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1. Introduction

Practitioners who wish to tackle model uncertainty have a variety of approaches at their disposal.

The most promising involve model selection and model averaging. Model selection proceeds from the

premise that all models are, at best, approximations and involves selecting one model from among

a set of candidate models. It is understood that, in practice, it is unlikely that the true model is

among the set of candidate models, hence the model selected is the least misspecified among the

set of models considered, in some known statistical sense. In essence, the practitioner who adopts

model selection applies weight 1 to one candidate model and weight 0 to all others using a selection

criterion. Model selection has a long history, and a variety of methods have been proposed, each

based on distinct estimation criteria. These include Akaike’s An Information Criterion (AIC; Akaike

(1970), Akaike (1973)), Mallows’ Cp (Mallows (1973)), the Bayesian Information Criterion (BIC;

Schwarz (1978)), delete-one cross-validation (Stone (1974)), generalized cross-validation (Craven &

Wahba (1979)), and the Focused Information Criterion (FIC) (Claeskens & Hjort (2003)), to name

but a few.

Model averaging, on the other hand, produces a model that is a weighted average defined over a

set of candidate models for which the weights are chosen by a statistical procedure having known

properties (i.e., an averaging criterion). There is a longstanding literature on Bayesian model

averaging; see Hoeting, Madigan, Raftery & Volinsky (1999) for a comprehensive review. There is

also a rapidly-growing literature on frequentist methods for model averaging, including Buckland,

Burnhamn & Augustin (1997), Hansen (2007), Wan, Zhang & Zou (2010), Hansen & Racine (2012),

Zhang & Wang (2015), Zhang, Zou & Carroll (2015) and Zhang, Yu, Zou & Liang (2016), among

others.

Practitioners who adopt the model averaging approach often construct a weighted average de-

fined over a set of parametric candidates. An alternative approach, one that we consider here, is

to instead construct a weighted average defined over a set of more flexible semiparametric candi-

dates. From a practical perspective, one might hope that by using more flexible estimators for the

set of candidate models then perhaps fewer candidate models might be needed, or that perhaps

the approximation capabilities of the resulting model might be improved. Though one might be

tempted to perhaps average over fully nonparametric models, such models suffer from the so-called
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curse of dimensionality and are restricted to only a few predictors at most. Semiparametric models

strike a balance between flexibility and efficiency thereby attenuating the curse of dimensionality.

Furthermore, being semiparametric in nature, one can easily incorporate prior parametric infor-

mation if it exists. Zhang & Wang (2015) is the first to consider averaging over Robinson’s (1988)

semiparametric partially linear model. Our approach involves averaging over the so-called varying

coefficient specification; see Beran & Hall (1992), Hastie & Tibshirani (1993), Cai, Fan & Yao

(2000), Li, Huang, Li & Fu (2002) and the references therein. The varying coefficient specification

is particularly appealing in this context in part because a range of models turn out to be special

cases including a fully nonparametric model and Robinson’s (1988) partially linear model, by way of

illustration. Our approach adopts Mallows’ Cp criterion (Mallows 1973) for selecting the averaging

weights, and allows for the coefficients in the varying coefficient candidate models to be functions

of either continuous data types, categorical data types, or a mix of both.

Our theoretical results (based on the Mallows criterion) apply both to nested and non-nested

regression models, and allow for heterogeneous errors. Hansen (2014) examines the asymptotic risk

of nested least-squares averaging estimators based on minimizing a generalized Mallows criterion

in a linear model with heteroskedasticity. Liu, Okui & Yoshimura (2016) adopt the Mallows cri-

terion to choose the weight vector in the model averaging estimator for linear regression models

with heteroskedastic errors. By averaging over semiparametric specifications we generalize existing

approaches and provide practitioners with a straightforward and powerful approach to handling

model uncertainty.

The rest of this paper proceeds as follows. Section 2 presents the varying coefficient specification

defined over mixed datatypes, Mallows-driven weight choice, and asymptotic optimality of the

proposed approach. Section 3 examines the finite-sample performance of the proposed approach

relative to alternative model averaging estimators and model selection estimators, while Section

4 considers an illustrative example and a comparison of hold-out data performance for a range of

averaging and selection criteria. Section 5 presents some brief concluding remarks. Proofs of the

main theorems are provided in Appendix A while R code can be found in Appendix B.
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2. Model Averaging Estimation

2.1. Model and estimators. We consider a varying coefficient model

Yi = µi + εi =
∞∑
j=1

Xijβj(Zi) + εi, i = 1, . . . , n, (1)

where Xi = (Xi1, Xi2, · · · )′ is a countably infinite random vector, Zi = (Zi1, . . . , Ziq)
′ is a q ×

1 random vector, β(Zi) = (β1(Zi), β2(Zi), . . . )
′ is a countably infinite unknown vector function,

µi = X ′iβ(Zi), the idiosyncratic error term εi is possibly conditionally heteroscedastic satisfying

E(εi|Xi, Zi) = 0 and E(ε2i |Xi, Zi) = σ2i . The observations (Xi, Zi, Yi)
n
i=1 are independent across i.

Our goal is to estimate µi for the purposes of prediction which is the focus of the literature on

model averaging estimation; see Hansen (2007) and Lu & Su (2015) by way of illustration. To

this end, we use Sn candidate varying coefficient models to approximate (1), where the number of

models, Sn, is allowed to diverge to infinity as n→∞. The sth candidate model is

Yi = X ′i,(s)β(s)(Zi,(s)) + bi,(s) + εi, i = 1, . . . , n, (2)

where X ′i,(s) is a ps-dimensional subset of Xi, Zi,(s) is a qs-dimensional (1 ≤ qs ≤ q) subset of

Zi, β(s)(Zi,(s)) is the corresponding ps × 1 unknown function, and bi,(s) = µi − X ′i,(s)β(s)(Zi,(s))

represents the approximation error in the sth model.

To provide an optimal weighting scheme, we first need to estimate each candidate model.

Premultiplying (1) by Xi,(s) and taking E(·|Zi,(s) = z(s)) leads to E[Xi,(s)Yi|Zi,(s) = z(s)] =

E[Xi,(s)X
′
i,(s)]β(s)(z(s)), yielding

β(s)(z(s)) = [E(Xi,(s)X
′
i,(s)|z(s))]

−1E[Xi,(s)Yi|z(s)]. (3)

Let K(s)

(
Zj,(s)−z(s)

h(s)

)
= k1

(
Zj,(s),1−z(s),1

h(s),1

)
× . . .× kqs

(
Zj,(s),qs−z(s),qs

h(s),qs

)
denote a product kernel func-

tion, where k(·) is a univariate kernel function and h(s),r is a scalar bandwidth for r = 1, . . . , qs.

When the data consist of a mix of categorical and continuous datatypes, one can replace the above

kernel function by the generalized kernel function that smooths both the continuous and the dis-

crete covariates; see Hall, Racine & Li (2004) for details, and also Hall, Li & Racine (2007) and Hall

& Racine (2015) for related extensions. Then (3) suggests the following local constant least-squares
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estimator,

β̂(s)(z(s)) =

 n∑
j=1

Xj,(s)X
′
j,(s)K(s)

(
Zj,(s) − z(s)

h(s)

)−1 n∑
j=1

Xj,(s)YjK(s)

(
Zj,(s) − z(s)

h(s)

)
. (4)

Letting X(s) = (X1,(s), . . . , Xn,(s))
′, Z(s) = (Z1,(s), . . . , Zn,(s))

′, Y = (Y1, . . . , Yn)′, and K[z(s)] be an

n× n diagonal matrix with the jth diagonal element being K(s)

(
Zj,(s)−z(s)

h(s)

)
, we can rewrite (4) as

β̂(s)(z(s)) =
(
X ′(s)K[z(s)]X(s)

)−1
X ′(s)K[z(s)]Y. (5)

Then, we can estimate µi,(s) by

µ̂i,(s) = X ′i,(s)β̂(s)(Zi,(s)) = X ′i,(s)

(
X ′(s)K[Zi,(s)]X(s)

)−1
X ′(s)K[Zi,(s)]Y, (6)

and rewrite it in matrix notation as µ̂(s) = P(s)Y , where P(s) is a square matrix of dimension n×n

with the ith row being X ′i,(s)

(
X ′(s)K[Zi,(s)]X(s)

)−1
X ′(s)K[Zi,(s)], and µ̂(s) = (µ̂1,(s), . . . , µ̂n,(s))

′. Let

the weight vector w = (w1, . . . , wSn)T belong to the set W = {w ∈ [0, 1]Sn :
∑Sn

s=1ws = 1}, and let

P (w) =
∑Sn

s=1wsP(s). Then, the model averaging estimator of µ is specified as

µ̂(w) =

Sn∑
s=1

wsµ̂(s) = P (w)Y. (7)

2.2. Weight Choice Criterion and Asymptotic Optimality. Until now, the weight vector in

µ̂(w) was left unspecified. Motivated by the Mallows criterion for model averaging estimators (e.g.

