣LT (w)

L∗T (w)
− 1

∣∣∣∣ = op(1), (A.6)

and CVJ(w) can be written as

CVJ(w) = LT (w) + aT (w) + bT (A.7)

33



with the term aT (w) satisfies

sup
w∈W

|aT (w)|
L∗T (w)

= op(1) (A.8)

and the term bT is unrelated to w, then Theorem 1 holds true. From (A.6), we know that

inf
w∈W

LT (w)

L∗T (w)
≥ − sup

w∈W

∣∣∣∣LT (w)

L∗T (w)
− 1

∣∣∣∣+ 1→ 1, (A.9)

in probability as T →∞. By the definition of ŵ and (A.7), we have

inf
w∈W
{LT (w) + aT (w)} = LT (ŵ) + aT (ŵ). (A.10)

By Condition C.4, we know that there exists a non-negative sequence νT and a sequence of

vectors w(T ) ∈ W such that as T →∞,

νT ξ
−1
T → 0 (A.11)

and

inf
w∈W

LT (w) = LT {w(T )} − νT . (A.12)

From (A.9) and (A.11), we have

inf
w∈W

|LT (w)− νT |
L∗T (w)

≥ inf
w∈W

LT (w)− νT
L∗T (w)

≥ inf
w∈W

LT (w)

L∗T (w)
− νT
ξT
→ 1, (A.13)

in probability as T →∞. From (A.8)-(A.13), we obtain that, for any δ > 0,

Pr

{∣∣∣∣ infw∈W LT (w)

LT (ŵ)
− 1

∣∣∣∣ > δ

}
= Pr

{
LT (ŵ)− infw∈W LT (w)

LT (ŵ)
> δ

}
= Pr

{
infw∈W (LT (w) + aT (w))− aT (ŵ)− infw∈W LT (w)

LT (ŵ)
> δ

}
≤ Pr

{
LT {w(T )}+ aT {w(T )} − aT (ŵ)− LT {w(T )}+ νT

LT (ŵ)
> δ

}
≤ Pr

{
|aT {w(T )} |
LT (ŵ)

+
|aT (ŵ)|
LT (ŵ)

+
νT

LT (ŵ)
> δ

}
≤ Pr

{
|aT {w(T )} |

infw∈W LT (w)
+
|aT (ŵ)|
LT (ŵ)

+
νT

LT (ŵ)
> δ

}
= Pr

{
|aT {w(T )} |

LT {w(T )} − νT
+
|aT (ŵ)|
LT (ŵ)

+
νT

LT (ŵ)
> δ

}
≤ Pr

{
sup
w∈W

|aT (w)|
LT (w)− νT

+ sup
w∈W

|aT (w)|
LT (w)

+ sup
w∈W

νT
LT (w)

> δ

}
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≤ Pr

{
sup
w∈W

|aT (w)|
L∗T (w)

sup
w∈W

L∗T (w)

|LT (w)− νT |
+ sup

w∈W

|aT (w)|
L∗T (w)

sup
w∈W

L∗T (w)

LT (w)

+ sup
w∈W

νT
L∗T (w)

sup
w∈W

L∗T (w)

LT (w)
> δ

}
= Pr

{
sup
w∈W

|aT (w)|
L∗T (w)

[
inf
w∈W

|LT (w)− νT |
L∗T (w)

]−1

+ sup
w∈W

|aT (w)|
L∗T (w)

[
inf
w∈W

LT (w)

L∗T (w)

]−1

+
νT

infw∈W L∗T (w)

[
inf
w∈W

LT (w)

L∗T (w)

]−1

> δ

}
→ 0,

which implies that Theorem 1 holds true.

Hence from (A.4)-(A.8), Theorem 1 is valid if the following hold:

sup
w∈W

|ΞT (w)|
L∗T (w)

= op(1) (A.14)

and

sup
w∈W

|ΠT (w)|
L∗T (w)

= op(1). (A.15)

Using Taylor expansion,

Ĉ(w)−C∗(w) = Q(w)(θ̂ − θ∗). (A.16)

where Q(w) = Q(w;θ1, . . . ,θT ) with θt’s being between the line segment of θ̂ and θ∗ (see

the first paragraph of Appendix A.1 for the definition of Q(w)). From (A.16), (A.1), (A.2),

and Condition C.4 we have

sup
w∈W

|ΠT (w)|
L∗T (w)

≤ ξ−1
T sup

w∈W

∥∥∥Ĉ(w)−C∗(w)
∥∥∥2

+ 2ξ−1
T sup

w∈W

∣∣∣{C∗(w)−C0}>
{
Ĉ(w)−C∗(w)

}∣∣∣
=

T 1/2

ξT
T−1/2 sup

w∈W

∥∥∥Q(w)(θ̂ − θ∗)
∥∥∥2

+ 2
T 1/2

ξT
T−1/2 sup

w∈W

∣∣∣{C∗(w)−C0}>Q(w)(θ̂ − θ∗)
∣∣∣

= op(1),

which is (A.15).