Hansen (2007)), we will now outline how we choose this weight vector. Let Ω = diag(σ21, . . . , σ
2
n).

Define the predictive squared loss by

Ln(w) = n−1‖µ̂(w)− µ‖2, (8)

and the conditional expected loss by

Rn(w) = E[Ln(w)|X,Z] = n−1‖P (w)µ− µ‖2 + n−1 trace[ΩP (w)′P (w)]. (9)

Let the Mallows-type criterion function be

Cn(w) = n−1‖P (w)Y − Y ‖2 + 2n−1 trace[P (w)Ω]. (10)
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It is easy to show that

Rn(w) = E[Cn(w)|X,Z]− n−1 trace(Ω),

which suggests that, for the optimal choice of w in the sense of minimizing Rn(w), we can minimize

Cn(w) to choose w by noting the fact that n−1 trace(Ω) does not depend on w.

Assuming that Ω is known, the optimal weight choice is given by

ŵ = arg min
w∈W

Cn(w), (11)

which implies that the optimal model averaging estimator of µ is µ̂(ŵ) = P (ŵ)Y , and we refer

to µ̂(ŵ) as a Mallows model average of varying coefficient models. In order to provide regularity

conditions for the optimal choice of the weight vector, we need to introduce some notation. Let

ξn = infw∈W nRn(w), and let wos be an Sn× 1 vector in which the sth element is one and all others

are zeros. We now list the conditions required for the asymptotic optimality of ŵ defined in (11).

Given the randomness of X and Z, the following conditions and related proofs presented elsewhere

in the paper hold almost surely. For brevity, we shall omit the phrase “almost surely” throughout

this paper. Let p = max1≤s≤Sn ps. For some integer N ≥ 1,

max
i
E(ε4Ni |Xi, Zi) <∞, (12)

Snp
4Nξ−2Nn

Sn∑
s=1

[nRn(wos)]
N → 0, (13)

sup
s∈{1,...,Sn}

max
i

n∑
j=1

|P(s),ij | = O(p2) and sup
s∈{1,...,Sn}

max
j

n∑
i=1

|P(s),ij | = O(p2). (14)

The first two conditions are commonplace in the literature on model averaging estimation (e.g.,

Hansen (2007); Hansen & Racine (2012); Wan et al. (2010); Ando & Li (2014)). Condition (12)

imposes a finite moment bound and is satisfied by Gaussian noise. Condition (13) requires ξn →∞,

implying that there is no finite approximating model whose bias is zero. Moreover, this condition

also constrains the rates at which Sn and nRn(wos) approach ∞.

Condition (14) is a somewhat high level assumption. It implicitly imposes some conditions on the

smoothing parameters such as h(s),j → 0 for all j = 1, . . . , qs and nH(s) →∞ for all s = 1, . . . , Sn,

where H(s) = h(s),1 × · · · × h(s),qs . As shown in the appendix A, we provide sufficient regularity
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conditions imposed on the smoothing parameters and the boundedness and the full rank of X

to obtain (14). Analogously, Speckman (1988) use the kernel smoothing to define the weighting

matrix and imposes a weaker bound condition O(1). We conjecture that it may be possible to relax

the condition max
i

∑n
j=1 |P(s),ij | = O(p2) to max

i

∑n
j=1 |P(s),ij | = O(1) as used in Speckman (1988)

and Zhang & Wang (2015). We leave the verification of this conjecture for future investigation.

In practice, one may select the bandwidth for each candidate model by the typical least-squares

cross-validation method, and in our simulations we use the cross-validation method that allows for

different bandwidths across covariates and across different candidate models.

The first optimality result of the paper is given in the next Theorem.

Theorem 2.1. Under conditions (12)-(14),

Ln(ŵ)

infw∈W Ln(w)
→ 1

in probability as n→∞.

Theorem 2.1 shows that the practitioner may do as well asymptotically as if they knew the true

µi. That is, the weight vector ŵ is asymptotically optimal in the sense that the average loss with

ŵ is asymptotically equivalent to that using the infeasible optimal weight vector.

So far we have assumed that Ω is known. In practice, however, Ω will be unknown. To make

the Mallows-type criterion (10) computationally feasible, we estimate the unknown Ω based on

residuals from model averaging estimation by

Ω̂(w) = diag(ε̂21(w), . . . , ε̂2n(w)), (15)

where ε̂i(w) = Yi − µ̂i(w). Replacing Ω with Ω̂ in Cn(w), we obtain the feasible criterion

Ĉn(w) = n−1‖P (w)Y − Y ‖2 + 2n−1 trace[P (w)Ω̂(w)]. (16)

Correspondingly, the new optimal weights are defined as

w̃ = arg min
w∈W

Ĉn(w). (17)
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We now show that the weight vector w̃ is still asymptotically optimal. Let ρ
(s)
ii be the ith diagonal

element of P(s). The conditions required for the asymptotic optimality of w̃ are as follows.

There exists a constant c such that |ρ(s)ii | ≤ cn
−1| trace(P(s))|, ∀s = 1, . . . , Sn, (18)

n−1p2 = O(1). (19)

Condition (18) is commonly used to ensure the asymptotic optimality of cross-validation (e.g.,

Andrews (1991) and Hansen & Racine (2012)). Condition (19), which is the same as Condition

(12) of Wan et al. (2010), allows the ps’s to increase as n→∞, but restricts their rate of increase.

Theorem 2.2. Under conditions (12)-(14), (18), and (19)

Ln(w̃)

infw∈W Ln(w)
→ 1 (20)

in probability as n→∞.

It is easy to prove that theorems 2.1 and 2.2 apply to the mixed data setting in which Z = (Zc, Zd)

with Zc being a continuous vector and Zd being a discrete vector, because our proofs are valid as

long as the model averaging estimator is linear in Y when Z consists of multivariate mixed discrete

and continuous covariates, which continues to be the case.

An alternative strategy for estimating Ω can be based on the largest model indexed by s∗ =

argmax
s∈{1,··· ,Sn}

(ps + qs), that is,

Ω̂(s∗) = diag(ε̂2s∗,1, · · · , ε̂2s∗,n), (21)

where (ε̂s∗,1, · · · , ε̂s∗,n) = Y − µ̂(s∗) = Y − P(s∗)Y . The idea of using the largest model to estimate

the variance parameter or covariance matrix is advocated by Hansen (2007), Liu & Okui (2013),

and Zhang & Wang (2015).1 The motivation of Ω̂(w) in Theorem 2.2 is to avoid putting too much

confidence in a single model while the advantage of Ω̂(s∗) is that the computational burden is much

less than using Ω̂(w) because the estimator of the error covariance matrix Ω̂(s∗) does not include

the weight vector w, which implies that Ĉ∗n(w) defined in (16) below is a lower-order function of

1If the model with the largest dimension is not uniquely defined because the models with the same dimension can
differ in the structure of Xi and Zi, we adopt the model with the largest dimension of Xi by following Zhang & Wang
(2015).
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w than Ĉn(w). In particular, using Ω̂(s∗) allows us to solve a simple quadratic program which can

be done with standard off-the-shelf software, while using Ω̂(w) requires us to solve a full-blown

nonlinear program which, computationally speaking, is orders of magnitude more challenging and

requires the use of specialized commercial programs. Replacing Ω with Ω̂(s∗) in Cn(w), we obtain

the feasible criterion

Ĉ∗n(w) = n−1‖P (w)Y − Y ‖2 + 2n−1 trace[P (w)Ω̂(s∗)].

Correspondingly, the new optimal weights are defined as

w̃(s∗) = arg min
w∈W

Ĉ∗n(w).

Then, using the same definitions of ρ
(s)
ii and p above and the same conditions as in Theorem 2.2,

we can show that the weight vector w̃(s∗) is still asymptotically optimal.

Corollary 2.1. Under conditions (12)-(14), (18), and (19) with the alternative estimators Ω̂(s∗),

Ln(w̃(s∗))

infw∈W Ln(w)
→ 1 (22)

in probability as n→∞.

3. Monte Carlo Simulations

In this section we investigate the finite-sample performance of the proposed Mallows model

averaging (‘MMA’) method. We consider simulating data from an infinite-order varying coefficient

regression model of the form yi =
∑∞

j=1 θj(zi)xij + εi, i = 1, . . . , n. The xij are independent and

identically distributed N(0, 1) random variates, while zi is distributed U [−1, 1]. The heteroskedastic

error εi is distributed N(0, σ2(zi)) where σ(zi) = σ|zi|
√

3 and is independent of the xij .

The parameters are determined by the rule θj(zi) =
√

2αj−α−1/2 exp(zi). The sample size is

varied from n = 50, 100, 200, and 400. The parameter α is varied from 0.10, 0.25, and 0.50. Larger

values of α imply that the coefficients θj(z) decline more quickly with j. The number of models

Mn is determined by the rule Mn = 3n1/3 (so Mn = 11, 14, 18, and 22 for the four sample sizes

considered herein). We rescale the DGP to have unit variance and set σ equal to 0.25, 0.50, 1.00 and

9



2.00 so that the expected R2 for the unknown true model is given by 1/(1+σ2) and is 0.95, 0.80, 0.50,

and 0.20, respectively.

The simulations use nested regression models with variables {xij , j = 1, . . . ,Mn}. We consider

six estimators: (1) Mallows model averaging defined over kernel smoothed varying coefficient can-

didates (‘MMA’), (2) smoothed AIC model averaging (‘SAIC’), (3) smoothed BIC model averaging

(‘SBIC’), (4) AIC model selection (‘AIC’), (5) BIC model selection (‘BIC’), and (6) Mallows’ Cp

model selection. All bandwidths are selected via least-squares cross validation. To evaluate the es-

timators, we compute the risk (expected squared error). We do this by computing means (medians)

across 1,000 simulation draws.

The SAIC and SBIC weights for the j = 1, 2, . . . ,M models are given by

wj = exp(−AICj/2)/
M∑
j=1

exp(−AICj/2),

wj = exp(−BICj/2)/
M∑
j=1

exp(−BICj/2)

where AICj and BICj are given by log(σ̂2j )+2n−1 trace(P(j)) and log(σ̂2j )+n−1 trace(P(j)) log(n),

respectively. The Cp criterion is given by σ̂2j (n+ 2 trace(P(j))) where σ̂2j = n−1
∑n

i=1 ε̂
2
i,j and where

the ε̂i,j are the residuals from jth model.

Let H = (µ̂(1)−y, . . . , µ̂(Mn)−y) and let b = {trace(P(1)Ω̂(Mn)), . . . , trace(P(Mn)Ω̂(Mn))}T , where

Ω̂(Mn) is a diagonal matrix formed from the squared residuals from the model indexed by the largest

j (i.e. Mn). Note that we can rewrite Ĉn(w) as Ĉn(w) = wTHTHw + 2wT b, which is a quadratic

function of the weight vector w and the optimization can be done by standard software packages

such as the R package quadprog (code underlying this simulation can be found in Appendix B).

Note that using the largest model to estimate the error covariance matrix is advocated by Hansen

(2007) and Liu & Okui (2013), and in small samples this approach performs admirably.

Simulation results are summarized in Table 1, which reports the mean relative MSE row normal-

ized so that the method with lowest mean MSE has entry 1.00. R2 is higher for smaller values of

σ; for larger values of α the θj(z) coefficients decay more rapidly with j. MMA, SAIC, and SBIC

are model averaging methods; AIC, BIC and Cp are model selection methods.
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Table 1. Monte Carlo Simulation Mean Relative MSE (row normalized so that the
method with lowest mean MSE has entry 1.00). R2 is higher for smaller values of σ;
for larger values of α the θj(z) coefficients decay more rapidly with j. MMA, SAIC,
and SBIC are model averaging methods; AIC, BIC and Cp are model selection
methods.

n α σ MMA SAIC SBIC AIC BIC Cp

50 0.10 0.25 1.01 1.31 1.36 1.00 1.59 1.02

50 0.10 0.50 1.00 1.15 1.18 1.05 1.50 1.06
50 0.10 1.00 1.09 1.00 1.00 1.26 1.37 1.26

50 0.10 2.00 1.41 1.03 1.00 1.77 1.21 1.75

50 0.25 0.25 1.00 1.36 1.43 1.02 1.47 1.03
50 0.25 0.50 1.00 1.10 1.13 1.07 1.42 1.08

50 0.25 1.00 1.20 1.00 1.00 1.41 1.43 1.40

50 0.25 2.00 1.51 1.04 1.00 1.93 1.24 1.90
50 0.50 0.25 1.00 1.22 1.28 1.07 1.30 1.08

50 0.50 0.50 1.09 1.00 1.01 1.23 1.34 1.22
50 0.50 1.00 1.39 1.02 1.00 1.68 1.47 1.66

50 0.50 2.00 1.63 1.05 1.00 2.12 1.24 2.09

100 0.10 0.25 1.00 1.26 1.29 1.00 1.61 1.01
100 0.10 0.50 1.00 1.15 1.18 1.03 1.53 1.04

100 0.10 1.00 1.02 1.00 1.01 1.14 1.38 1.14

100 0.10 2.00 1.24 1.01 1.00 1.57 1.19 1.56
100 0.25 0.25 1.00 1.33 1.39 1.02 1.54 1.03

100 0.25 0.50 1.00 1.13 1.16 1.06 1.48 1.06

100 0.25 1.00 1.09 1.00 1.00 1.26 1.45 1.26
100 0.25 2.00 1.33 1.02 1.00 1.75 1.24 1.73

100 0.50 0.25 1.00 1.22 1.30 1.07 1.46 1.08

100 0.50 0.50 1.05 1.00 1.02 1.19 1.38 1.19
100 0.50 1.00 1.26 1.01 1.00 1.54 1.43 1.53

100 0.50 2.00 1.41 1.03 1.00 1.91 1.16 1.90
200 0.10 0.25 1.00 1.22 1.25 1.00 1.45 1.00

200 0.10 0.50 1.00 1.15 1.17 1.02 1.46 1.02

200 0.10 1.00 1.00 1.02 1.03 1.07 1.41 1.07
200 0.10 2.00 1.10 1.00 1.00 1.33 1.29 1.32

200 0.25 0.25 1.00 1.30 1.35 1.01 1.47 1.01

200 0.25 0.50 1.00 1.15 1.18 1.04 1.48 1.04
200 0.25 1.00 1.03 1.00 1.01 1.14 1.45 1.13

200 0.25 2.00 1.17 1.01 1.00 1.46 1.38 1.46

200 0.50 0.25 1.00 1.23 1.30 1.06 1.56 1.06
200 0.50 0.50 1.01 1.00 1.02 1.14 1.44 1.14

200 0.50 1.00 1.15 1.00 1.00 1.38 1.46 1.38

200 0.50 2.00 1.21 1.02 1.00 1.59 1.30 1.59
400 0.10 0.25 1.00 1.21 1.23 1.00 1.32 1.00

400 0.10 0.50 1.00 1.16 1.17 1.00 1.37 1.00
400 0.10 1.00 1.00 1.06 1.06 1.04 1.41 1.03

400 0.10 2.00 1.06 1.00 1.00 1.20 1.39 1.20

400 0.25 0.25 1.00 1.30 1.34 1.00 1.35 1.00
400 0.25 0.50 1.00 1.18 1.20 1.02 1.44 1.02

400 0.25 1.00 1.00 1.02 1.03 1.08 1.46 1.08
400 0.25 2.00 1.10 1.00 1.00 1.31 1.51 1.31
400 0.50 0.25 1.00 1.27 1.34 1.04 1.57 1.04
400 0.50 0.50 1.00 1.04 1.07 1.11 1.53 1.11

400 0.50 1.00 1.10 1.00 1.00 1.31 1.56 1.31
400 0.50 2.00 1.14 1.01 1.00 1.45 1.46 1.44

Mean (all n) 1.10 1.10 1.11 1.25 1.42 1.25

Mean (n = 50) 1.19 1.11 1.12 1.38 1.38 1.38
Mean (n = 100) 1.12 1.10 1.11 1.29 1.40 1.29
Mean (n = 200) 1.06 1.09 1.11 1.19 1.43 1.19

Mean (n = 400) 1.03 1.10 1.12 1.13 1.45 1.13
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3.1. Discussion. Clearly no one method dominates over the range of sample sizes, signal to noise

ratio, and range of parameter decay considered above. AIC and Cp have similar risk. If one

considers the range of risk relative to the best performing method in any experiment (row of Table

1), it would appear that the proposed approach dominates its peers while, as n increases, it clearly

emerges as the preferred approach. On the basis of these simulations, the proposed method ought to

appeal to practitioners interested in model average estimators defined over the flexible and popular

varying coefficient specification.

4. Empirical Illustration

In what follows we estimate a Mincer (earnings) equation using Wooldridge’s (2002) ‘wage1’ data

which contains n = 526 observations on a range of variables. We consider modeling expected (log)

hourly wages (‘lwage’) based on a number of commonly employed predictors, namely

(1) educ: years of education
(2) exper: years potential experience
(3) tenure: years with current employer
(4) female: “Female” if female, “Male” otherwise
(5) married: “Married” if Married, “Nonmarried” otherwise

We treat the predictors educ, exper and tenure as belonging to X and female and married as

belonging to Z. We consider varying coefficient models that differ in terms of the contents of X.