Similarly, from Conditions C.3 and C.4, we have

sup
w∈W

∣∣∣∣∥∥∥Ĉ(w)−C(w)
∥∥∥2

− 2
{
Ĉ(w)−C(w)

}> {
Ĉ(w)− C̃

}
+ 2

{
Ĉ(w)−C(w)

}>
(C0 − C̃)

∣∣∣∣
L∗T (w)

= op(1). (A.17)

35



Denote F0(·) as the true distribution function of εt ≡ (ε1t, ..., εpt)
′, C̃T (x) =

T−1
∑T

s=1 I {ε̂s ≤ x} and CT (x) = 1
T

∑T
s=1 I {εs ≤ x}.

Next, we want to show

T−1

T∑
t=1

∣∣∣F0(εt)− C̃T (ε̂t)
∣∣∣ = Op(T

−1/2). (A.18)

We have

1

T

T∑
t=1

∣∣∣F0(εt)− C̃T (ε̂t)
∣∣∣

=
1

T

T∑
t=1

∣∣∣F0(εt)− CT (εt) + CT (εt)− C̃T (εt) + C̃T (εt)− C̃T (ε̂t)
∣∣∣

≤ 1

T

T∑
t=1

|F0(εt)− CT (εt)|+
1

T

T∑
t=1

∣∣∣CT (εt)− C̃T (εt)
∣∣∣+

1

T

T∑
t=1

∣∣∣C̃T (εt)− C̃T (ε̂t)
∣∣∣
(A.19)

Since {εt} are i.i.d., it is a standard result that

√
T sup

x∈Rp

| F0(x)− CT (x) |= Op(1). (A.20)

Therefore, the first term of (A.19) is Op(T
−1/2). By the same proof method as used in Chen

and Fan (2006b, Lemma A.1 (3)), one can show that

√
T sup

x∈Rp

| CT (x)− C̃T (x) |= Op(1), (A.21)

and the second term of (A.19) is also Op(T
−1/2). Finally the third term of (A.19) can be

written as

T−1

T∑
t=1

∣∣∣C̃T (εt)− C̃T (ε̂t)
∣∣∣

= T−2

T∑
t=1

T∑
s=1

|I {ε̂s ≤ εt} − I {ε̂s ≤ ε̂t}|

= T−2

T∑
t=1

T∑
s=1

|1− I {ε̂s > εt} − 1 + I {ε̂s > ε̂t}|

= T−2

T∑
t=1

T∑
s=1

|I {ε̂t < ε̂s} − I {εt < ε̂s}|
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= T−1

T∑
s=1

∣∣∣C̃T (ε̂s)− CT (ε̂s)
∣∣∣ = Op(T

−1/2) (A.22)

by (A.21). Hence, we have the third term of (A.19) is Op(T
−1/2).

From cT → 0, (A.18), and the fact that all elements of the vector |Ĉk| are bounded by

1, we obtain that for any j ∈ {1, . . . , J},

c
1/2
T M−1/2

∣∣∣∣∣
M∑
m=1

Ck(Ũ(j−1)M+m; θ̂
(−j)
k )

{
C0(U0,(j−1)M+m;θ0)− C̃(j)(ε̂(j−1)M+m)

}∣∣∣∣∣
≤ c

1/2
T M1/2M−1

M∑
m=1

∣∣∣C0(U0,(j−1)M+m;θ0)− C̃(j)(ε̂(j−1)M+m)
∣∣∣

= c
1/2
T M1/2M−1

M∑
m=1

∣∣∣F0(ε(j−1)M+m)− C̃(j)(ε̂(j−1)M+m)
∣∣∣

= op(1), (A.23)

which, along with Condition C.4 and the assumption that K and J are fixed, implies that

ξ−1
T sup

w∈W

∣∣∣C(w)>(C0 − C̃)
∣∣∣

= ξ−1
T sup

w∈W

∣∣∣∣∣
K∑
k=1

wkC
>
k (C0 − C̃)