Let d be the order of a (orthogonal) polynomial formed from each of educ, exper and tenure. When

d = 1 there are 3 columns in X (educ, exper and tenure) and if we consider all possible combinations

of the predictors taken 1, 2, and 3 at a time then there are M =
(
3
1

)
+
(
3
2

)
+
(
3
3

)
= 7 candidate models.

When d = 2 there are 6 columns in X hence M = 63 candidate models, and when d = 3 there are

9 columns in X hence M = 511 candidate models. We also consider standard nonparametric local

constant (‘LC’), nonparametric local linear (‘LL’), and semiparametric varying coefficient (‘VC’)

models defined over the full set of predictors by way of comparison; see Li & Racine (2007, pages

60, 79, and 301, respectively) for details.

We conduct a simulation in which the data is repeatedly shuffled and split into two parts 1,000

times, based on an estimation sample of size n1 = 500 and an independent validation sample of size

n2 = 26. For each estimation sample we fit the cross-validated semiparametric varying coefficient

model and each of the parametric and nonparametric models listed above. All bandwidths are
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selected via least-squares cross validation. For each model we then compute predicted square error

(‘PSE’) for the independent validation data set given by PSE = n−12

∑n2
i=1(Yi − Ŷi)2 where Ŷi is

the prediction for a given model. The mean relative hold-out PSE is presented in Table 2, row

normalized so that the method with lowest mean PSE has entry 1.00, while the mean PSE is

presented in Table 3.

Table 2. Empirical Illustration Mean Relative PSE (row normalized so that the
method with lowest mean PSE has entry 1.00). MMA, SAIC, and SBIC are model
averaging methods; AIC, BIC and Cp are model selection methods; LC, LL, and VC
are nonparametric and semiparametric models.

Model Average Model Selection Model Specification
d M MMA SAIC SBIC AIC BIC Cp LC LL VC
1 7 1.043 1.080 1.081 1.041 1.051 1.041 1.041 1.000 1.040
2 63 1.000 1.056 1.057 1.008 1.054 1.008 1.082 1.039 1.089
3 511 1.000 1.061 1.062 1.029 1.056 1.029 1.075 1.039 1.093

Table 3. Empirical Illustration Mean PSE. MMA, SAIC, and SBIC are model
averaging methods; AIC, BIC and Cp are model selection methods; LC, LL, and VC
are nonparametric and semiparametric models.

Model Average Model Selection Model Specification
d M MMA SAIC SBIC AIC BIC Cp LC LL VC
1 7 0.167 0.173 0.173 0.167 0.169 0.167 0.167 0.160 0.167
2 63 0.151 0.160 0.160 0.153 0.159 0.153 0.164 0.157 0.165
3 511 0.152 0.161 0.161 0.156 0.160 0.156 0.163 0.158 0.166

Table 2 reveals some interesting features. First, note from row 1 (i.e., d = 1) that when we average

across models in which the parametric component X is linear, then the fully nonparametric local

linear estimator is the best performer dominating both model averaging and model selection, which

for some might be unexpected. However, when we move to a larger number of candidate models

allowing for quadratic (d = 2) and cubic (d = 3) terms to enter in the parametric component X,

this appears to be sufficient for the model averaging estimator to dominate its peers. Furthermore,

Table 3 reveals that there is no further MSE improvement in either the selection or averaging

methods when we move from d = 2 to d = 3, hence a relatively modest number of candidate

models appear to be sufficient for the proposed model averaging method to dominate its peers.
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5. Concluding Remarks

In this paper we present a semiparametric approach to model averaging that possesses a number

of desirable features. Theoretical underpinnings are provided, and its finite-sample performance

indicates that it ought to be of interest to practitioners who wish to tackle model uncertainty. An

illustrative application indicates that the method is capable of delivering models with impressive

approximation capabilities. In particular, it can be seen how averaging over a set of semiparametric

models can outperform fully nonparametric specifications in applied settings, which ought to excite

the practitioner. R code for implementing the proposed approach is presented in the appendix, and

is available upon request from the authors.
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Appendix A. Proofs

Proof of Condition (14). We provide the following sufficient conditions for Condition (14):

(i) Xij takes values in a compact set Dj ⊂ [−Cx, Cx] for all j = 1, · · · ,∞, where Cx is a fixed

positive constant.

(ii) Let θ(Zi,(s)) = [E(Xi,(s)X
′
i,(s)|Zi,(s))]

−1. Then θ(Zi,(s)) is a finite and positive definite matrix

with |θm,m′(Zi,(s))| ≤ C̃ uniformly in s = 1, · · · , Sn, where θm,m′(Zi,(s)) is the (m,m′) element of

θ(Zi,(s)), m,m
′ = 1, . . . , ps, and C̃ is a positive constant that is not related to s.

(iii) h(s),j → 0 and nH(s) → ∞ as n → ∞ for all j = 1, . . . , qs, s = 1, . . . , Sn, where H(s) =

h(s),1 . . . h(s),qs .

(iv) The kernel function k(·) is a bounded symmetric (around zero) density function satisfying∫
k(v)v4dv is finite.

Note that the Assumption (i) above implies that |Xi,(s),m| ≤ Cx and E(|Xi,(s),m| |Zi,(s)) ≤ Cx for

all i, (s),m. Then,

max
i

n∑
j=1

|P(s),ij |

= max
i

1

nH(s)

n∑
j=1

∣∣∣∣∣X ′i,(s)
[

1

nH(s)

n∑
l=1

Xl,(s)X
′
l,(s)K(s)

(
Zl,(s) − Zi,(s)

h(s)

)]−1
Xj,(s)K(s)

(
Zj,(s) − Zi,(s)

h(s)

) ∣∣∣∣∣
= max

i

1

nH(s)

n∑
j=1

∣∣∣∣∣X ′i,(s)θ(Zi,(s))Xj,(s)

∣∣∣∣∣K(s)

(
Zj,(s) − Zi,(s)

h(s)

)
f−1(Zi,(s)) + (s.o.)

= max
i

1

nH(s)

n∑
j=1

∣∣∣∣∣
ps∑
m=1

ps∑
m′=1

Xi,(s),mθm,m′(Zi,(s))Xj,(s),m′

∣∣∣∣∣K(s)

(
Zj,(s) − Zi,(s)

h(s)

)
f−1(Zi,(s)) + (s.o.)

≤ max
i

ps∑
m=1

ps∑
m′=1

1

nH(s)

n∑
j=1

∣∣∣∣∣Xi,(s),mθm,m′(Zi,(s))Xj,(s),m′

∣∣∣∣∣K(s)

(
Zj,(s) − Zi,(s)

h(s)

)
f−1(Zi,(s)) + (s.o.)

= max
i

ps∑
m=1

ps∑
m′=1

∣∣Xi,(s),mθm,m′(Zi,(s))
∣∣ E (∣∣Xj,(s),m′

∣∣ ∣∣Zj,(s) = Zi,(s)
)

+ (s.o.)

= O(p2s),

where the first inequality is due to the fact that Xi,(s),mθm,m′(Zi,(s))Xi,(s),m′ may be positive for

some (m,m′) and negative for some other (m,m′), and the last equality is due to |Xi,(s),m| = O(1),
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|θm,m′(Zi,(s))| = O(1) and E(|Xi,(s),m′ | |Zi,(s)) = O(1) for all s,m,m′ implied by assumptions (i)

and (ii) above. Hence, we obtain max
i

∑n
j=1 |P(s),ij | = O(p2). �

Proof of Theorem 2.1. The proof is similar to that of Theorem 1 of Wan et al. (2010). Let the

largest singular values of a matrix A be λ(A). By Equation (12), we have

λ(Ω) = O(1). (A.1)

Under Condition (14), by an inequality of Reisz (e.g., Speckman (1988)), we obtain

λ[P(s)P
′
(s)] ≤ λ

2[P(s)] ≤ max
i

n∑
j=1

|P(s),ji|max
j

n∑
i=1

|P(s),ji| = O(p4). (A.2)

Hence,

λ(P(s)) = λ(P (wos)) = O(p2) for any s ∈ {1, . . . , Sn}. (A.3)

Let A(w) = I − P (w). Note that

Cn(w) = Ln(w) + n−1‖ε‖2 + 2n−1〈ε, A(w)µ〉+ 2n−1 {trace[P (w)Ω]− 〈ε, P (w)ε〉}

Theorem (2.1) is valid if the following is true: as n→∞,

sup
w∈W

|〈ε, A(w)µ〉|/[nRn(w)]
p→ 0, (A.4)

sup
w∈W

| trace[P (w)Ω]− 〈ε, P (w)ε〉|/[nRn(w)]
p→ 0, (A.5)

sup
w∈W

|Ln(w)/Rn(w)− 1| p→ 0, (A.6)
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First, we consider Equation (A.4). ∀δ > 0. By the triangle inequality, Chebyshev’s inequality,