∣∣∣∣∣
≤

K∑
k=1

T 1/2

ξT
T−1/2

∣∣∣C>k (C0 − C̃)
∣∣∣

=
K∑
k=1

J−1/2T
1/2

ξT

∣∣∣∣∣
J∑
j=1

M−1/2

M∑
m=1

Ck(Ũ(j−1)M+m; θ̂
(−j)
k )

{
C0(U0,(j−1)M+m;θ0)− C̃(j)(ε̂(j−1)M+m)

}∣∣∣∣∣
≤

K∑
k=1

J−1/2c
1/2
T

∣∣∣∣∣
J∑
j=1

M−1/2

M∑
m=1

Ck(Ũ(j−1)M+m; θ̂
(−j)
k )

{
C0(U0,(j−1)M+m;θ0)− C̃(j)(ε̂(j−1)M+m)

}∣∣∣∣∣
=

K∑
k=1

J−1/2

∣∣∣∣∣
J∑
j=1

c
1/2
T M−1/2

M∑
m=1

Ck(Ũ(j−1)M+m; θ̂
(−j)
k )

{
C0(U0,(j−1)M+m;θ0)− C̃(j)(ε̂(j−1)M+m)

}∣∣∣∣∣
= op(1), (A.24)

where the second ‘≤’ holds almost surely. From (A.17) and (A.24), we obtain (A.14). This

completes the proof for Theorem 1.
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A.3 Proof of Proposition 1

First, we show the first part of Proposition 1 without imposing the i.i.d assumption.

From the steps in deriving (A.24), we know that uniformly for w ∈ W ,

ξ−1
T

{∥∥C(w)−C0

∥∥2 −
∥∥∥C(w)− C̃

∥∥∥2
}

= ξ−1
T

{
2C(w)− C̃−C0

}T

(C̃−C0) = op(1).

From Conditions C.1-C.3, (A.6), and the steps used in the proof of (A.15), we have that

uniformly for w ∈ W ,

∥∥C(w)−C0

∥∥2
= LT (w) +

∥∥∥Ĉ(w)−C(w)
∥∥∥2

− 2
{
Ĉ(w)−C(w)

}> {
Ĉ(w)−C0

}
= L∗T (w) + op(ξT ).

Thus, uniformly for w ∈ W ,

E
∥∥C(w)−C0

∥∥2 − E
∥∥∥C(w)− C̃

∥∥∥2

E
∥∥C(w)−C0

∥∥2 =

E

[
ξ−1
T

{∥∥C(w)−C0

∥∥2 −
∥∥∥C(w)− C̃

∥∥∥2
}]

E
{
ξ−1
T L∗T (w) + op(1)

}
=

E [op(1)]

Eξ−1
T L∗T (w) + E[op(1)]

. (A.25)

Suppose the above op(1) terms are uniformly integrable, then (A.25) is o(1) uniformly for

w ∈ W , which is the first part of Proposition 1.

Next, we consider the i.i.d. data case, i.e., the second part of Proposition 1. Denoting

Vt = (F 0
1 (X1t), . . . , F

0
p (Xpt)) and Ṽt = (F̃1(X1t), . . . , F̃p(Xpt)), it is easy to see that

E
∥∥C(w)−C0

∥∥2 − E
∥∥∥C(w)− C̃

∥∥∥2

= 2E
{
C

T
(w)(C̃−C0)

}
− E

{
(C̃ + C0)T(C̃−C0)

}
= 2

K∑
k=1

wk

J∑
j=1

M∑
m=1

E
[
Ck(Ṽ(j−1)M+m;θ̂

(−j)
k )

{
C̃(j)(X(j−1)M+m)− C0(V0,(j−1)M+m;θ0)

}]
−E

{
(C̃ + C0)T(C̃−C0)

}
. (A.26)

Let Xt = (X1t, . . . , Xpt)
> and X (−j) =

{
X1, . . . , X(j−1)M , XjM+1, . . . , XT

}
. So from

E
{
C̃(j)(x)

}
= C0(u;θ0),

we know that for any m ∈ {1, . . . ,M} and j ∈ {1, . . . , J},

E
[
Ck(Ṽ(j−1)M+m;θ̂

(−j)
k )

{
C̃(j)(X(j−1)M+m)− C0(V0,(j−1)M+m;θ0)

}
| X (−j)

]
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= EX(j−1)M+m

(
E
[
Ck(Ṽ(j−1)M+m;θ̂

(−j)
k )

×
{
C̃(j)(X(j−1)M+m)− C0(V0,(j−1)M+m;θ0)

}
|X(j−1)M+m, X (−j)

])
= EX(j−1)M+m

[
Ck(Ṽ(j−1)M+m;θ̂

(−j)
k )

× E
{
C̃(j)(X(j−1)M+m)− C0(V0,(j−1)M+m;θ0)|X(j−1)M+m, X (−j)

}]
= 0, (A.27)

where the expectation EX(j−1)M+m
is taken with respect to the randomness of X(j−1)M+m.

The above two formulas (A.26) and (A.27) imply that

E
∥∥C(w)−C0

∥∥2 − E
∥∥∥C(w)− C̃

∥∥∥2

= −E
{

(C̃ + C0)T(C̃−C0)
}
,

where the right-hand-side quantity does not depend on w, completing the proof for the claim

that the J-fold CV criterion is an unbiased estimator of the expected CV squared loss plus

a term unrelated to w.

A.4 Conditions and Proof of (A.3)

Let ψ = (ψ1, . . . ,ψK−1)> belonging to Q =
{
ψ ∈ [0, 1]K−1 :

∑K−1
k=1 ψk = 1

}
, C∗(ψ) =∑K−1

k=1 ψkĈk |θ̂k=θ∗k
, L∗T (ψ) = ‖C∗(ψ)−C0‖2, and ξ̃T = infψ∈Q L

∗
T (ψ).

Condition C.5: There exists a sequence c̃T → 0 such that T ξ̃−2
T ≤ c̃T almost surely.

Condition C.5 is a counterpart of Condition C.4 and requires that ξ̃T grow at a rate

faster than T 1/2, which implies the true copula cannot be well approximated by combining

estimated single copulas. This is reasonable because the true copula is a mixture copula

with ωk > 0.

Next, we prove (A.3) by using Conditions C.1, C.2, C.3 and C.5. Let w? = (0, . . . , 0, 1)>

and ψ̂ = (ŵ1/(1− ŵK), . . . , ŵK−1/(1− ŵK))>. From Conditions C.1-C.3, and the steps used

in the proof of (A.18), we have

CVJ(w?) =
∥∥∥C(w?)− C̃

∥∥∥2

=
∥∥∥CK − C̃

∥∥∥2

=
∥∥∥CK − ĈK + ĈK −C0 + C0 − C̃

∥∥∥2

= Op(1). (A.28)

From Condition C.3, and the steps used in the proof of (A.15), we have

CVJ(ŵ) =
∥∥∥C(ŵ)− C̃

∥∥∥2
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=
∥∥∥{Ĉ(ŵ)−C0

}
−
{
Ĉ(ŵ)−C(ŵ)

}
+
(
C0 − C̃

)∥∥∥2

= LT (ŵ) +
∥∥∥Ĉ(ŵ)−C(ŵ)

∥∥∥2

+
∥∥∥C0 − C̃

∥∥∥2

− 2
{
Ĉ(ŵ)−C(ŵ)

}> (
C0 − C̃

)
−2
{
Ĉ(ŵ)−C(ŵ)

}> {
Ĉ(ŵ)−C0

}
+ 2

{
Ĉ(ŵ)−C0

}> (
C0 − C̃

)
= L∗T (ŵ) + ΠT (ŵ) +

∥∥∥Ĉ(ŵ)−C(ŵ)
∥∥∥2

− 2
{
Ĉ(ŵ)−C(ŵ)

}> (
C0 − C̃

)
−2
{
Ĉ(ŵ)−C(ŵ)

}> {
Ĉ(ŵ)−C0

}
+ 2

{
Ĉ(ŵ)−C0

}> (
C0 − C̃

)
+
∥∥∥C0 − C̃

∥∥∥2

= L∗T (ŵ) +Op(T
1/2) = ‖C∗(ŵ)−C0‖2 +Op(T

1/2)

=
∥∥∥(1− ŵK)[C∗(ψ̂)−C0] + ŵK(ĈK |θ̂=θ∗ −C0)

∥∥∥2

+Op(T
1/2)

= (1− ŵK)2
∥∥∥C∗(ψ̂)−C0

∥∥∥2

+ 2(1− ŵK)ŵK [C∗(ψ̂)−C0](ĈK |θ̂=θ∗ −C0)

+ŵ2
K

∥∥∥ĈK |θ̂=θ∗ −C0

∥∥∥2

+Op(T
1/2)