Theorem 2 of Whittle (1960), Equation (A.1), and Equation (13), we obtain

Pr

{
sup
w∈W

|〈ε, A(w)µ〉|/[nRn(w)] > δ

}

≤ Pr

{
sup
w∈W

Sn∑
s=1

ws|ε′(I − P(s))µ| > δξn

}

≤ Pr
{

max
1≤s≤Sn

|ε′(I − P(s))µ| > δξn

}
= Pr

{
{|〈ε, A(wo1)µ〉| > δξn}

⋃
{|〈ε, A(wo2)µ〉| > δξn}

⋃
. . .
⋃{
|〈ε, A(woSn

)µ〉| > δξn
}}

≤
Sn∑
s=1

Pr {|〈ε, A(wos)µ〉| > δξn} by the triangle inequality

≤
Sn∑
s=1

E

{
〈ε, A(wos)µ〉2N

δ2Nξ2Nn

}
by Chebyshev’s inequality

≤ C1δ
−2Nξ−2Nn

Sn∑
s=1

‖Ω1/2A(wos)µ‖2N by (7) in Theorem 2 of Whittle (1960)

≤ C1δ
−2Nξ−2Nn λ(Ω)N

Sn∑
s=1

‖A(wos)µ‖2N

≤ C1δ
−2Nξ−2Nn λ(Ω)N

Sn∑
s=1

[nRn(wos)]
N → 0, as n → ∞ by Equation (A.1) and Equation (13),

where C1 is a constant, the second to last inequality follows from the result that µ′Aµ ≤ λ(A)µ′µ

and λ(AA) = λ(A)2 for any symmetric square matrix A, and the last inequality follows from the

fact that nRn(wos) ≥ ‖A(wos)µ‖2 which is implied by Equation (9).
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Similarly for Equation (A.5), we have

Pr

{
sup
w∈W

|trace[P (w)Ω]− 〈ε, P (w)ε〉| /[nRn(w)] > δ

}

= Pr

{
sup
w∈W

∣∣∣∣∣
Sn∑
s=1

ws[trace(P(s)Ω)− 〈ε, P(s)ε〉]

∣∣∣∣∣ /[nRn(w)] > δ

}

≤ Pr
{

max
1≤s≤Sn

∣∣trace(P(s)Ω)− 〈ε, P(s)ε〉
∣∣ /[nRn(w)] > δ

}

≤
Sn∑
s=1

Pr {|trace[P (wos)Ω]− 〈ε, P (wos)ε〉| > δξn}

≤
Sn∑
s=1

E

{
[trace[P (wos)Ω]− 〈ε, P (wos)ε〉]2N

δ2Nξ2Nn

}

≤ C2δ
−2Nξ−2Nn λ(Ω)N

Sn∑
s=1

{
trace

[
ΩP (wos)

′P (wos)
]}N

by (8) in Theorem 2 of Whittle (1960)

≤ C ′2δ−2Nξ−2Nn λ(Ω)N
Sn∑
s=1

[nRn(wos)]
N → 0, as n → ∞,

(A.7)

where C2 and C ′2 are constants, and where the last inequality follows from the fact that nRn(wos) ≥

trace [ΩP (wos)
′P (wos)] which is implied by Equation (9).

Note that Equation (A.6) is equivalent to

sup
w∈W

∣∣∣∣n−1‖P (w)ε‖2 − n−1 trace[ΩP (w)′P (w)]− 2n−1〈A(w)µ, P (w)ε〉
Rn(w)

∣∣∣∣ p→ 0.

Thus Equation (A.6) holds if, as n→∞, we have

sup
w∈W

∣∣∣∣〈A(w)µ, P (w)ε〉
nRn(w)

∣∣∣∣ p→ 0, (A.8)

and

sup
w∈W

∣∣∣∣‖P (w)ε‖2 − trace[ΩP (w)′P (w)]

nRn(w)

∣∣∣∣ p→ 0. (A.9)
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By Equation (A.3), we have

Pr

{
sup
w∈W

∣∣∣∣〈A(w)µ, P (w)ε〉
nRn(w)

∣∣∣∣ > δ

}

≤ Pr

{
sup
w∈W

Sn∑
m=1

Sn∑
s=1

wtws
∣∣ε′P(s)(I − P(m))µ

∣∣ > δξn

}

≤ Pr
{

max
1≤m≤Sn

max
1≤s≤Sn

∣∣ε′P(s)(I − P(m))µ
∣∣ > δξn

}

≤
Sn∑
t=1

Sn∑
s=1

E

[
〈P (wot )ε, A(wos)µ)〉2N

δ2Nξ2Nn

]

≤ C3δ
−2Nξ−2Nn

Sn∑
m=1

Sn∑
s=1

∥∥∥P (wom)Ω1/2A(wos)µ)
∥∥∥2N

≤ C3λ[Ω1/2P (wom)′P (wom)Ω1/2]Nδ−2Nξ−2Nn

Sn∑
m=1

Sn∑
s=1

‖A(wos)µ)‖2N

≤ C3Snλ(Ω)Nλ[P (wom)]2Nδ−2Nξ−2Nn

Sn∑
s=1

[nRn(wos)]
N → 0, as n → ∞,

where C3 is a constant, and where the last inequality follows from Equation (A.3). Also,

Pr

{
sup
w∈W

∣∣∣∣‖P (w)ε‖2 − trace[ΩP (w)′P (w)]

nRn(w)

∣∣∣∣ > δ

}

≤ Pr

{
sup
w∈W

Sn∑
t=1

Sn∑
s=1

wtws|ε′P ′(t)P(s)ε− trace[ΩP ′(s)P(t)]| > δξn

}

≤ Pr
{

max
1≤t≤Sn

max
1≤s≤Sn

|ε′P ′(t)P(s)ε− trace[ΩP ′(s)P(t)]| > δξn

}

≤
Sn∑
t=1

Sn∑
s=1

E

{
[〈Ω−1/2ε,Ω1/2P (wot )

′P (wos)Ω
1/2Ω−1/2ε〉 − trace(ΩP (wot )

′P (wos))]
2N

δ2Nξ2Nn

}

≤ C4λ(Ω)Nδ−2Nξ−2Nn

Sn∑
t=1

Sn∑
s=1

trace(P (wot )
′P (wos)ΩP (wos)

′P (wot ))
N

≤ C5Snλ(Ω)Nλ[P (wot )]
2Nδ−2Nξ−2Nn

Sn∑
s=1

trace(ΩP (wos)
′P (wos))

N

≤ C5Snλ(Ω)Nλ[P (wot )]
2Nδ−2Nξ−2Nn

Sn∑
s=1

[nRn(wos)]
N → 0, as n → ∞,
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where C4 and C5 are constants. Thus we obtain (A.8) and (A.9). �

Proof of Theorem 2.2. Obviously,

Ĉn(w) = Cn(w) + 2n−1 trace[P (w)Ω̂(w)]− 2n−1 trace[P (w)Ω].

Therefore, Equation (20) holds if

sup
w∈W

| trace[P (w)Ω̂(w)]− trace[P (w)Ω]|/[nRn(w)] = op(1). (A.10)

Let H(s) = diag(ρ
(s)
11 , . . . , ρ

(s)
nn) and H(w) =

∑Sn
s=1wsH(s). Then we obtain that

sup
w∈W

| trace[P (w)Ω̂(w)]− trace[P (w)Ω|/[nRn(w)]

= sup
w∈W

|[Y − P (w)Y ]′H(w)[Y − P (w)Y ]− trace[H(w)Ω]|/[nRn(w)]

= sup
w∈W

|[ε+ µ− P (w)Y ]′H(w)[ε+ µ− P (w)Y ]− trace[H(w)Ω]|/[nRn(w)]

≤ sup
w∈W

|ε′H(w)ε− trace[H(w)Ω]|
[nRn(w)]

+ 2 sup
w∈W

|ε′H(w)[P (w)Y − µ]|
[nRn(w)]

+ sup
w∈W

|[P (w)Y − µ]′H(w)[P (w)Y − µ]|
[nRn(w)]

≤ sup
w∈W

|ε′H(w)ε− trace[H(w)Ω]|
[nRn(w)]

+ 2 sup
w∈W

|ε′H(w)[P (w)µ− µ]|
[nRn(w)]

+ 2 sup
w∈W

|ε′H(w)P (w)ε− trace[H(w)P (w)Ω]|
[nRn(w)]

+ 2 sup
w∈W

| trace[H(w)P (w)Ω]|
[nRn(w)]

+ sup
w∈W

|[P (w)Y − µ]′H(w)[P (w)Y − µ]|
[nRn(w)]

≡ D1 +D2 +D3 +D4 +D5,

where the definitions of Di (i ∈ 1, . . . , 5) should be apparent. By following the proof of Equation

(A.5) in Zhao, Zhang & Gao (2016), we have D1 + D2 + D3 + D4 + D5 = op(1) by noting that
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the counterpart of Q(w) in Zhao et al. (2016) is H(w), and the definition of Rn(w) in Zhao et al.