= (1− ŵK)2
∥∥∥C∗(ψ̂)−C0

∥∥∥2

+Op(T
1/2) +Op(1) +Op(T

1/2)

= (1− ŵK)2
∥∥∥C∗(ψ̂)−C0

∥∥∥2

+Op(T
1/2), (A.29)

as T →∞. Since ŵ = argminw∈WCVJ(w), we have CVJ(w?) ≥ CVJ(ŵ), which along with

the above two results, implies

(1− ŵK)2 =
∥∥∥C∗(ψ̂)−C0

∥∥∥−2

Op(T
1/2),

which, along with Condition C.4, implies (A.3).
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A.5 More Simulation Results

Here, we present some additional simulation results. First, we compare the out-of-sample

forecast performance between MA and MA without
∑K

k=1 wk = 1 constraint (denoted as

MAun). For simplicity and comparing purposes, we do not add the screening step and fix

J = 4 in all the simulations. In Table A1, the out-of-sample forecast performance between

MA and MA without imposing
∑K

k=1 wk = 1 does not exhibit significant difference because

the ratio is close to 1.

Table A2 documents the results of the comparison between MA and MA with the screen-

ing step to select K (MAS). For simplicity, we still fix J = 4 in this simulation. Table A2

demonstrates that even though the ratio between MAS and MA is less than 1, such a differ-

ence is not statistically significant according to the DM test, indicating that the additional

screening step does not effectively improve the performance of MA. Intuitively, when the

mixture model is correctly specified, both MA and CW will impose zero weight to the unre-

lated candidate so the performance between MA and MAS should be quite similar. When

the model is misspecified, many candidate copulas are often pass the screening step and enter

the following MA step. Therefore, one would observe similar performance between MA and

MAS no matter whether the true copula is contained in the mixture copula or not.

In Table A3 we compare the performance between MA with selected J and MA with J

respectively equals to 2, 4, 5 and 10. As one can see, MA with selected J outperforms MA

with fixed J in most cases and the difference is often statistically significant. This shows

that the proposed J selection strategy is useful in improving the performance of MA.

Type I simulation: Out-of-sample forecast (sample size=500)
θGa = 0.5, θCl = 5.8, θGu = 5.1 θGa = 0.7, θCl = 7.8, θGu = 7.1

MAun/MA MAun/MA
ωGa = 0.5, ωCl = 0.5, ωGu = 0 1.0135 1.0397

(0.79) (0.77)
ωGa = 0.5, ωCl = 0, ωGu = 0.5 1.0272 1.0389

(0.27) (0.24)
ωGa = 0, ωCl = 0.5, ωGu = 0.5 1.0347 1.0273

(0.33) (0.52)
ωGa = 1/3, ωCl = 1/3, ωGu = 1/3 0.9536 1.0141

(0.83) (0.70)
Type II simulation: Out-of-sample forecast (sample size=500)

θF = 5.5, θSJ = 4.8, θJ = 4.5 θF = 7.5, θSJ = 6.8, θJ = 6.5
MAun/MA MAun/MA

ωF = 0.5, ωSJ = 0.5, ωJ = 0 1.0242 1.0367
(0.23) (0.68)

ωF = 0.5, ωSJ = 0, ωJ = 0.5 1.0241 1.0135
(0.47) (0.52)

ωF = 0, ωSJ = 0.5, ωJ = 0.5 1.0206 1.0109
(0.84) (0.95)

ωF = 1/3, ωSJ = 1/3, ωJ = 1/3 1.0137 1.0175
(0.73) (0.87)

Table A1: Ratios of prediction losses of both MA with
∑K

k=1 wk = 1 constraint and MA without
∑K

k=1 wk =
1 constraint for both Type I and Type II simulations. Each simulation is repeated 300 times. J is fixed to 4
for all the simulations. Values in the parenthesis indicate the p−value obtained through the Diebold-Mariano
Test.
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Type I simulation: Out-of-sample forecast (sample size=500)
θGa = 0.5, θCl = 5.8, θGu = 5.1 θGa = 0.7, θCl = 7.8, θGu = 7.1

MAS/MA MAS/MA
ωGa = 0.5, ωCl = 0.5, ωGu = 0 0.9754 0.9932

(0.88) (0.90)
ωGa = 0.5, ωCl = 0, ωGu = 0.5 0.9745 0.9941

(0.90) (0.92)
ωGa = 0, ωCl = 0.5, ωGu = 0.5 0.9875 0.9896

(0.91) (0.88)
ωGa = 1/3, ωCl = 1/3, ωGu = 1/3 0.9846 0.9837

(0.89) (0.93)
Type II simulation: Out-of-sample forecast (sample size=500)