(2016) is the same as our nRn(w). The proof is complete. �

Proof of Corollary 2.1. Note that

Ĉ∗n(w) = n−1‖P (w)Y − Y ‖2 + 2n−1 trace[P (w)Ω̂(s∗)].

Therefore, Equation (22) holds if

sup
w∈W

| trace[P (w)Ω̂(s∗)]− trace[P (w)Ω]|/[nRn(w)] = op(1).

Let H(s) = diag(ρ
(s)
11 , . . . , ρ

(s)
nn) and H(w) =

∑Sn
s=1wsH(s). Then we obtain that

sup
w∈W

| trace[P (w)Ω̂(s∗)]− trace[P (w)Ω|/[nRn(w)]

= sup
w∈W

|(Y − P(s∗)Y )′H(w)(Y − P(s∗)Y )− trace(P (w)Ω)|
[nRn(w)]

= sup
w∈W

|(ε+ µ− P(s∗)µ− P(s∗)ε)
′H(w)(ε+ µ− P(s∗)µ− P(s∗)ε)− trace(P (w)Ω)|

[nRn(w)]

≤ sup
w∈W

|ε′(In − P(s∗))
′H(w)(In − P(s∗))ε− trace[(In − P(s∗))

′H(w)(In − P(s∗))Ω]|
[nRn(w)]

+ 2 sup
w∈W

|ε′(In − P(s∗))
′H(w)(In − P(s∗))µ|

[nRn(w)]

+ sup
w∈W

|µ′(In − P(s∗))
′H(w)(In − P(s∗))µ|

[nRn(w)]

+ sup
w∈W

∣∣ trace
[
P ′(s∗)H(w)P(s∗)Ω

]∣∣
[nRn(w)]

+ 2 sup
w∈W

∣∣ trace
[
P ′(s∗)H(w)Ω

]∣∣
[nRn(w)]

≡ D̃1 + D̃2 + D̃3 + D̃4 + D̃5,

where the definitions of D̃i (i ∈ 1, . . . , 5) should be apparent. By following the proof of (A.7) in

Zhang & Wang (2015), we have D̃1 + D̃2 + D̃3 + D̃4 + D̃5 = op(1) by noting that the counterpart

of Q(w) in Zhang & Wang (2015) is H(w), and the definition of Rn(w) in Zhang & Wang (2015)

is the same as our nRn(w). The proof is complete. �
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Appendix B. R Code (NOT FOR PUBLICATION)

The R code to replicate the Monte Carlo simulations is provided below. It can be run in serial

mode or in parallel on a laptop, desktop, or cluster environment.

## Monte Carlo simulation and functions for model averaging and model
## selection for the varying coefficient specification. This requires
## that the latest version of the R package ‘np’ from github
## (https://github.com/JeffreyRacine/R-Package-np) along with the
## quadprog, foreach, and doParallel packages from CRAN.

rm(list=ls())

## To process Monte Carlo simulations in parallel (e.g. using multiple
## cores), modify the integer in makeCluster() to the desired number
## of cores, then uncomment/comment the appropriate foreach() command
## at or around lines 133-136. Can also use makeCluster(detectCores())
## to automate the number of cores used.

library(foreach)
library(doParallel)
cl<-makeCluster(detectCores())
registerDoParallel(cl)

library(np)
library(quadprog)
options(np.messages=FALSE)
clusterExport(cl,"options")

## alpha determines the rate of coefficient decline, larger alpha
## implies coefficients decline more quickly with j

alpha <- scan("alpha.dat")

## sigma determines R^2=1/(1+sigma^2)
## R^2 = (0.941, 0.80, 0.50, 0.20) when (c = 0.25, 0.50, 1.0, 2.0)

sigma <- scan("sigma.dat")

## Generate X matrix with large number of N(0,1) columns for the DGP
## (infinite order regression with decaying weights)

num.cols <- 1000

## Sample size, number of Monte Carlo replications, and ability to
## restart if halted

n <- scan("num_obs.dat")
Monte <- scan("num_monte.dat")
system("if test -e mse.out;then wc -l mse.out | awk ’{print $1}’ > num_monte_exist.dat;else echo 0 > num_monte_exist.dat;fi")
M.exist <- scan("num_monte_exist.dat")

## Number of candidate models is a function of the sample size (Hansen
## (2007))

M <- round(3*n**(1/3))

## Create headers (can be restarted and, when so, the headers are not
## written nor is the seed set)

if(M.exist==0) {
M.remain <- Monte
system("rm *.out")
write(c("JMA","MMA","SAIC","SBIC","AIC","BIC","CV","Cp"),file="mse.out",ncol=8)
write(c("DGP","JMA","MMA","SAIC","SBIC","AIC","BIC","CV","Cp"),file="r_squared.out",ncol=9)

} else {
Monte <- Monte+1-M.exist

}

## Functions for computing R^2 and MSE

r.sq <- function(yhat,ybar) {
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sum((yhat-ybar)^2)/sum((y-ybar)^2)
}

mse <- function(yhat,dgp) {
mean((yhat-dgp)^2)

}

## Function for computing the hat matrix of the varying coefficient
## specification (the diagonal matrix with 1e-10 proceeds with the
## inversion without throwing an error if the singular case is
## encountered)

hat.mat.npscoef <- function(x,z,bw) {
W <- cbind(1,x)
IM <- diag(1e-10,ncol(W),ncol(W))
K <- npksum(txdat=z,bws=bw,return.kernel.weights=TRUE)$kw
P <- sapply(1:NROW(x),function(i){tWK <- t(W*K[,i]);W[i,,drop=FALSE]%*%chol2inv(chol(tWK%*%W+IM))%*%tWK})

}

## Function to compute the trace of the hat matrix times \hat\Omega

trace.hat.mat.Omega.npscoef <- function(x,z,bw,resid) {
sum(diag(hat.mat.npscoef(x,z,bw)*resid^2))

}

## Function for Cp model selection criterion

Cp.npscoef <- function(n,trace.hat.mat,resid) {
sum(resid^2)*(1 + 2*trace.hat.mat/(n-trace.hat.mat))

}

## Function for BIC model selection

BIC.npscoef <- function(n,trace.hat.mat,sigmasq.ml) {
log(sigmasq.ml)+trace.hat.mat*log(n)/n

}

## Function for AIC model selection

AIC.npscoef <- function(n,trace.hat.mat,sigmasq.ml) {
log(sigmasq.ml)+2*trace.hat.mat/n

}

## Storage matrices and vectors (loo = ‘leave-one-out’)

yhat.loo.mat <- matrix(nrow=n,ncol=M)
yhat.mat <- matrix(nrow=n,ncol=M)
residual.mat <- matrix(nrow=n,ncol=M)

trace.Omega.vec <- numeric(M)
mse.vec <- numeric(M)
aic.vec <- numeric(M)
bic.vec <- numeric(M)
cv.vec <- numeric(M)
cp.vec <- numeric(M)
bw.vec <- numeric(M)
r.sq.vec <- numeric(M)

## Monte Carlo begins

## NB - foreach() is _not_ a loop, and the index i cannot be used in
## return vectors though it is available inside the loop it
## appears... it simply chunks things up... so don’t make the mistake
## of expecting it to work like for() or you will be sorely
## disappointed (it is list based, for like ‘apply’)

## Uncomment for serial processing
##if(Monte>0) foreach(i=1:Monte,.combine=’c’) %do% {
## Uncomment for parallel processing
if(Monte>0) foreach(i=1:Monte,.packages=c(’np’,’quadprog’),.combine=’c’,.inorder=FALSE) %dopar% {

set.seed(i+M.exist)

z <- runif(n,min=-1,max=1)
X <- matrix(rnorm(n*num.cols),nrow=n,ncol=num.cols)
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## Generate parameter vector theta of length num.cols

theta <- sqrt(2*alpha)*seq(1,num.cols)**(-alpha-1/2)