θF = 5.5, θSJ = 4.8, θJ = 4.5 θF = 7.5, θSJ = 6.8, θJ = 6.5
MAS/MA MAS/MA

ωF = 0.5, ωSJ = 0.5, ωJ = 0 0.9871 0.9803
(0.94) (0.90)

ωF = 0.5, ωSJ = 0, ωJ = 0.5 0.9974 0.9923
(0.89) (0.91)

ωF = 0, ωSJ = 0.5, ωJ = 0.5 0.9857 0.9908
(0.95) (0.89)

ωF = 1/3, ωSJ = 1/3, ωJ = 1/3 0.9942 0.9936
(0.94) (0.92)

Table A2: Ratios of prediction losses of both MA and MAS method for both Type I and Type II simulations.
Each simulation is repeated 300 times. J is fixed at 4 for all simulations. Values in the parenthesis indicate
the p−value obtained through the Diebold-Mariano Test.

Type I simulation: Out-of-sample forecast (sample size=500)
θGa = 0.5, θCl = 5.8, θGu = 5.1 θGa = 0.7, θCl = 7.8, θGu = 7.1

MAJ∗/MAJ=2 MAJ∗/MAJ=4 MAJ∗/MAJ=5 MAJ∗/MAJ=10 MAJ∗/MAJ=2 MAJ∗/MAJ=4 MAJ∗/MAJ=5 MAJ∗/MAJ=10

ωGa = 0.5, ωCl = 0.5, ωGu = 0 0.9769 0.8841 1.0073 0.9765 0.9348 0.9339 0.8931 0.9107
(0.12) (0.04) (0.84) (0.12) (0.05) (0.05) (0.04) (0.08)

ωGa = 0.5, ωCl = 0, ωGu = 0.5 0.9337 0.8124 0.8675 0.9526 1.0011 0.8357 0.9431 0.8972
(0.07) (0.03) (0.04) (0.06) (0.31) (0.02) (0.05) (0.03)

ωGa = 0, ωCl = 0.5, ωGu = 0.5 0.9179 0.8325 1.0041 0.9704 0.9321 0.7159 0.9327 0.9172
(0.06) (0.03) (0.61) (0.11) (0.08) (0.01) (0.07) (0.06)

ωGa = 1/3, ωCl = 1/3, ωGu = 1/3 0.9769 0.9528 0.8709 0.9132 0.9537 0.9921 0.9069 0.8257
(0.13) (0.10) (0.05) (0.07) (0.10) (0.31) (0.08) (0.02)

Type II simulation: Out-of-sample forecast (sample size=500)
θF = 5.5, θSJ = 4.8, θJ = 4.5 θF = 7.5, θSJ = 6.8, θJ = 6.5

MAJ∗/MAJ=2 MAJ∗/MAJ=4 MAJ∗/MAJ=5 MAJ∗/MAJ=10 MAJ∗/MAJ=2 MAJ∗/MAJ=4 MAJ∗/MAJ=5 MAJ∗/MAJ=10

ωF = 0.5, ωSJ = 0.5, ωJ = 0 0.8851 0.9501 0.8912 0.8537 0.8731 0.9269 0.9104 0.8922
(0.03) (0.08) (0.04) (0.03) (0.02) (0.06) (0.05) (0.04)

ωF = 0.5, ωSJ = 0, ωJ = 0.5 0.9177 0.9025 0.8241 0.9030 0.9511 0.8546 0.9279 0.8732
(0.08) (0.07) (0.02) (0.05) (0.08) (0.04) (0.06) (0.03)

ωF = 0, ωSJ = 0.5, ωJ = 0.5 1.0091 0.9279 0.8397 0.9012 1.0017 0.9346 0.8162 0.9341
(0.35) (0.06) (0.03) (0.05) (0.81) (0.06) (0.01) (0.07)

ωF = 1/3, ωSJ = 1/3, ωJ = 1/3 0.8455 0.8703 0.8768 0.9347 0.9607 0.9225 0.8930 0.9134
(0.03) (0.04) (0.05) (0.07) (0.06) (0.06) (0.04) (0.05)

Table A3: Ratios of prediction losses of both MA with selected J = J∗ and MA under J = 2, 4, 5, 10 for
both Type I and Type II simulations. Each simulation is repeated 300 times. Values in the parenthesis
indicate the p−value obtained through the Diebold-Mariano Test.
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