## Generate the DGP, convert to unit variance, add heteroskedastic error with
## expected variance sigma^2 (expected r-squared will therefore be
## 1/(1+sigma^2))

dgp <- as.numeric(X%*%theta)*exp(z)
dgp <- dgp/sd(dgp)

y <- dgp + rnorm(n,sd=sigma*abs(z)*sqrt(3))

ybar <- mean(y)
dgp.r.sq <- r.sq(dgp,ybar)

for(j in M:1) {

## Compute cross-validated bandwidths, the model fit, residuals,
## and delete-one fits and residuals

bws <- npscoefbw(ydat=y,zdat=z,xdat=X[,1:j])

model <- npscoef(bws=bws,residuals=TRUE)

## Need residuals from the ‘largest’ model for computing
## \hat\Omega (the full matrix X)

if(j==M) model.largest <- model
model.loo <- npscoef(bws=bws,delete.one=TRUE,residuals=TRUE)

yhat <- fitted(model)
r.sq.vec[j] <- r.sq(yhat,ybar)
mse.vec[j] <- mse(fitted(model),dgp)
bw.vec[j] <- bws$bw[1]

## For JMA

yhat.loo.mat[,j] <- fitted(model.loo)
yhat.mat[,j] <- fitted(model)

## For MMA

residual.mat[,j] <- residuals(model)
trace.Omega.vec[j] <- trace.hat.mat.Omega.npscoef(X[,1:j],z,model$bws$bw,residuals(model.largest))

## For model selection

trace.hat.mat <- sum(diag(hat.mat.npscoef(X[,1:j],z,model$bws$bw)))

aic.vec[j] <- AIC.npscoef(n,trace.hat.mat,model$MSE)
bic.vec[j] <- BIC.npscoef(n,trace.hat.mat,model$MSE)
cv.vec[j] <- mean(residuals(model.loo)^2)
cp.vec[j] <- Cp.npscoef(n,trace.hat.mat,residuals(model))

}

## Grab the mse and r-squared from the AIC, BIC, CV and Cp optimal
## models

aic.mse <- mse.vec[which.min(aic.vec)]
bic.mse <- mse.vec[which.min(bic.vec)]
cv.mse <- mse.vec[which.min(cv.vec)]
cp.mse <- mse.vec[which.min(cp.vec)]

aic.r.sq <- r.sq.vec[which.min(aic.vec)]
bic.r.sq <- r.sq.vec[which.min(bic.vec)]
cv.r.sq <- r.sq.vec[which.min(cv.vec)]
cp.r.sq <- r.sq.vec[which.min(cp.vec)]

## Now compute the JMA-optimal model. Compute weights, impose
## restriction of summing to one and being non-negative

## The w’Dmat w matrix (M x M)

Dmat <- t(yhat.loo.mat)%*%yhat.loo.mat

26



if(qr(Dmat)$rank<M) Dmat <- Dmat + diag(1e-10,M,M)

## The -2 dvec’w vector (1 X M)

dvec <- t(y)%*%yhat.loo.mat

## The constraint matrix. Amat has row one the adding up
## constraint, the following num.model rows the non-negativity,
## finally the following num.model the less than one constraints.

Amat <- t(rbind(rep(1,M),diag(x=1,M,M),diag(x=-1,M,M)))

## The constraint vector

bvec <- c(1,rep(0,M),rep(-1,M))

## meq tells us to treat the first constraint as an equality
## constraint, the rest as inequality ones

## JMA weight vector, fitted model, MSE and r-squared

w.hat.jma <- solve.QP(Dmat,dvec,Amat,bvec=bvec,meq=1)$solution

yhat.jma <- yhat.mat%*%w.hat.jma

jma.mse <- mse(yhat.jma,dgp)
jma.r.sq <- r.sq(yhat.jma,ybar)

## Mallows model average (can reuse constraint matrix/vector)

## The w’Dmat w matrix (M x M)

Dmat <- t(residual.mat)%*%residual.mat
if(qr(Dmat)$rank<M) Dmat <- Dmat + diag(1e-10,M,M)

## The 2 dvec’w vector (1 x M) (opposite sign from JMA dvec)

dvec <- -trace.Omega.vec

## MMA weight vector, fitted model, MSE and r-squared

w.hat.mma <- solve.QP(Dmat,dvec,Amat,bvec=bvec,meq=1)$solution

yhat.mma <- yhat.mat%*%w.hat.mma

mma.mse <- mse(yhat.mma,dgp)
mma.r.sq <- r.sq(yhat.mma,ybar)

## SAIC, SBIC weight vectors, fitted model, MSE and r-squared

w.hat.aic <- exp(-aic.vec/2)/sum(exp(-aic.vec/2))
w.hat.bic <- exp(-bic.vec/2)/sum(exp(-bic.vec/2))

yhat.saic <- yhat.mat%*%w.hat.aic
yhat.sbic <- yhat.mat%*%w.hat.bic

saic.mse <- mse(yhat.saic,dgp)
sbic.mse <- mse(yhat.sbic,dgp)

saic.r.sq <- r.sq(yhat.saic,ybar)
sbic.r.sq <- r.sq(yhat.sbic,ybar)

## Write results to files as the Monte Carlo progresses (can compute
## summaries before experiment is completed).

write(c(jma.mse,mma.mse,saic.mse,sbic.mse,aic.mse,bic.mse,cv.mse,cp.mse),"mse.out",ncol=8,append=TRUE)
write(c(dgp.r.sq,jma.r.sq,mma.r.sq,saic.r.sq,sbic.r.sq,aic.r.sq,bic.r.sq,cv.r.sq,cp.r.sq),"r_squared.out",ncol=9,append=TRUE)
write(mse.vec,"mse_models.out",ncol=M,append=TRUE)
write(w.hat.jma,"jma_weights.out",ncol=M,append=TRUE)
write(w.hat.mma,"mma_weights.out",ncol=M,append=TRUE)
write(w.hat.aic,"saic_weights.out",ncol=M,append=TRUE)
write(w.hat.bic,"sbic_weights.out",ncol=M,append=TRUE)
write(bw.vec,"bw.out",ncol=length(bw.vec),append=TRUE)

}
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stopCluster(cl)
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Appendix C. R Code for the Illustrative Application (NOT FOR PUBLICATION)

The R code to replicate the illustrative application is provided below. It can be run in serial

mode or in parallel on a laptop, desktop, or cluster environment. When the number of candidate

models is large (e.g. 500+) the benefits of running in parallel can be substantial.

num.reps <- 1000

set.seed(42)

library(foreach)
library(doParallel)
cl<-makeCluster(detectCores())
registerDoParallel(cl)

library(np)
library(quadprog)
options(np.messages=FALSE)

## Functions for computing R^2 and MSE

r.sq <- function(yhat,ybar) {
sum((yhat-ybar)^2)/sum((y-ybar)^2)

}

## Function for computing the hat matrix of the varying coefficient
## specification (the diagonal matrix with 1e-10 proceeds with the
## inversion without throwing an error if the singular case is
## encountered)

hat.mat.npscoef <- function(x,z,bw) {
W <- cbind(1,x)
IM <- diag(1e-10,ncol(W),ncol(W))
K <- npksum(txdat=z,bws=bw,return.kernel.weights=TRUE)$kw
P <- sapply(1:NROW(x),function(i){tWK <- t(W*K[,i]);W[i,,drop=FALSE]%*%chol2inv(chol(tWK%*%W+IM))%*%tWK})

}

## Function to compute the trace of the hat matrix times \hat\Omega

trace.hat.mat.Omega.npscoef <- function(x,z,bw,resid) {
sum(diag(hat.mat.npscoef(x,z,bw)*resid^2))

}

## Function for Cp model selection criterion

Cp.npscoef <- function(n,trace.hat.mat,resid) {
sum(resid^2)*(1 + 2*trace.hat.mat/(n-trace.hat.mat))

}

## Function for BIC model selection

BIC.npscoef <- function(n,trace.hat.mat,sigmasq.ml) {
log(sigmasq.ml)+trace.hat.mat*log(n)/n

}

## Function for AIC model selection

AIC.npscoef <- function(n,trace.hat.mat,sigmasq.ml) {
log(sigmasq.ml)+2*trace.hat.mat/n

}

## Data

data(wage1)
attach(wage1)
y <- lwage
z <- data.frame(factor(female),factor(married))
## X must be a matrix...
d <- scan("poly_order.dat")
X <- cbind(poly(educ,d),poly(exper,d),poly(tenure,d))
K <- ncol(X)
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M <- 0
for(k in 1:K) M <- M + ncol(combn(K,k))
indices.mat <- matrix(0,K,M)
j <- 1
for(k in 1:K) {

indices.mat[1:nrow(combn(K,k)),j:(j+ncol(combn(K,k))-1)] <- combn(K,k)
j <- j + ncol(combn(K,k))

}

n <- nrow(X)

## foreach() returns a list (or list of lists), it is not a
## replacement for for(), rather a kindof ‘apply’ replacement albeit
## in parallel (thanks Revolution R programmers!)

n.train <- 500
n.eval <- n - n.train

## Write results to files
write(c("JMA","MMA","SAIC","SBIC","AIC","BIC","CV","Cp"),

file="r_squared.out",ncol=8)
write(c("AIC","BIC","CV","Cp"),

file="model_selection.out",ncol=4)
write(c("JMA","MMA","SAIC","SBIC","AIC","BIC","CV","Cp"),

file="mse.out",ncol=8)

for(m in 1:num.reps) {

ii <- sample(n)
ii.train <- ii[1:n.train]
ii.eval <- ii[(1+n.train):n]

y.train <- y[ii.train]
ybar.train <- mean(y.train)
y.eval <- y[ii.eval]

z.train <- z[ii.train,]
z.eval <- z[ii.eval,]

## Overhead for computing the largest model (done in serial, might be
## folded into post processing but might have to pass back big hat
## matrices)

bws <- npscoefbw(ydat=y.train,zdat=z.train,xdat=X[ii.train,indices.mat[,M]])
model.largest <- npscoef(bws=bws,residuals=TRUE)

output <- foreach(i=1:M,.packages=c(’np’,’quadprog’)) %dopar% {

X.train <- X[ii.train,indices.mat[,i]]
X.eval <- X[ii.eval,indices.mat[,i]]

bws <- npscoefbw(ydat=y.train,zdat=z.train,xdat=X.train)
model <- npscoef(bws=bws,residuals=TRUE)
model.loo <- npscoef(bws=bws,delete.one=TRUE,residuals=TRUE)
trace.hat.mat <- sum(diag(hat.mat.npscoef(X.train,z.train,model$bws$bw)))

list(r.sq.train.vec=r.sq(fitted(model),ybar.train),
yhat.train.loo.mat=fitted(model.loo),
yhat.train.mat=fitted(model),
residual.train.mat=residuals(model),
trace.Omega.train.vec=trace.hat.mat.Omega.npscoef(X.train,z.train,model$bws$bw,residuals(model.largest)),
aic.train.vec=AIC.npscoef(n.train,trace.hat.mat,model$MSE),
bic.train.vec=BIC.npscoef(n.train,trace.hat.mat,model$MSE),
cv.train.vec=mean(residuals(model.loo)^2),
cp.train.vec=Cp.npscoef(n.train,trace.hat.mat,residuals(model)),
yhat.eval.mat=fitted(npscoef(ydat=y.train,zdat=z.train,xdat=X.train,ezdat=z.eval,exdat=X.eval,bws=bws$bw)),
residual.eval.mat=y.eval-fitted(npscoef(ydat=y.train,zdat=z.train,xdat=X.train,ezdat=z.eval,exdat=X.eval,bws=bws$bw)))

}

## Storage matrices and vectors (loo = ‘leave-one-out’)

yhat.train.loo.mat <- matrix(nrow=n.train,ncol=M)
yhat.train.mat <- matrix(nrow=n.train,ncol=M)
residual.train.mat <- matrix(nrow=n.train,ncol=M)
residual.eval.mat <- matrix(nrow=n.eval,ncol=M)
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yhat.eval.mat <- matrix(nrow=n.eval,ncol=M)

trace.Omega.train.vec <- numeric(M)
aic.train.vec <- numeric(M)
bic.train.vec <- numeric(M)
cv.train.vec <- numeric(M)
cp.train.vec <- numeric(M)
r.sq.train.vec <- numeric(M)

## Extract elements of list into storage matrices and vectors

for(i in 1:M) {
yhat.train.loo.mat[,i] <- output[[i]]$yhat.train.loo.mat
yhat.train.mat[,i] <- output[[i]]$yhat.train.mat
residual.train.mat[,i] <- output[[i]]$residual.train.mat
residual.eval.mat[,i] <- output[[i]]$residual.eval.mat
yhat.eval.mat[,i] <- output[[i]]$yhat.eval.mat

trace.Omega.train.vec[i] <- output[[i]]$trace.Omega.train.vec
aic.train.vec[i] <- output[[i]]$aic.train.vec
bic.train.vec[i] <- output[[i]]$bic.train.vec
cv.train.vec[i] <- output[[i]]$cv.train.vec
cp.train.vec[i] <- output[[i]]$cp.train.vec
r.sq.train.vec[i] <- output[[i]]$r.sq.train.vec

}

## Grab the r-squared from the AIC, BIC, CV and Cp optimal
## models

aic.r.sq <- r.sq.train.vec[which.min(aic.train.vec)]
bic.r.sq <- r.sq.train.vec[which.min(bic.train.vec)]
cv.r.sq <- r.sq.train.vec[which.min(cv.train.vec)]
cp.r.sq <- r.sq.train.vec[which.min(cp.train.vec)]

aic.mse <- mean((yhat.eval.mat[,which.min(aic.train.vec)]-y.eval)^2)
bic.mse <- mean((yhat.eval.mat[,which.min(bic.train.vec)]-y.eval)^2)
cv.mse <- mean((yhat.eval.mat[,which.min(cv.train.vec)]-y.eval)^2)
cp.mse <- mean((yhat.eval.mat[,which.min(cp.train.vec)]-y.eval)^2)

## Now compute the JMA-optimal model. Compute weights, impose
## restriction of summing to one and being non-negative

## The w’Dmat w matrix (M x M)

Dmat <- t(yhat.train.loo.mat)%*%yhat.train.loo.mat
if(qr(Dmat)$rank<M) Dmat <- Dmat + diag(1e-10,M,M)

## The -2 dvec’w vector (1 X M)

dvec <- t(y.train)%*%yhat.train.loo.mat

## The constraint matrix. Amat has row one the adding up
## constraint, the following num.model rows the non-negativity,
## finally the following num.model the less than one constraints.

Amat <- t(rbind(rep(1,M),diag(x=1,M,M),diag(x=-1,M,M)))

## The constraint vector

bvec <- c(1,rep(0,M),rep(-1,M))

## meq tells us to treat the first constraint as an equality
## constraint, the rest as inequality ones

## JMA weight vector, fitted model and r-squared

w.hat.jma <- solve.QP(Dmat,dvec,Amat,bvec=bvec,meq=1)$solution

yhat.train.jma <- yhat.train.mat%*%w.hat.jma
yhat.eval.jma <- yhat.eval.mat%*%w.hat.jma

jma.r.sq <- r.sq(yhat.train.jma,ybar.train)
jma.mse <- mean((yhat.eval.jma-y.eval)^2)

## Mallows model average (can reuse constraint matrix/vector)
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## The w’Dmat w matrix (M x M)

Dmat <- t(residual.train.mat)%*%residual.train.mat
if(qr(Dmat)$rank<M) Dmat <- Dmat + diag(1e-10,M,M)

## The 2 dvec’w vector (1 x M) (opposite sign from JMA dvec)

dvec <- -trace.Omega.train.vec

## MMA weight vector, fitted model and r-squared

w.hat.mma <- solve.QP(Dmat,dvec,Amat,bvec=bvec,meq=1)$solution

yhat.train.mma <- yhat.train.mat%*%w.hat.mma
yhat.eval.mma <- yhat.eval.mat%*%w.hat.mma

mma.r.sq <- r.sq(yhat.train.mma,ybar.train)
mma.mse <- mean((yhat.eval.mma-y.eval)^2)

## SAIC, SBIC weight vectors, fitted model and r-squared

w.hat.aic <- exp(-aic.train.vec/2)/sum(exp(-aic.train.vec/2))
w.hat.bic <- exp(-bic.train.vec/2)/sum(exp(-bic.train.vec/2))

yhat.train.saic <- yhat.train.mat%*%w.hat.aic
yhat.train.sbic <- yhat.train.mat%*%w.hat.bic

yhat.eval.saic <- yhat.eval.mat%*%w.hat.aic
yhat.eval.sbic <- yhat.eval.mat%*%w.hat.bic

saic.r.sq <- r.sq(yhat.train.saic,ybar.train)
sbic.r.sq <- r.sq(yhat.train.sbic,ybar.train)

saic.mse <- mean((yhat.eval.saic-y.eval)^2)
sbic.mse <- mean((yhat.eval.sbic-y.eval)^2)

write(c(jma.r.sq,mma.r.sq,saic.r.sq,sbic.r.sq,aic.r.sq,bic.r.sq,cv.r.sq,cp.r.sq),
file="r_squared.out",ncol=8,append=TRUE)

write(c(which.min(aic.train.vec),which.min(bic.train.vec),which.min(cv.train.vec),which.min(cp.train.vec)),
file="model_selection.out",ncol=4,append=TRUE)

write(c(jma.mse,mma.mse,saic.mse,sbic.mse,aic.mse,bic.mse,cv.mse,cp.mse),
file="mse.out",ncol=8,append=TRUE)

}

stopCluster(cl)

32


